

Short Communication

Screening and isolation of fibrinolytic protease producing bacteria from various regions in Bangalore

E. Venkata Naga Raju¹*, Dr.G. Divakar²

¹Department of biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur-522 510. India ²Department of Biotechnology & Microbiology, Acharya & B.M.Reddy College Of Pharmacy, Soldevanahalli, Hesaraghatta, Banglor-560090, India.

Corresponding Author's Email: venkatanagarajue@gmail.com

Abstract: This work has been undertaken for the screening and isolation of fibrinolytic protease producing strains of Bacteria were carried out from Ten soil samples, collected from various regions of Bangalore and used to screen for fibrinolytic protease production by using fibrin plate assay. In the present study, an attempt was made to isolate efficient fibrinolytic protease producing bacteria from diverse environmental samples. Different isolates were screened for possessing the ability to produce fibrinolytic protease. About 6 bacterial isolates were found to be promising to produce fibrinolytic protease. The organisms were tested for various biochemical tests, which leads to their identification as *Bacillus licheniformis, Bacillus cerus*, and *Staphylococcus aureus*

Keywords : Fibrinolytic protease, Bangalore, fibrin plate, Bacillus licheniformis, Bacillus cerus, Staphylococcus aureus

INTRODUCTION

Enzymes are delicate protein molecules necessary for life. fibrinolytic Proteases are the single class of enzymes which play an important part in the metabolism of almost all organisms (Plants, Animals, Fingi, Bacteria and Viruses)[1].Investigation of fibrinolytic proteases is a central issue in enzymology due to their wide applications in Clinical ,Pharmaceutical,Food, and Bioremediation process. Among the various proteases, bacterial extracellular proteases are the most significant, compared with animal,Plants,viruses fungal and extracellular proteases. Extracellular proteases produced by Bacillus and cocci species are of main interest from a biotechnological perspective, and are not only in scientific fields of protein chemistry and protein engineering but also in applied fields such as foods and pharmaceutical industries. These fibrinolytic proteases account for 60% of the total worldwide production of enzymes[2]. The genus Bacillus and cocci contains a number of industrially important species and approximately half of the present commercial production of bulk enzymes derives from the srtains of Bacillus and cocci. fibrinolytic proteases belongs to the class hydrolase which are able to hydrolyse insoluble fibrin more efficient than other proteases and their action are very specific, i.e., they acts only on fibrin substrates, fibrins are insoluble fibrous non globular proteins found in blood clots and in thrombosis condition(Excessive generation of fibrin due to

activation of the coagulation cascade leads to thrombosis). fibrinolytic proteases are hydrolyze both native and denatured Fibrin, and the enzymes are widely used not only in chemical and medical industries but also in food and basic biological science[3]. In this study an attempt was made for the screening and isolation of fibrinolytic proteases producing bacteria from various regions of Bangalore.

MATERIALS AND METHODS

Collection and isolation of sample

Samples were collected from dump yards of beef, chicken, fish and milk centers at Solddevanahalli, Chikkabanavara, Devasandra, K.R.puram, Tannary road and Yashwanthpur in and around Bangalore, Karnataka, India. The samples were labeled after collected. These were spread onto isolation media (Fibrin plate agar) and incubated at 37°C for 24 hours after serial dilution of 10⁻¹ to 10⁻⁶.

Screening of fibrinolytic proteases production by plate assay

The isolates were screened for fibrinolytic protease activity in triplets. This was done by inoculating the organisms on the modified Fibrin plate agar[4]. containing 1.2%w/v agarose,0.4%w/v human fibrinogen and 20 U/ml human thrombin in a petridisc and incubated at 37°C for 24 hours. A clear zone around the growth of the bacteria was indicated to fibrinolytic proteases activity

S.NO	DESIGNATI	SAMPLE	SAMPLE	SAMPLE	SAMPLE					
	ON OF	COLLECTED	COLLECTED	NATURE	PH					
	SAMPLE	AREA	LAND MARK							
1	ABMRCP -1	Shivaji Nagar	Opposite to Maszid	Semisolid sticky						
		, ,	at Chiken center	Seems to Brown in	7.64					
				colour						
2	ABMRCP -2	Tannery Road	Near to Bus stop at	Semisolid Seems to						
		2	Chiken center	Black in colour	7.60					
3	ABMRCP -3	Tannery Road	Near to Bus stop	Semisolid Seems to						
		2	Chiken Center	Brown in colour	7.72					
4	ABMRCP -4	Tannery Road	Slaughter house	Hard consist of sand						
			opposite canal	and clay seems to	7.65					
				Brown in colour						
5	ABMRCP -5	Solddevanahalli	Near to Bus stop	Semisolid Seems to						
			Chiken Center	Brown in colour	7.62					
6	ABMRCP -6	Chikka Banavara	Near to Bus stop	Sticky consist of						
			Chiken Center	sand and clay seems	7.44					
				to Brick red in						
				colour						
7	ABMRCP -7	K.R.Puram	Devasandra lake	Semisolid Seems to						
			Chiken dump	red in colour	7.71					
8	ABMRCP -8	Tin Factory	Opposite to Maszid	Semisolid Seems to						
			at Chiken center	red in colour	7.60					
9	ABMRCP -9	Tin Factory	Near to Bus stop	Hard consist clay						
			Chiken Center	seems to Black in	7.26					
				colour						
10	ABMRCP -10	Yashwanth Pura	Fish market Near	Sticky consist of						
			to Railway station	sand and clay seems	7.34					
				to Black						

