
 

Citation: Ting Zhang, Sheng-Kun Li, Gang Liu. Shifted Global BiCG-Type Methods for Solving the Large Stein 

Equation X + AXB = C. Sch J Phys Math Stat, 2022 Dec 9(9): 145-157. 

 

145 

 

 

Scholars Journal of Physics, Mathematics and Statistics             

Abbreviated Key Title: Sch J Phys Math Stat 

ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online)  

Journal homepage: https://saspublishers.com         
 

 

Shifted Global BiCG-Type Methods for Solving the Large Stein 

Equation X + AXB = C 
Ting Zhang, Sheng-Kun Li, Gang Liu 
 

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, P. R. China 
 

DOI: 10.36347/sjpms.2022.v09i09.001                                   | Received: 07.11.2022 | Accepted: 15.12.2022 | Published: 19.12.2022 
 

*Corresponding author: Sheng-Kun Li 
College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, P. R. China 

 

Abstract  Original Research Article 
 

The Stein matrix equation plays an essential role in control and communications theory, linear algebra, image 

restoration, and so on. In this paper, we propose two shifted variants of global BiCG-type methods to solve the large 

Stein matrix equation which make full use of the shifted structure of the matrix equation. These modifications will not 

add more matrix-matrix multiplications and inner products. Finally, numerical examples are given to illustrate the 

effectiveness of the presented methods. 
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1 INTRODUCTION 
In this paper, we consider the numerical 

solution of the large Stein matrix equation of the form: 

AXB X C  ,  (1) 

 

Where
n nA R  , 

s sB R  and
n sC R  . 

The Stein matrix equation has a unique solution if and 

only if 

   1, ,u A u B        ,  

 

Where  A  and  B  are the sets of all 

the eigenvalues of matrices A  and B , respectively. 

This paper only considers the case that the Stein matrix 

equation has a unique solution. In fact, the Stein matrix 

equation often arises in numerical methods for ordinary 

differential equations [1], Probability [2], model 

reduction problems [3], neural network [4] and image 

restoration [5, 6], and so on. This matrix equation is also 

a calculation tool for control system design [7, 8]. 

 

There are different methods for different types 

of the Stein matrix equation. When the matrices A  and 

B  are of small size orders, the direct methods are 

attractive, such as Hessenberg-Schur method [9] and 

Bartels-Stewart method [10]. This type of methods is 

based on matrix decomposition. When the orders of A  

and B  are both large, Galerkin algorithm and minimal 

residual algorithm [11] which are based on Arnoldi 

process are proposed. When A  is large and B  is of 

small size, the block Arnoldi and the block Lanczos 

algorithms [12] have been investigated. For the large 

Stein equation with low rank right hand sides, the global 

Arnoldi method [13, 14], the block Arnoldi method [15] 

and the block Hessenberg method [16] are developed to 

compute the low rank solution. In addition, the extended 

block Krylov subspace methods [17, 18] are 

successively used to solve this type of matrix equation. 

 

This paper mainly deals with matrix equation 

(1) with large A  and B . In order to make full use of the 

shifted structure, we develop two shifted variants of 

global BiCG-type methods. This shifted idea was first 

proposed by Frommer and Gl¨assner [19] for solving

x Ax b   . In the sequel, the shifted variants of 

short term iterative methods have been studied in [20, 

21].  

 

To derive our methods, we call the matrix 

equation (1) a shifted system and the matrix equation: 

AXB C , (2) 

 

A seed system for convenience, let Λ be the linear 

operator defined as follows: 

: n s n sR R

X X AXB

  

 
, 

 

 

 

Correspondingly, 

https://saspublishers.com/sjpms/
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:T n s n s

T T T

R R

X X A XB

  

 
. 

 

Then the shifted system (1) can be written as: 

X X C  , (3) 

 

And the seed system (2) can be written as 

X C  , (4) 

 

For a given matrix
n sV R  , we define the matrix 

Krylov subspace as follows 

   1, , , , m

m V span V V V     , (5) 

 

Where 
iV  is defined recursively as  1i V  . 

Because of the well-known shift-invariance property of 

Krylov subspaces, we have: 

   , ,m mV I V    . 

