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Abstract: By the polynomial complete discrimination system, we classify the
classification of all single travelling wave atom solutions to the Modified Konopelchenko-
Dubrovsky Equations.
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INTRODUCTION

Nonlinear partial differential equations play an important role in applied
mathematics, physics and engineering. A lot of methods, such as the tanh method [1, 2],
the bifurcation theory and the method of phase portraits analysis [3], qualitative theory of
polynomial differential system [4, 5], Exp-Function method[6] and so on, have been
proposed to solve these equations. Recently, Liu [7-9] introduced a simple and efficient
method to give the classification of all single travelling wave atom solutions to some
equations [10]. If a nonlinear equation can be directly reduced to the integral form as
follows:

du
P, (u)

t(E-¢&)=] @)

Where is P, (U) an n-th order polynomial, we can derive the classification of all

solutions to the right integral in Eq.(1) using complete discrimination system for the n-th
order polynomial.

In this paper, we consider the following the Modified Konopelchenko-Dubrovsky Equations [11]:

U, — Uy, —6nuu, +24°u’u, —3v, +34u,v=0, (2)

(3)

We reduce the Modified Konopelchenko-Dubrovsky Equations to an integrable ODE, and furthermore use
complete discrimination system for polynomial to obtain the classification of all single travelling wave atom solutions.

Classification

Taking the travelling wave transformation u =u($), v=v(&), S=x+ky+ot,
the equations are reduced to the following ordinary differential forms :

ou' —u" —6nuu’ +24%u’u’ - 3kv' +34u'v=0, (4)

av' =ku'.

(5)

By integrating Eq. (4) and Eq. (5) once, we have
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2

@u—u"-3nu’ +’%u4 —3kv+3Auv+c, =0,

(6)
v=Kku+c,, (7
Where C,and C, are two arbitrary constants.
Substituting the expression of v into Eq. (6), we have
”—12 * +3(k > +(34c, —3k*? 3k
u —?u +3(Ak —n)u” + (34c, — + w)u —3kc, +C;. (8)
Integrating Eq. (8) once, then it is
31c, -3k’ +
(u)? == /12u5+(/1k nu® + =2 5 u® +(c, —3kc,)u+c,, ©9)
and the corresponding mtegral form becomes
du
S I — , (10)
\/_ \/u + pu®+qu°+ru+s

—_— —_— 2 —_—
Wmmp:5uﬂ’”,q=“”% ik+”X|-5“lfm9,s=%,
A 22 A

Cy,C;,Cyand &, are integral constants.

Denote F (U) = u® + pu® + qu® + ru + s, the complete discrimination system for D,=-p,
D, =40rp —12p® —45q?,
D, =—4p°q? +12p*r +117 pg’r —88p?r? —40qsp® — 27q* +160r® —300qrs
D, =-1600qgsr® —3750 pgs® + 2000 ps®r® —4p°g°r? +16 p°q>s —900rs” p° +
825p%q°s® +144 pg°r® +2250rq°s® +16p*r® +108 p°s® —128r" p® —
27r?q* +108sq° + 256r° + 3125s* — 72rsqp” +560sqr?p® — 630 prsq’®,
E, =160r°p® +900q°r? —48rp® +60rp*q* +1500 pqrs+16q° p* —
1100qsp® +625s p® —3375sq°, F, =3q9° —8rp
By the complete discrimination system for polynomial, the classifications of all the single traveling wave
solutions to the integral formula (10) can be given as follows:
Casel:1f D, =0, D, =0, D,>0, then F(U)=(U-a)*(u-B)*u-y),

a, [,y arereals numbers, and @ # [ # ¥ . When W > y, solutions to u can be given by

/I(Z\/_’B)(f &) =+/y —aarctan VU7 = Barctan Y=Y (4> a,y > B)

y-—a NY =B

1)
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L Ma=p) -y 1 Wu—y 5|
( 0) =+ arctan
T )T Jr—a Jp-7 \\/u y +JB—7| (12)
(r>a,y<p)

JAMa-p) = Ju-y 1 Nu y —Ja—7|
2./5 (§=c) =~ ﬂarctan\/y yij 2\/05 v ‘\/u ¥ ++Ja— 7‘ (13)
(r<ay>p)

fHMaf) ooy 1 Numyoday| 1 Wy =By
2.5 " 2Ja-y Nu y+a—r| 2p-y Nu y+p-7| (14)
(r<a,y<p)

Case2:1fD, =0, D, =0, D,=0, D,#0, F,#0, thenF(u)=(U-a)*u-p)>%,
a, [ are reals numbers, and & # #. When W > ¢, the solutions to u are