Table -1:Tabulation for Samples Description

Isolates on Fibrin plate agar Pure culture in petridish Pure culture in slants Figure : fibrinolytic proteases production and pure cultures

Identification of Bacteria

The isolated bacteria were identified based on cellular morphology, growth condition, grams staining, endospore staining, capsule staining and biochemical tests [5].

RESULTS AND DISCUSSION

Six bacterial isolates were obtained(Table:3) from soil samples of ABMRCP 1 to ABMRCP 10 (Table:1) and identified as *Bacillus cerus, Bacillus licheniformis* and *Staphylococcus aureus*. Morphologically and biochemically. The colonies were subjected to grams staining, capsule staining and endospore staining. The colonies which were positive and negative for Grams staining, Capsule and endospore

staining were considered for further studies(Table 3&4). The selected colonies were streaked on fibrin plate agar .The plates were subjected to incubation for a period of 24 hours at 37°C. The plates which showed clear zone around the streaked area of test organism was selected as fibrinolytic proteases producing strain. The organisms named(Table2) showed the inhibition zone and was subjected to various biochemical tests(Table4). G isolates (Table2) showed the following results for the biochemical tests. These

were positive for Methyl red test,Starch hydrolysis,Citrate utilization test.Oxidase test,gelatin hydrolysis test.urease test and nitrate reduction test ,and few isolates were shows negative for Voges Paskauer test,Indole test and Catalase test.After biochemical tests these organisms were confirmed to belong to the Bacillus and Cocci species (*Bacillus cerus , Bacillus licheniformis* and *Staphylococcus aureus*) which shows the capability of producing fibrinolytic protease.

Fabla	2. Tabulation	for regults	of colony	v abaractoristics	which show	e fibrinolytic	nrataasas a	otivity
i abie	-2: Labulation	for results	of colon	y characteristics	which show	s indrinolytic	proteases a	cuvity.

STRAIN NO.	COLONY SURFACE	COLONY COLOUR	VISUAL CHARACTERISTI CS	SHAPE OF THE COLONY	HEIGHT OF THE COLONY	FIBRINOLY TIC/GELAT INASE ACTIVITY
G-1	Smooth	Brown	Opaque	Irregular	Raised	Positive
G-2	Smooth	Off white	Translucent	Circular	Raised	Positive
G-3	Smooth	Brown	Translucent	Irregular	Flat	Positive
G-4	Smooth	Off white	Opaque	Irregular	Raised	Positive
G-5	Smooth	Brown	Opaque	Irregular	Raised	Positive
G-6	Smooth	Brown	Translucent	Irregular	Flat	Positive

Table -3: Tabulation for results of Staining Techniques.

STRAIN NO.	GRAM STAINING	MORPHOLOG Y (BACILUS/COC CI)	ENDOSPORE STAINING	CAPSULE STAINING	
G-1	Positive	Rods	Positive	Positive	
G-2	Positive	Rods	Positive	Positive	
G-3	Positive	Cocci	Positive	Positive	
G-4	Positive	Rods	Positive	Positive	
G-5	Positive	Rods	Positive	Positive	
G-6 Positive		Cocci	Positive	Positive	

 Table -4: Tabulation for results of Various Biochemical tests

S.No.	SAMPLES	INDOLE	MR	٧P	AMYLASE	NITRATE	OXIDASE	CATALASE	UREASE	GELATINASE	FIBRINOLYTIC ACTIVITY
1	G-1	+Ve	-Ve	-Ve	+Ve	-Ve	+Ve	+Ve	+Ve	+Ve	+Ve
2	G-2	-Ve	-Ve	+Ve	+Ve	+Ve	-Ve	-Ve	+Ve	+Ve	+Ve
3	G-3	-Ve	+Ve	+Ve	-Ve	+Ve	-Ve	+Ve	-Ve	+Ve	+Ve
4	G-4	-Ve	-Ve	+Ve	+Ve	+Ve	-Ve	-Ve	+Ve	+Ve	+Ve
5	G-5	+Ve	-Ve	-Ve	+Ve	-Ve	+Ve	+Ve	+Ve	+Ve	+Ve
6	G-6	-Ve	+Ve	+Ve	-Ve	+Ve	-Ve	+Ve	-Ve	+Ve	+Ve

CONCLUSION

The search for promising strains of fibrinolytic proteases producers is a continuous process. The isolates which shows higher fibrinolytic proteases activity were selected for biochemical characterization and identification. The organisms were identified as *Bacillus cerus*, *Bacillus licheniformis* and *Staphylococcus aureus*. on the basis of data obtained in the present work it can be concluded that *Bacillus* and *Cocci* species isolates can be employed in the production of fibrinolytic proteases.