 

The following symbols will be used latter. We 

define the inner product  , TK M tr K M  where 

TK  is the transpose of matrix K . The 

,
F

K K K  represents the Frobenius norm. 

mI  represents the identity matrix of m  rows and m

columns. 

 

The rest of this paper is organized as follows. In 

Section 2, we shortly review the global Bi-Conjugate 

Gradient (GBiCG) method and the global Bi-Conjugate 

Gradient Stabilized (GBiCGStab) method for solving the 

seed system (4). Section 3 and Section 4 deal with the 

shifted variants of GBiCG method and GBiCGStab 

method for solving the shifted linear systems (3). Some 

numerical examples are given to illustrate the efficiency 

of the proposed methods in Section 5. Finally, the paper 

is ended with a brief conclusion in Section 6. 

 

2 The Global BiCG-Type Method 

In this section, we briefly review the GBiCG 

method and GBiCGStab method for solving the seed 

system (4).  

 

The BiCG method [22] is powerful for the 

solution of nonsymmetric linear system. A disadvantage 

of the BiCG method is that it needs to calculate 
TA  per 

iteration. To void computing the
TA , Van der Vorst [23] 

proposed a smoother convergence method, known as 

BiCGStab method. In [24], Jbilou et al., proposed the 

GBiCG method and the GBiCGStab method for solving

AX B . This kind of global methods is based on 

oblique projections onto a matrix Krylov subspace. Just 

replace each operator A  or 
TA  with a new   or 

T  

in the methods of Jbilou et al., we can use the GBiCG 

method and the GBiCGStab method to solve the seed 

system (4). Thus, the corresponding pseudo-codes of the 

GBiCG and GBiCGStab methods can be given as 

follows, respectively. 

 

Algorithm 1: The GBiCG method for the seed system (4) 

1． 1． 
0X is an initial guess, 0 0R C X   

2． 2． Choose
0R  (for example 

0 0R R ) 

3． 3． Set 1 1  , 0 0U R ,
1 1 0U U    

4． 4． For 0,1, 2, ,k  until convergence, do 

5． 5． 

,k k kR R  ,

1

k
k

k




 

   

6． 6． 
1k k k kU R U    

7． 7． 
1k k k kU R U     

8． 8． 

,k k kU U   ,
k

k

k





  

9． 9． 
1k k k kX X U    

10． 10 
1k k k kR R U     

11． 11. 
1

T

k k k kR R U     

12． 12. EndDo 
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Algorithm 2: The Global Bi-Conjugate Gradient Stabilized (GBICGStab) Method 

1． 1． 
0X is an initial guess, 

0 0R C X   

2． 2． Choose
0R  (for example 

0 0R R ) 

3． 3． Set
1 1  ,

1 1  ,
1 0U  ,

1 1w  1 0V   

4． 4． For 0,1, 2, ,k  until convergence 

5． 5． 

0,k kR R  ,
1

,

1 1

k k
k b

k kw

 





 

   

6． 6．  1 1 1k k k k k kU R U w V       

7． 7. k kV U   

8． 8． 

0,

k
k

kV R


   

9． 9． 
k k k kS R V   

10． 10. k kP S   

11． 11. ,

,

k k

k

k k

S P
w

P P
  

12． 12． 
1k k k k k kX X U w S     

13． 13. 
1k k k kR S w P    

14． 14. EndDo 

 

3 The Shifted Global BiCG Method 

In this section, we describe the process to solve 

the shifted system  I X C   by using the 

information obtained from the GBiCG method for the 

seed system X C  . 

 

Let  ,s

m mX I C   be the approximate 

solution of the m th  iterate of the shifted system and 

 ,m mX C   be the approximate solution of the 

m th  iterate of the seed system with the initial guesses 

0 0s

n sX   and 0 0n sX  . Then we can get the 

residual of the m th  iterate of the seed system 

m mR C X   which is from  1 ,m C   and

0R C . Note that: 

 
1

0

, ;  , 0, , 1.
m

i

m m m i i

i

X C X k C k R i m




         

If we express: 

 1m mX T C  , 1 1m mT   (polynomials of 

degree 1m  ) 

 

Then 

 m m mR C X D C    , m mD   (polynomials 

of degree 1m  ) 

Similarly,  s s

m mR C I X   , where 

 ,s

m mR I C  and 
0

sR C . And we also can 

have: 

   
1

0

, ;  , 0, , 1.
m

is s s

m m m i i

i

X I C X k I C k R i m




       

 

So we can get: 

   
1

0

, ;  , 0, , 1.
m

is s s

m m m i i

i

X I C X k I C k R i m




       

 

 1

s s

m mX T I C  ,
1 1

s

m mT   , 

 

Then 

   s s s

m m mR C I X D I C     ,
s

m mD  . 

