Scholars Journal of Engineering and Technology (SJET)

Abbreviated Key Title: Sch. J. Eng. Tech.

©Scholars Academic and Scientific Publisher

A Unit of Scholars Academic and Scientific Society, India

www.saspublishers.com

ISSN 2347-9523 (Print) ISSN 2321-435X (Online)

Classifying All Single Travelling Wave Atom Solutions to the Modified Konopelchenko-Dubrovsky Equations

Dong-yan Dai*, Hui-ling Fan, Xue-fei Fan

School of Science, Heilongjiang Bayi Agriculture University, Daqing 163319, China

Original Research Article

*Corresponding author Dong-yan Dai

Article History

Received: 08.06.2018 Accepted: 24.06.2018 Published: 30.06.2018

DOI:

10.36347/sjet.2018.v06i06.003

Abstract: By the polynomial complete discrimination system, we classify the classification of all single travelling wave atom solutions to the Modified Konopelchenko-Dubrovsky Equations.

Keywords: Travelling wave solution; complete discrimination system; the Modified Konopelchenko-Dubrovsky Equations.

INTRODUCTION

Nonlinear partial differential equations play an important role in applied mathematics, physics and engineering. A lot of methods, such as the tanh method [1, 2], the bifurcation theory and the method of phase portraits analysis [3], qualitative theory of polynomial differential system [4, 5], Exp-Function method[6] and so on, have been proposed to solve these equations. Recently, Liu [7-9] introduced a simple and efficient method to give the classification of all single travelling wave atom solutions to some equations [10]. If a nonlinear equation can be directly reduced to the integral form as follows:

$$\pm \left(\xi - \xi_0\right) = \int \frac{\mathrm{d}u}{P_n(u)} \tag{1}$$

Where is $p_n(u)$ an n-th order polynomial, we can derive the classification of all solutions to the right integral in Eq.(1) using complete discrimination system for the n-th order polynomial.

In this paper, we consider the following the Modified Konopelchenko-Dubrovsky Equations [11]:

$$u_{t} - u_{xyy} - 6\eta u u_{x} + 2\lambda^{2} u^{3} u_{x} - 3v_{y} + 3\lambda u_{x} v = 0,$$
(2)

$$v_{r} = u_{v} \tag{3}$$

We reduce the Modified Konopelchenko-Dubrovsky Equations to an integrable ODE, and furthermore use complete discrimination system for polynomial to obtain the classification of all single travelling wave atom solutions.

Classification

Taking the travelling wave transformation $u = u(\xi)$, $v = v(\xi)$, $\xi = x + ky + \omega t$, the equations are reduced to the following ordinary differential forms:

$$\omega u' - u''' - 6\eta u u' + 2\lambda^2 u^3 u' - 3kv' + 3\lambda u' v = 0 , \qquad (4)$$

$$\omega v' = ku'. (5)$$

By integrating Eq. (4) and Eq. (5) once, we have

Available online: https://saspublishers.com/journal/sjet/home

$$\omega u - u'' - 3\eta u^2 + \frac{\lambda^2}{2} u^4 - 3kv + 3\lambda uv + c_1 = 0, \tag{6}$$

$$v = ku + c_2, \tag{7}$$

Where c_1 and c_2 are two arbitrary constants.

Substituting the expression of v into Eq. (6), we have

$$u'' = \frac{\lambda^2}{2}u^4 + 3(\lambda k - \eta)u^2 + (3\lambda c_2 - 3k^2 + \omega)u - 3kc_2 + c_1.$$
 (8)

Integrating Eq. (8) once, then it is

$$(u')^{2} = \frac{1}{5}\lambda^{2}u^{5} + (\lambda k - \eta)u^{3} + \frac{3\lambda c_{2} - 3k^{2} + \omega}{2}u^{2} + (c_{1} - 3kc_{2})u + c_{0},$$
(9)

and the corresponding integral form becomes

$$\pm \frac{\lambda}{\sqrt{5}} (\xi - \xi_0) = \int \frac{du}{\sqrt{u^5 + pu^3 + qu^2 + ru + s}} , \tag{10}$$

$$\text{Where, } p = \frac{5(\lambda k - \eta)}{\lambda^2} \,, \quad q = \frac{5(3\lambda c_2 - 3k^2 + \omega)}{2\lambda^2} \,, \quad r = \frac{5(c_1 - 3kc_2)}{\lambda^2} \,, \quad s = c_0 \,,$$

 c_0, c_1, c_2 and ξ_0 are integral constants

Denote
$$F(u)=u^5+pu^3+qu^2+ru+s$$
 , the complete discrimination system for $D_2=-p$, $D_3=40rp-12\,p^3-45\,q^2$,
$$D_4=-4p^3q^2+12p^4r+117pq^2r-88p^2r^2-40qsp^2-27q^4+160r^3-300qrs$$