ﬂ,(a 5) B 1 NU—a

2\/— (5 50) m a ﬂarCta‘nm (0(>ﬁ) (15)
AMa - ) 1 1 |\/u o —Jf—al
i 2+/5 (6=l = \/u—a 2\/,8 a ‘\/u a+\/ﬂ a‘ (@<f) ¢

Case3:1f D, =0, D, =0, D,=0, D,#0, F,=0, tenF(u)=U-a)‘u-2).
a, [ are reals numbers, and & # 5. When W> ¢, the solutions to u are

AMa=B), y_ _NU=-B 1 Ju—y
+ NG (&-&,)= 200 —a) 2\/marctan\/ﬂfa (a< p) a7)
L Ma=p) Vu-a 1 NuepedaoBl e

2.5 (&= 50)__2\/ U—a 4Ja—p Nu B+Ja—p|

Case4:1f D, =0, D, =0, D, =0, D, =0, then F(u) = (U~a)®. « isareal number, when W > « , the
solutions u can be given by

L Aa-p) 2,
N R R )

Case5:1fD, =0, D, =0, D, <0, E, #0, then F(u) = (U—a)(u® +ru+m)?,

a isareal number,, and r> —4m<0. When W> &, the solutions to u are

(19)
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/1(05 5) 2psin p~/u

2\/— (é éo)—_ U—o — ,0

(COS(B arctan

2
pVaAm—r?
smgol U—a—p>—2pCcosplu—a
2  u-a-p°+2pcospu—

(20)

1 fAm _ 2

here p = (a’ +ra+m)4, gpzlarctanM.
2 —20—r

Case6: 1fD, =0, D, >0, thenF(U)=(U—-a)’(U—a,)U—a,)(U—a3),

a,a,,a,,a;are reals numbers, and o, > a, > a,. When W> ¢, the solutionsto u are

RICEY)) ( s-a 'J} -

2\/— (éz 50)_ _az)m{l:((o’l

Here a 2@, a#a,, a#a,, F(pl)= I

V1 I23|n

do
’ 1| = .
[Tw.nn '[(1+nsin2<p)1/1—lzsin2q)

Case7:1fD, =0, D, =0, D, <0, E, =0, then F(u) = (U-a)’[(u-k,)* +m]],
o, K, ,m, are reals numbers. When W> o , if & # K, +m,, the solutionto u is

}L(a Aa-pB) tan € + cotéd m, tan @ + m, cotd y

+ (6—S) =~ F(p.k) -
2\/_ 2s, tan Ok, —a) m, m, cotd +k, + «

sin® 26

{ tand+k, +« m+F((p,|)—E((ﬂvl):| (22)

(m, cotd +k, — )

If @ #K, +m,, thesolutionto u is

Ma-p) sin® 20 {1 o }
+ = T (E— =, [———| =arcsin(lsinp) — F(ep,1) | , 23
NG (E-&) =, premk (Isinp) - F(op,1) (23)
here tan 20 = mlk , 1 =sing, 0<9<§, E((p,l):ﬂw/l—lzsinzl//dz//.
a—K

Case8: 1fD; =0, D, <0,then F(u)=(U-a)’(u-pA)[(u-k,)>+m?],
o, K, m, are reals numbers. If & =K, —m, tan & and « =k, +m, coté, the solution to u is
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N /1(05 Aa-p) tan € + cotéd m, tan @ + m, cotd

(6 —So) =~ F(e.k) -
m;

2‘/— 2(m tan @ -k, — )

m, cotd +k, + &

sin® 26

[ tand+k, +« m+F(¢’I)_E(¢7I):| (24)

(m,cotd+k, — )

If « =k, —m, tan@, the solutionto u is

/1(a ,6’) sin 26? 1 Irl\/1—Izsin2(p+\/1—lzsingo

/1(05 5) sin® 20
Y (£-&)=

If o #Kk, +m, cotd, thesolutionto u is

Llarcsm(l sing) — F(op, I)} (25)

Flo.1) -

(26)

here tan 26 = mlk, | =sing, 0<9<%.

1

Remark: By substituting the expressions of U from Eq. (10) to (26) into the Eq.(7), we gained all the expressions of V .
For simplicity, we omitted the expressions of V .

CONCLUSION

By means of the complete discrimination system for polynomial, we obtain the classifications of all single

travelling wave atom solutions to the Modified Konopelchenko-Dubrovsky Equations. The solutions are very rich.
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