 

Hence, using the relationship between 
s

mX  and
s

mR , we 

have following results, 

     1 1 1 1s s

m mD T       , 

 

Where the sign   replaces operator  . Then let

1   , we obtain that 

 0 1s

mD  . 

 

After m  iterations, mX  of the seed system and 

s

mX of the shifted system belong to the same Krylov 

subspace  ,m C  , and they have similar form. We 
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know that the seed system and the shifted system have 

collinear residuals, so we assume a collinear factor s

m  

and let: 

1s

m ms

m

R R


 
  
 

,
s

m R  , (6) 

 

Which can be converted to; 

   
1s

m ms

m

D I C D C


 
    

 
, 

   
1

1s

m ms

m

D D 


 
   

 
, (7) 

 

Since  0 1s

mD  , we can get the equation of the 

collinear factor: 

 1s

m mD   . (8) 

 

According Algorithm 1, we can obtain following 

equations: 

 1

1
k k k

k

U R U


   , 

 1

1
k k k

k

U R R


   , 

Then kR  can be written as 

 

 

1 1 1

1
1

1 1
1

1 1
1 1

    

    

    

k k k k

k
k k k

k

k k
k k k

k k

k k
k k k k

k k k

R R U

R R U

R R U

R R R R







 

 

 

  

  




 


 
 

  

   

    

    

, 

 

And thus: 

1 1

1 1

1 k k k k
k k k k k

k k

R R R R
   


 

 

 

 
      

 

.   (9) 

 

Finally, we get the recurrence relation of the residuals, 

with  m mR D C  , the equation (9) becomes; 

       1 1

1 1

1 k k k k
k k k k k

k k

D D D D
   

     
 

 

 

 
     

 

.          (10) 

 

With  1s

m mD    and 1   , the equation (10) 

can be expressed as; 

   1 1

1

1s s s sk k
k k k k k

k

 
    


 



    ,    (11) 

 

Where
1 0 1s s    . This is the three-term 

recurrence relation for the collinearity factor. On the 

other hand, from the relations (6) and (9), the three-term 

recurrence for the residuals of the shifted system can be 

reached and its formula is expressed as follows: 

 

1 1

1

1

1 1 1

1
1

1 1 1 1 1 1 1

1

1
1

s

k ks

k

k k k k
k k k ks

k k k

s s s s s
s s sk k k k k k k k k k k
k k ks s s s s

k k k k k k k

R R

R R R

I R R R



   


  

          

      

 





  




      



  
       

  

 
        

 

, 

 

Let 

1

s
s k
k ks

k


 

 

 , (12) 

2

1

s
s k
k ks

k


 




 
  
 

, (13) 

 

So, the residuals of the shifted system which has the 

resemble equation expression as the residuals of the seed 

system can be written as: 

 1 1

1 1

1
s s s s

s s s s sk k k k
k k k k ks s

k k

R I R R R
   


 

 

 

 
       

 

,    (14) 

 

Now, according to the equation (14) and

   
1

1

1

1

s s

k ks

k s

k

I R R
U











 
 , we have; 

 1 1 1

s s s s

k k k kR R I U     , (15) 

 

And the search direction of the shifted system is updated 

to; 

1

s s s s

k k k kU R U   . (16) 

 

Since the relation (6), the equation (16) becomes; 

1

1s s s

k k k ks

k

U R U


  , (17) 

 

Where 1 0sU  . Then it follows from the relations 

 s s

k kR C I X    and relation (15) that; 

1

s s s s

k k k kX X U   , (18) 

 

From Algorithm 1 and the above derivation, the shifted 

GBiCG (SGBiCG) method is summarized as follows. 
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Table 1：Summary of operations per iteration step, where : X YAXPY   , IP: Inner product, X : Operator   

acts on X  

Name AXPY IP X  

GBICG 7 2 2 

SGBICG 7 2 2 

 