$$D_5=-1600qsr^3-3750\,pqs^3+2000\,ps^2r^2-4p^3q^2r^2+16\,p^3q^3s-900rs^2\,p^3+825\,p^2q^2s^2+144\,pq^2r^3+2250\,rq^2s^2+16\,p^4r^3+108\,p^5s^2-128r^4\,p^2-27r^2q^4+108sq^5+256r^5+3125\,s^4-72rsqp^4+560sqr^2\,p^2-630\,prsq^3$$
 ,
$$E_2=160\,r^2\,p^3+900\,q^2r^2-48rp^5+60rp^2q^2+1500\,pqrs+16q^2\,p^4-1100\,qsp^3+625\,s^2\,p^2-3375\,sq^3$$
 , $F_2=3q^2-8rp$

By the complete discrimination system for polynomial, the classifications of all the single traveling wave solutions to the integral formula (10) can be given as follows:

Case 1: If
$$D_5 = 0$$
, $D_4 = 0$, $D_3 > 0$, then $F(u) = (u - \alpha)^2 (u - \beta)^2 (u - \gamma)$, α, β, γ are reals numbers, and $\alpha \neq \beta \neq \gamma$. When $w > \gamma$, solutions to u can be given by
$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = \sqrt{\gamma - \alpha} \arctan \frac{\sqrt{u - \gamma}}{\sqrt{\gamma - \alpha}} - \sqrt{\gamma - \beta} \arctan \frac{\sqrt{u - \gamma}}{\sqrt{\gamma - \beta}} \quad (\gamma > \alpha, \gamma > \beta)$$
(11)

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = \sqrt{\gamma - \alpha} \arctan \frac{\sqrt{u - \gamma}}{\sqrt{\gamma - \alpha}} - \frac{1}{\sqrt{\beta - \gamma}} \ln \left| \frac{\sqrt{u - \gamma} - \sqrt{\beta - \gamma}}{\sqrt{u - \gamma} + \sqrt{\beta - \gamma}} \right|$$

$$(12)$$

$$(\gamma > \alpha, \gamma < \beta)$$

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\sqrt{\gamma - \beta} \arctan \frac{\sqrt{u - \gamma}}{\sqrt{\gamma - \beta}} + \frac{1}{2\sqrt{\alpha - \gamma}} \ln \left| \frac{\sqrt{u - \gamma} - \sqrt{\alpha - \gamma}}{\sqrt{u - \gamma} + \sqrt{\alpha - \gamma}} \right|$$

$$(\gamma < \alpha, \gamma > \beta)$$

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = \frac{1}{2\sqrt{\alpha - \gamma}} \ln \left| \frac{\sqrt{u - \gamma} - \sqrt{\alpha - \gamma}}{\sqrt{u - \gamma} + \sqrt{\alpha - \gamma}} \right| - \frac{1}{2\sqrt{\beta - \gamma}} \ln \left| \frac{\sqrt{u - \gamma} - \sqrt{\beta - \gamma}}{\sqrt{u - \gamma} + \sqrt{\beta - \gamma}} \right|$$

$$(14)$$

$$(\gamma < \alpha, \gamma < \beta)$$

Case 2: If $D_5 = 0$, $D_4 = 0$, $D_3 = 0$, $D_2 \neq 0$, $F_2 \neq 0$, then $F(u) = (u - \alpha)^3 (u - \beta)^2$, α, β are reals numbers, and $\alpha \neq \beta$. When $w > \alpha$, the solutions to u are

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{1}{\sqrt{u - \alpha}} - \sqrt{\alpha - \beta} \arctan \frac{\sqrt{u - \alpha}}{\sqrt{\alpha - \beta}} \quad (\alpha > \beta)$$
 (15)

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{1}{\sqrt{u - \alpha}} - \frac{1}{2\sqrt{\beta - \alpha}} \ln \left| \frac{\sqrt{u - \alpha} - \sqrt{\beta - \alpha}}{\sqrt{u - \alpha} + \sqrt{\beta - \alpha}} \right| \quad (\alpha < \beta)$$
 (16)

Case 3: If $D_5 = 0$, $D_4 = 0$, $D_3 = 0$, $D_2 \neq 0$, $F_2 = 0$, then $F(u) = (u - \alpha)^4 (u - \beta)$. α, β are reals numbers, and $\alpha \neq \beta$. When $w > \alpha$, the solutions to u are

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{\sqrt{u - \beta}}{2(u - \alpha)} - \frac{1}{2\sqrt{\alpha - \beta}} \arctan \frac{\sqrt{u - \gamma}}{\sqrt{\beta - \alpha}} \quad (\alpha < \beta)$$
 (17)