REFERENCES

- 1. Adinarayana K, Bhavani DR, Poluri E, Tadimallo P and Vinjamuri S ;Urokinase- a strong plaminogen activator, Biotechnol. Mol. Biol Rev, 2008,3: 058-070.
- Balaraman K and Kuppusamy MA;Process for the production of Thrombinase, a blood clot dissolving enzyme from *Bacillus* sp, 1991,Indian patent no. 232/DEL/91 dt 21-3-91.
- 3. Balaraman K and Prabakaran G; Production & purification of a fibrinolytic enzyme (thrombinase) from *Bacillus sphaericus*, Indian Journal of Medical Research, 2007,126: 459-464.
- 4. Astrup T and Mullertz S; The fibrin plate method for estimating fibrinolytic activity, Arch. Biochem. Biophys, 1952, 40: 346–351.
- 5. Pokorny M, Vitale V and Zuvanic J;Bergys manual of Determinative Bacteriology *Streptomyces rimoses* extacellular protease Characterization and evaluation of various crude preparations, Europe. J. Appl. Microbiol. Biotechnol, 1979, 8: 81-90.
- 6. Banerjee A, Chistic Y and Banerjee UC; Streptokinase, a clinically useful thrombolytic agent,Biotechnol. Adv, 2004, 22: 287-305.
- Bernik MB and Oller EP; Increase plasminogen activator (Urokinase) in tissue culture after fibrin deposition, J.Clin Invest, 1973,52:823-834.
- Blann AD and Landray M.J; ABC of antithrombotic therapy: an overview of antithrombotic therapy, BMJ, 2002, 325: 762– 765.
- Bortoleto RK, Murakami MT, Watanabe L, Soares AM and Arni RK; Purification, characterization and crystallization of Jararacussin-I, a fibrinogen clotting enzyme isolated from the venom of Bothrops jararacussu, Toxicon, 2002, 40:1307–1312.

- 10. Chitte RR and Dey S; Potent fibrinolytic enzyme from a thermophilic *Streptomyces megasporus* strain SD 5. Lett. Appl. Microbiol, 2000, 31: 405-410.
- 11. Cherkessova GV, Nesterova NG and Fetisova ZS; The thrombolytic activity of *Baccillus mesentricus* at different conditions of nitrogen nutrition, *Mikrobiologiia*. 1989,58 : 915-919.
- Egorov NS, Iudina TG, Loriia ZHK and Kreier VG; Fibrinolytic activity of several variants of *Bacillus thuringiensis*, Prikl Biokhim Mikrobiol, 1979,15: 416-20.
- 13. Endrogan E, Ozer AY, Volkan B, Caner B and Bilgili H; Thrombus localization by using streptokinase containing vesicular system, Drug Deliv, 2006,13: 303-309.
- 14. Egorov NS, Kochetov GA and Khaidarova NV; Isolation and properties of the fibrinolytic enzyme from the *Actinomyces thermovulgaris* cultural broth. *Mikrobiologiia*, 1976, *45* : 455-459.
- Fujita M, Hong K, Ito Y, Fujii R, Kariya K and Nishimuro S; Thrombolytic effect of Nattokinase on a chemically induced thrombosis model in rat,Biol. Pharm. Bull, 1995,18:1387-1391.
- 16. Laemmli UK; Cleavage of structural proteins during the assembly of the head of bacteriophage T4, *Nature (Lond)*, 1970,227 : 680-685.
- 17. Larcher G, Bouchara JP, Annaix V, Symoens F, Chabasse D and Tronchin G; Purification and characterization of a fibrinogenolytic serine proteinase from *Aspergillus fumigates* culture filtrate, *FEBS Lett*, 1992,10:65-9.
- 18. Mohammad B, Hossein M and Mohammad R; Production and purification of streptokinase by protected affinity chromatography, Avicenna J. Med, Biotechnol. 2009,1: 47-51.
- 19. Nakamura T, Yamagata Y and Ichishima E; Nucleotide sequence of the subtilisin NAT gene, aprN, of *Bacillus subtilis* (natto), Biosci. Biotechnol. Biochem, 1992,56: 1869-1871.
- 20. Stepanova TSN, Maksimova RA, Iulikova EP, Silaev AB and Andreenko GV; Fractionation of a preparation of fibrinolytic enzymes "tricholysin" formed from *Trichotecium roseum* Lk. ex Fr. on carboxymethyl-sephadex C-50. *Prikl Biokhim Mikrobiol*, 1976,12 : 407-410.