Algorithm 3: The Shifted Global Bi-Conjugate Gradient (SGBICG) Method 

1. 1． 
0 0X  , 

0 0

sX X  

2. 2. 
0R C , 

0 0R R  

3. 3． Set
1 1 1s    , 

1 1 1 0sU U U      

4. 4． 
1 1  , 

1 0
1s s 


   

5. 5． For 0,1, 2, ,k  until convergence, do 

6. 6. {seed system} 

7. 7． 

,k k kR R  ,

1

k
k

k




 

   

8. 8． 
1k k k kU R U    

9. 9． 
1k k k kU R U    

10. 10． 
k kZ U  ,

,

k
k

k kZ U


   

11. 11． 
1k k k kX X U    

12. 12. {shifted system} 

13. 13. 

   1 1

1

1s s s sk k
k k k k k

k

 
    


 



     

14. 14. 

1

s
s k
k ks

k


 

 

  

15. 15. 2

1

s
s k
k ks

k


 




 
  
 

 

16. 16. 

1

1s s s

k k k ks

k

U R U


   

17. 17. 
1

s s s s

k k k kX X U    

18. 18. {updating} 

19. 19. 
1k k k kR R Z    

20. 20. 
1

H

k k k kR R U     

21. 21. 

1 1

1

1s

k ks

k

R R


 



 
  
 

 

22. 22. EndDo 

 

Observing Algorithm 3, we can notice that 

there is a great difference between the GBiCG method 

and the SGBiCG method for solving the shifted system 

(3). The computational cost of the GBiCG and SGBiCG 

methods at each iteration step is shown in Table 1. As 

seen from Table 1, the GBiCG method and the SGBiCG 

method need the same number of operations per 

iteration. 
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4 The Shifted Global BiCGStab Method 

In this section, we drive the shifted GBiCGStab 

(SGBiCGStab) method for solving the shifted system (3) 

via applying the information sent from GBiCGStab 

method for the seed system (4). It is known to all that the 

GBiCGStab method combines the GBiCG method and 

the minimal residual (MR) idea, so naturally the 

SGBiCGStab method can be considered as a 

combination of SGBiCG method and the MR idea. 

Referring to the aforementioned idea, we can deduce the 

SGBiCGStab method for solving the shifted system (3). 

 

According to GBiCGStab method, we can easily know 

the form of residue of seed system; 

    0k k kR Q D R   , (19) 

 

Where kD is the residual polynomial of GBiCG method 

and kQ is a new k-degree polynomial, which is used to 

correct the oscillation phenomenon of residual norm, 

and; 

     1 1k k kQ w Q     ,  (20) 

 

Where  0 1Q    and kw  is a number used to 

minimize the residual. Then, we can get; 

   1

1

1
k

k i

i

Q w 



  . (21) 

 

From Algorithm 2, the formula about 1kR   and kS  is 

as follow: 

1k k k kR S w S    . (22) 

 

In addition, from the relation (20), we have; 

     1k k kQ I w Q      . (23) 

 

Then substituting (19), (23) into (22), we get the 

following formulas; 

     

       

1 1 0

1 0

k k k k

k k k k k

Q D R I W S

I W Q D R I W S

 



    

      
, 

 

Later, we can obtain the equation of kS : 

   1 0k k kS Q D R   . (24) 

 

Referring to Section 3, here 1

s

kR  and 
s

kS  satisfy the 

following identities; 

   1 1 1 0

s s s

k k kR Q I D I R     , 

   1 0

s s s

k k kS Q I D I R   . 