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{\sqrt{u - \alpha}}{2\sqrt{u - \alpha}} - \frac{1}{4\sqrt{\alpha - \beta}} \ln \left| \frac{\sqrt{u - \beta} - \sqrt{\alpha - \beta}}{\sqrt{u - \beta} + \sqrt{\alpha - \beta}} \right| \quad (\alpha > \beta)$$
 (18)

Case 4: If $D_5 = 0$, $D_4 = 0$, $D_3 = 0$, $D_2 = 0$, then $F(u) = (u - \alpha)^5$. α is a real number, when $w > \alpha$, the solutions u can be given by

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{2}{3} (u - \alpha)^{-\frac{2}{3}}$$
 (19)

Case 5: If $D_5 = 0$, $D_4 = 0$, $D_3 < 0$, $E_2 \neq 0$, then $F(u) = (u - \alpha)(u^2 + ru + m)^2$, α is a real number,, and $r^2 - 4m < 0$. When $w > \alpha$, the solutions to u are

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{2}{\rho\sqrt{4m - r^2}} \left(\cos\varphi \arctan \frac{2\rho\sin\varphi\sqrt{u - \alpha}}{u - \alpha - \rho^2} + \frac{\sin\varphi}{u - \alpha - \rho^2 - 2\rho\cos\varphi\sqrt{u - \alpha}} \right), \tag{20}$$

here
$$\rho = (\alpha^2 + r\alpha + m)^{\frac{1}{4}}$$
, $\varphi = \frac{1}{2}\arctan\frac{\sqrt{4m - r^2}}{-2\alpha - r}$.

Case 6: If $D_5 = 0$, $D_4 > 0$, then $F(u) = (u - \alpha)^2 (u - \alpha_1)(u - \alpha_2)(u - \alpha_3)$,

 $\alpha, \alpha_1, \alpha_2, \alpha_3$ are reals numbers, and $\alpha_1 > \alpha_2 > \alpha_3$. When $w > \alpha$, the solutions to u are

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{2}{(\alpha - \alpha_2)\sqrt{\alpha_2 - \alpha_3}} \left\{ F(\varphi, l) - \frac{\alpha_1 - \alpha_2}{\alpha_1 - \alpha} \prod \left(\varphi, \frac{\alpha_1 - \alpha_2}{\alpha_1 - \alpha}, l \right) \right\}. \tag{21}$$

Here
$$\alpha \neq \alpha_1$$
, $\alpha \neq \alpha_2$, $\alpha \neq \alpha_3$, $F(\varphi, l) = \int_0^{\varphi} \frac{\mathrm{d}\varphi}{\sqrt{1 - l^2 \sin^2 \varphi}}$,

$$\prod (\varphi, n, l) = \int \frac{\mathrm{d}\varphi}{(1 + n\sin^2\varphi)\sqrt{1 - l^2\sin^2\varphi}}$$

Case 7: If $D_5 = 0$, $D_4 = 0$, $D_3 < 0$, $E_2 = 0$, then $F(u) = (u - \alpha)^3 [(u - k_1)^2 + m_1^2]$,

 α, k_1, m_1 are reals numbers. When $w > \alpha$, if $\alpha \neq k_1 + m_1$, the solution to u is

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{\tan \theta + \cot \theta}{2(s_1 \tan \theta - k_1 - \alpha)\sqrt{\frac{m_1}{\sin^3 2\theta}}} F(\varphi, k) - \frac{m_1 \tan \theta + m_1 \cot \theta}{m_1 \cot \theta + k_1 + \alpha} \times \frac{m_2 \cot \theta}{m_2 \cot \theta} F(\varphi, k)$$

$$\left[\frac{\tan\theta + k_1 + \alpha}{(m_1 \cot\theta + k_1 - \alpha)} \sqrt{1 - l^2 \sin^2 \varphi} + F(\varphi, l) - E(\varphi, l)\right]$$
(22)

If $\alpha \neq k_1 + m_1$, the solution to *u* is

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = \sqrt{\frac{\sin^3 2\theta}{4s^3}} \left[\frac{1}{l} \arcsin(l\sin\varphi) - F(\varphi, l) \right], \tag{23}$$

$$\text{here } \tan 2\theta = \frac{m_1}{\alpha - k_1} \,, \quad l = \sin \theta \,, \quad 0 < \theta < \frac{\pi}{2} \,, \quad E(\varphi, l) = \int_0^\varphi \sqrt{1 - l^2 \sin^2 \psi} \, d\psi \,.$$

Case 8: If $D_5 = 0$, $D_4 < 0$, then $F(u) = (u - \alpha)^2 (u - \beta)[(u - k_1)^2 + m_1^2]$,

