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Abstract: In this paper, we numerically investigate the impact of an electric field variation 

on the inter subband transitions in ZnO/MgZnO quantum well within the effective mass 

approximation. By solving the coupled equations Schrodinger and Poisson, we compute 

the energy levels, the confining potential and the wave functions. In addition we have 

calculated the optical absorption 
23( )  between the second and third excited levels 

2E

and
3E . Our theoretical findings show that the

23E transition can be adjusted by varying 

the electric field intensity. The obtained results are very useful to the design and growth of 

semiconductors materials used in resonant tunneling diodes. 

Keywords: self-consistent calculation, ZnO/MgZnO quantum well, optical absorption 

coefficient 
 

INTRODUCTION 

         In recent years, a great attention has been concentrated on the electronic transition 

and optical absorption coefficients in ZnO and GaNquantum wells based on wurtzite 

semiconductors due to their importance and various applications in electronics domain 

such as resonant tunneling and laser diodes, photodetectors and switches [1-4]. The optical 

absorption due to the electronic transitions in n-doped semiconductors quantum wells, 

wires and dots showed a major importance due to the higher values of the dipole matrix 

elements. The dipole elements are responsible on the resonance condition between 

different energy levels. 

In the recent years, ZnO based semiconductors materials like MgZnO/ZnO and CdZnO/MgZnO have been the 

focus of theoretical and experimental research. They are proposed as best alternate wide band-gap semiconductors 

because they present several advantages compared to GaN related materials. In addition, recent experimental findings 

show that it’s possible to observe quantum hall effect in ZnMgO/ZnO with large mobility [5, 6]. In this paper, we 

investigated the effect of an external electric field on the electronic transitions and optical absorption coefficient between 

the energy levels
2E and

3E . Our numerical results show that the optical absorption can be altered by adjusting the 

intensity of the external electric field. Especially, the transition between 
2E and 

3E becomes possible for a specific value 

of the external electric field. Our paper is organized as follows: in section 2, we present our theory and we outline the 

numerical method of resolution. In section 3, we discuss the obtained results. The conclusions are given in section 4. 

 

THEORY        

We consider in this work a single quantum well MgxZn(1-x)O/ZnO under an external electric field. Using the 

effective mass approximation, the motion of an electron moving in z direction is given by the following equation [7-10]: 
22

int* 2

( )
( ( ) ( ) ( ) ( ) ) ( ) ( ) (1)
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In the equation 1, ( )CE x represents the conduction band offset between ZnO quantum well and MgZnObarrier 

which depends on magnesium composition x and can be calculated with the following analytical expression [10]: 

(1 )( ) 0.75 [ ( ) ( )] ( ) (2)C g x x gE x E Mg Zn O E ZnO eV   
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extF is the external electric field applied along the structure and intF  denotes the internal electric field produced by the 

piezoelectric charges accumulated at each interfaces and is given as follows [11]: 

int
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b and w denote the dielectric constants in MgZnO barrier and ZnO quantum well, respectively. totP Represents the total 

polarization (piezoelectric and spontaneous polarizations): 0.034 0.066 0.032totP x x x    [11]. The second term in 

equation 1 is the Hartree potential ( )HV z which describes electrostatic interaction between electrons and ions. It can be 

computed by solving Poisson equation using the finite difference method: 
2 2

2

( ) 4
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In the Poisson equation, ( )n z represents the density of the free electrons in the whole structure. The barriers are 

uniformly doped with donor impurities having the concentration ( )DN z . The electronic density of free electrons can be 

written as follows: 
*

2
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In the previous equation, BK is the Boltzmann constant, FE denotes the Fermi level and *m is the effective mass 

of the electron and T  is the absolute temperature. All the previous equations are coupled. So, they are numerically solved 

using the finite difference technique [10].  After the subband energies and their corresponding wave functions are 

obtained, the linear and third-order nonlinear optical absorption coefficient describing an inter subband transitions 

between the initial and final states ( )i fE E can be clearly calculated as follows [10]:  
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Here, 
* ( ) ( )fi f iM z z z dz 





  represents the matrix element. f iE E E   . The Fermi occupancy function is given 

by: 0
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.  denotes the permeability, c is the speed of light, 0.24in ps  represents the 

intrasubband relaxation time, and I  is the intensity of light . Using Equations (7) and (8), we calculate the total 

absorption coefficient as
1 3( ) ( ) ( )       . The physical parameters used in our simulations are [12]:

*

0(0.23 0.05 )m x m  , ( ) 8.1 1.5x x   , 21.0 /I MW cm , 
7 14 10 .H m     and 300T K . The 

quantum well and barrier have the same widths 6.5w bL L nm  . The concentration of impurities is fixed to 

19 35 10DN cm   

 

RESULTS AND DISCUSSION 

Figures 1, 2 show the effects of magnesium composition x on the ground, first and the second wave functions 

and the confining potential in MgZnO/ZnO single quantum well. As expected, when we change the magnesium 

composition, the energy levels are modified. Especially, they increase because the confining potential becomes deeper. In 
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addition, we remark that all the wave functions present an asymmetric profile. This asymmetry of the wave functions 

leads to a localization of the electrons near the left side of the quantum well. On the other hand, we remark that the 

bottom of ZnO quantum well is more tilted when we increase the magnesium composition. This inclination observed in 

the profile of the confining potential along the structure is due to the strong intensity of the internal electric field which is 

produced by piezoelectric charges accumulated at each interface between ZnO quantum well and barriers. Note that the 

piezoelectricity in these materials is an important phenomenon and has a great effect on the optical absorption. On the 

other hand the internal electric field can produces a 2DEG gas at the left interface between the quantum well and the 

barrier that can be used for various applications in optoelectronics domain such as the high speed devices. 
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Fig-1: Confining potential as a function as the growth axis z for x =0.1 
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Fig-2: confining potential as a function as the growth axis for x=0.2 

 

In figures 3, 4, 5, we present the optical absorption coefficients as a function of the incident photon energy for 

three values of electric field 500 / , 800 /F KV cm KV cm  and1200 /KV cm . From these figures, we remark that 

when we increment the values of F , the maximum of all optical absorption coefficients move toward lower energies 

(red-shift). We remark that the amplitudes 12 ( )  and 13( )  decrease by increasing F . However 23( )   which is 

forbidden for 0 /F KV cm , becomes possible by increasing progressively F and reaches the value 
12000cm
for

1200 /KV cm . The effect of the electric field on the wave functions 1 2,  and 
3 is presented in figures 6, 7 and 8. 

We remark from these figures that by increasing the intensity of electric field, the wave functions become more 

symmetric in the ZnO quantum well. The symmetry of the wave functions is due to the symmetry of the confining 

potential. In fact, when the electric field is equal to 500 /KV cm the potential presents an inclination with higher slope 

along the quantum well. Thus, the wave functions are localized near the left side of the quantum well. However, by 

increasing the magnitude of the electric field, the slope of the inclination of the confining potential will be reduced, and 

for 1200 /F KV cm  the confining potential becomes almost flat in the quantum well region, consequently the wave 
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functions are spread entire the ZnO layer. In addition, we remark that the energy positions are decreased when we 

increment F  which confirms the red shift behavior of the optical absorption coefficient. 
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Fig-3: Optical absorption coefficients as a function of incident energy (F=500Kv/cm) 
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Fig-4: Optical absorption coefficient as a function of incident energy (F=800 Kv/cm) 
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Fig-5: Optical absorption coefficients as a function of incident energy (F=1200Kv/cm) 
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Fig-6: Confining potential and wavefunctions for applied electric field F=500Kv/cm 
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Fig-7: Confining potential and wavefunctions for applied electric field F=800Kv/cm 
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Fig-8: Confining potential and wave functions for applied electric field F=1200Kv/cm 

 

CONCLUSION 

In this paper, the effects of external electric field on the optical absorption coefficients are investigated for an 

MgZnO/ZnO single quantum well using the effective mass approximation. The applied electric field modifies the 

confining potential, the electronic wave functions and accordingly the energy positions. When these electronic properties 

are affected, all the optical absorptions coefficients are changed. We obtain the blue and the red shift by varying the 

magnesium composition and the magnitude of the electric field. In addition, we found that some inter subband transitions 
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are very sensitive to the external electric field. This later can overcome the internal field produced by the piezoelectric 

charges accumulated at each interface between ZnO quantum well and MgZnO barrier. Finally we have demonstrated 

that the forbidden optical absorption coefficient 
23( )  becomes possible by increasing the magnitude of the electric 

field. The obtained results enhance the possibility of the design and fabrication of various devices used as optical filters 

tuned by an applied electric field. 
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