 

According to the equation (7), 1

s

kR  and 
s

kS  can also 

be written as follows: 

   1 1 1 0

1

1s s

k k ks

k

R Q I D R


  



   , (25) 

   1 0

1

1s s

k k ks

k

S Q I D R






  

. (26) 

 

Firstly, we discuss the part of shifted MR method. In 

order to obtain the computational formulas for the 

shifted MR polynomial, we consider a linear factor; 

    1 1 1s

k kw c w    
, 

 

Which gives 

1

1 k

c
w




, 

1

s k
k

k

w
w

w



. (27) 

 

Since    1

1

1
k

k i

i

Q w 



  , we can write the 

matrix polynomial of the corresponding shifted system; 

    1

1

1 1 1
k

s s

k i

i

Q w 



    . (28) 

 

Substituting the equation (27) into (28), we can get; 

   

 

1

1

1

1

1 1 1
1

1
              1

1

k
s i
k

i i

k

i

i i

w
Q

w

w
w

 











 
    

 

 






, 

 

And  1
k

sQ    can be written as; 

   1s s

k k kQ d Q   . (29) 

 

Where 

1

1

1

1

k
s

k

i i

d
w








  and 0 1sd  . Observing the 

equation of 
s

kd , the expression of 1

s

kd   is as follows: 

1
1

s
s k
k

k

d
d

w
 


. (30) 

 

Now, we consider the shifted GBiCG part. 

According to the derivation in Section 3, we can easily 

get the equations of 1

s

k  , 
s

k  and 
s

k , where; 

   1 1

1

1s s s sk k
k k k k k

k

 
    


 



    , 
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1

s
s k
k ks

k


 

 

 , 

2

1

s
s k
k ks

k


 




 
  
 

. 

 

Correspondingly, in the light of the equation (29), we 

obtain 

   s s

k k kQ I d Q   . (31) 

 

Hence, we substitute the equation (31) into (25) and (26), 

resulting in 

1

s
s k
k ks

k

d
S S

 

 , (32) 

1
1 1

1

s
s k
k ks

k

d
R R




 



 . (33) 

 

Following the previous derivation process, we readily 

have 

  1 1 1 ,s s s s s s

k k k k k kU R U w I U        (34) 

 s s s s

k k k kS R I U   . (35) 

 

Let   ,s s

k kV I U   , and substituting it into (34) 

and (35), it follows that, 

 
1s s s

k k ks

k

V R S


  . (36) 

 

From Algorithm 2 and the above derivation, we can get 

the following Algorithm 4. 

 

Algorithm 4: The SGBiCGStab method for the shifted system (3) 

1．  
0 0X  , 

0 0

sX X  

2．  
0R C , 

0 0R R  

3．  Set
1 1  ,

1 1   ,
1 1w   

4．  
1 1 0sV V   , 

1 1 0sU U    

5．  
1 0 0 1s s sd      

6．  For 0,1, 2, ,k  until convergence, do 

7．  {Seed System} 

8．  

0,k kR R  ,
1

1 1

k k
k

k kw

 





 

   

9．   1 1 1k k k k k kU R U w V       

10．  k kV U   

11．  

0,

k
k

kV R


   

12．  
k kP S   

13．  
k k k kS R V   

14．  ,

,

k k

k

k k

S P
w

P P
  

15．  
1k k k k k kX X U w S     

16．  
1k k k kR S w P    

17．  {Shifted System} 

18．  
   1 1

1

1s s s sk k
k k k k k

k

 
    


 



     

19．  

1

s
s k
k ks

k


 

 

  
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20．  2

1

s
s k
k ks

k


 




 
  
 

 

21．  

1

s k
k

k

w
w

w



 

22．  

1

s
s k
k ks

k

d
S S

 

  

23．   1 1 1

s s s s s s

k k k k k kU R U w V       

24．  
1

s s s s s s

k k k k k kX X U w S     

25．  {Updating} 

26．  

1
1

s
s k
k

k

d
d

w
 


 

27．  s s
s k k

k s

k

R S
V




  

28．  
1

1 1

1

s
s k
k ks

k

d
R R




 



  

29．  Enddo 

 

Table 2：Summary of operations per iteration step, where : X YAXPY   , IP: Inner product, X : Operator   

acts on X  

Name AXPY IP X  

GBICGStab 7 4 2 

SGBICGStab 8 4 2 

 

At the end of this section, the computational 

cost per iteration step for the GBiCGStab and 

SGBiCGStab methods is given in Table 2. In Table 2, we 

find that the computational cost per iteration step of the 

GBiCGStab and SGBiCGStab methods is almost the 

same in solving the shifted system (3). 