 α, k_1, m_1 are reals numbers. If $\alpha \neq k_1 - m_1 \tan \theta$ and $\alpha \neq k_1 + m_1 \cot \theta$, the solution to u is

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = -\frac{\tan \theta + \cot \theta}{2(m_1 \tan \theta - k_1 - \alpha)\sqrt{\frac{m_1}{\sin^3 2\theta}}} F(\varphi, k) - \frac{m_1 \tan \theta + m_1 \cot \theta}{m_1 \cot \theta + k_1 + \alpha} \times \frac{m_2 \cot \theta}{m_2 \cot \theta} F(\varphi, k)$$

$$\left[\frac{\tan\theta + k_1 + \alpha}{(m_1 \cot\theta + k_1 - \alpha)} \sqrt{1 - l^2 \sin^2\varphi} + F(\varphi, l) - E(\varphi, l)\right]$$
(24)

If $\alpha = k_1 - m_1 \tan \theta$, the solution to u is

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = \sqrt{\frac{\sin^3 2\theta}{4m^3}} \left[\frac{1}{l} \arcsin(l \sin \varphi) - F(\varphi, l) \right]$$
 (25)

If $\alpha \neq k_1 + m_1 \cot \theta$, the solution to *u* is

$$\pm \frac{\lambda(\alpha - \beta)}{2\sqrt{5}} (\xi - \xi_0) = \sqrt{\frac{\sin^3 2\theta}{4s^3}} \left[F(\varphi, l) - \frac{1}{\sqrt{1 - l^2}} \ln \frac{\sqrt{1 - l^2 \sin^2 \varphi} + \sqrt{1 - l^2} \sin \varphi}{\cos \varphi} \right], \tag{26}$$

here
$$\tan 2\theta = \frac{m_1}{\beta - k_1}$$
, $l = \sin \theta$, $0 < \theta < \frac{\pi}{2}$.

Remark: By substituting the expressions of u from Eq. (10) to (26) into the Eq.(7), we gained all the expressions of v. For simplicity, we omitted the expressions of v.

CONCLUSION

By means of the complete discrimination system for polynomial, we obtain the classifications of all single travelling wave atom solutions to the Modified Konopelchenko-Dubrovsky Equations. The solutions are very rich.

ACKNOWLEDGEMENTS

We are grateful to the reviewers for the helpful suggestions. This work was supported by Research Fund (Grant No. XZR 2017-14 and No. XDB-2016-25).

REFERENCES

- 1. Wazwaz AM. The tanh method for traveling wave solutions of nonlinear equations. Applied Mathematics and Computation. 2004 Jul 15;154(3):713-23.
- 2. Wazwaz AM. The tanh method for travelling wave solutions to the Zhiber–Shabat equation and other related equations. Communications in Nonlinear Science and Numerical Simulation. 2008 Jun 1;13(3):584-92.
- 3. He B, Long Y, Rui W. New exact bounded travelling wave solutions for the Zhiber–Shabat equation. Nonlinear Analysis: Theory, Methods & Applications. 2009 Sep 1;71(5-6):1636-48.
- 4. Chen A, Huang W, Li J. Qualitative behavior and exact travelling wave solutions of the Zhiber–Shabat equation. Journal of computational and applied mathematics. 2009 Aug 15;230(2):559-69.
- 5. Chen A, Huang W, Tang S. Bifurcations of travelling wave solutions for the Gilson–Pickering equation. Nonlinear Analysis: Real World Applications. 2009 Oct 1;10(5):2659-65.
- 6. Ganji ZZ, Ganji DD, Asgari A. Finding general and explicit solutions of high nonlinear equations by the Exp-Function method. Computers & Mathematics with Applications. 2009 Dec 1;58(11-12):2124-30.
- 7. Cheng-Shi L. Classification of all single travelling wave solutions to Calogero–Degasperis–Focas equation. Communications in Theoretical Physics. 2007 Oct;48(4):601.
- 8. Liu CS. Solution of ODE $u'' + p(u)(u')^2 + q(u) = 0$ and application Classifications of All Single Travelling wave Solutions to Some Nonlinear Mathematical Physics Equations, Commun. Theor. Phys. 49, 2008; 291-296.
- 9. Liu CS. New exact solutions of coupled Klein-Gordon-Schr? dinger equations.2005.
- 10. Dai DY, Yuan YP. The classification and representation of single traveling wave solutions to the generalized

11.	Fornberg–Whitham equation. Applied Mathematics and Computation. 2014 Seghosh S, Kundu A, Nandy S. Soliton solutions, Liouville integrability and equation. Journal of Mathematical Physics. 1999 Apr;40(4):1993-2000.	p 1;242:729-35. gauge equivalence of Sasa	a Satsuma

Dong-yan Dai et al., Sch. J. Eng. Tech., Jun 2018; 6(6): 198-202