 

5 NUMERICAL EXPERIMENTS 
In this section, two numerical examples are 

presented. In order to illustrate the effectiveness of the 

shifted global BiCG-type methods, we compare the 

SGBiCG method and the SGBiCGStab method with the 

GBiCG method and the GBiCGStab method for solving 

the stein matrix equation (1), respectively. We evaluate 

the proposed methods with aspects of the number of 

iterations (Its) and computational time in seconds (CPU). 

All numerical calculations are performed on Window 10 

(64bit), and MATLAB 2016a running on a laptop with an 

Intel Core i7-6700HQ 2.60 GHz CPU and 8.00 GB 

memory. In all runs, the initial guess is zero matrix with 

suitable size and the matrix C satisfies that the exact 

solution is  ij n s
X x


  with 1ijx  . The condition for 

stopping the iteration is 1 10

0

10
k F

F

R

R

   . 

 

Example 4.1 for the first experiment, we 

compare the SGBiCG method with the GBiCG method 

for the stein matrix equation AXB X C   where; 

2 2

0 0 0

0

0

0

0 0

A

u

u u

u A n n

D

I

A R

I D





 
 
 
  
 
 
 
 

, 

50 11 0 0

5.9 0

0

50 11

0 0 5.9 3.9

u u

A

u u

D R 



 
 
 
  
 
 
  

, 

4 3 0 0

0 0

0

3

0 0 0 4

s s

s s

B R 



 
 
 
  
 
 
 
 

. 
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Table 3：Numerical results of Example 4.1 

Matrix order Algorithm Its CPU 

2 400n u   

25s   

BICG 427 0.081654 

SBICG 413 0.124118 

2 900n u   

30s   

BICG 1501 0.886542 

SBICG 929 0.883460 

2 1225n u   

32s   

BICG 1541 1.216110 

SBICG 1234 1.740855 

 

 

  2 400, 55a n u s  
 

 
  2 625, 70b n u s  
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  2 1089, 74c n u s    

Figure 1：The convergence history of Example 4.1 

 

The numerical results are given in Table 3 and 

Figure 1. From Table 3, it can be seen that, in most cases, 

the SGBiCG method works more efficiently than the 

GBiCG method in terms of iteration steps and CPU time. 

As can be seen from Figure 1, the relative residual norms 

of the two methods show the large oscillation 

phenomenon. 

 

Example 4.2 in this experiment, we compare 

the SGBiCGStab method with the GBiCGStab method 

for the stein matrix equation AXB X C   where; 

2 2

0 0

0

0

0 0

A u

u

u u

u

u A n n

D I

I

A R

I

I D





 
 
 
  
 

 
  

, 

13 4 0 0

1 0

0

13 4

0 0 1 3.9

u u

A

u u

D R 



 
 
 
  
 
 
  

, 

8 3 0 0

3 0

0

3

0 0 3 8

s s

s s

B R 



 
 
 
  
 
 
 
 

, 

 

Table 4：Numerical results of Example 4.2 

Matrix order Algorithm Its CPU 

2 1225n u   

25s   

BICGStab 105 0.234184 

SBICGStab 95 0.277105 

2 1521n u   

31s   

BICGStab 131 0.410258 

SBICGStab 113 0.420095 

2 2401n u   

40s   

BICGStab 135 0.932351 

SBICGStab 110 0.929066 

2 6889n u   

75s   

BICGStab 178 10.482451 

SBICGStab 154 10.341231 
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  2 1225, 25a n u s  
 

 

  2 1521, 31b n u s  
 

 

  2 2401, 40c n u s  
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  2 6889, 75d n u s    

Figure 2：The convergence histories of Example 4.2 

 

The numerical results are shown in Table 4 and 

Figure 2. According to Table 4, it can be seen that the 

GBiCGStab method needs more iteration steps and CPU 

time than the SGBiCGStab method. From Figure 2, we 

can see that the SGBiCGStab method and the 

GBiCGStab method show similar convergence behavior, 

and the oscillations of relative residual norms are 

relatively slight. 

 

6 CONCLUSION 
In the present paper, based on global BiCG-type 

methods, we proposed two shifted global methods, 

named as the SGBiCG method and the SGBiCGStab 

method, to solve the large Stein matrix equation. The 

proposed methods make full use of the shifted structure 

of the matrix equation. Numerical results show that the 

SGBiCG method and the SGBiCGStab method can 

effectively solve the Stein matrix equation. 
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