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Abstract: Early studies show that the chemical and pharmaceutical properties of 

compounds are closely related to their molecular structure. Theoretical chemistry 

provides a method to predict the characteristics of compounds through the topological 

index calculation. As the expansion of Zagreb index, the Zagreb connection indices were 

introduced to measure the stability of alkanes and strain energy of cycloalkanes, which 

can help the pharmaceutical, chemical and medical researchers test the chemical, 

biological features of new drugs, materials and compounds. In this paper, in light of 

molecular structure analysis and mathematical derivation, we study the multiplicative 

Revan indices of rhombus silicate network and rhombus oxide network which are widely 

applied in chemical and material engineering. 

Keywords: Theoretical chemistry, molecular graph, multiplicative Revan index, rhombus 

silicate network, rhombus oxide network. 

 

INTRODUCTION 

Along with the improvement of experimental conditions and experimental 

methods, more and more high-performance materials, drugs were constructed from the 

laboratory. These synthetic materials and drugs have a large number of potential chemical 

properties that need to be tested, and can be put into the market after fully understanding 

their performance. Thus testing the physical, chemical, medical, medicinal properties of 

the new compound becomes a heavy boring workload. On the other hand, 

underdeveloped areas do not have enough equipment, reagents and manpower to do this 

job because of the shortage of funds. 

 

From the early chemical experiments, scientists get an important rule: the properties of the compound are 

directly related to its molecular structure. This rule allows scholars to predict chemical properties from the theoretical 

point of view which is originally only determined by the experiment. As an important branch of theoretical chemistry, the 

chemical graph theory provides us with the following procedures: first we use the graph model to represent the molecular 

structure of the compound, and this kind of resulting graph is called the molecular graph; secondly, the topological index 

is defined on the molecular graph, and a topological indicator represents a kind of chemical, pharmaceutical or material 

property; finally, the performance of the compound is predicted by the calculation of the topological index on a particular 

molecular graph. This method is not subject to funding constraints, in the absence of instruments and reagent, it can also 

be carried out the prediction of the chemical properties, and therefore it’s welcome by the researchers from developed 

countries and regions. In addition to the scholars in the field of chemistry, biology, materials and pharmaceutical, many 

mathematics experts also joined the study of chemical graph theory, and thus promoted the development of this 

discipline. For the contributions on the chemical graph theory and its engineering applications one can refer to Balaban 

[1], Munteanu et al. [2], Buscema et al. [3], Gao et al. [4] and [5],  Bodlaj and Batagelj [6],  Lokesha et al. [7], Khakpoor 

and Keshe [8], Ivanciuc [9] and Sardar et al. [10]. 

 

In chemical graph theory framework, the structure of chemical molecular is represented by a graph in which 

each atom is denoted as a vertex and each chemical bond is expressed as an edge. Let G= ( ( ), ( ))V G E G  be a 

(molecular) graph, where ( )V G  and ( )E G  are vertex (atom) set and edge (chemical bond) set respectively. A 

topological index is defined on a graph as a function f: G 
 which maps each graph to a real number. In the past 40 

years, inspired by chemistry applications, there were lots of degree-based, distance-based and spectral-based topological 
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indices being introduced, such as Zagreb index, atom-bond connectivity index, Wiener index, geometry arithmetic index, 

harmonic index, eccentric index, and PI index etc. There are several papers contributing to obtaining these topological 

indices of special molecular structures in material, biological, pharmaceutical and chemical engineering (See Gao and 

Siddiqui [11], Gao et al. [12-14], Gao and Wang [15] and [16], Ahmadi and Sadeghimehr [17], Guirao and de Bustos 

[18], Gutman and Das [19], and Dimitrov et al. [20] for more details).  

 

As an important molecular structure, network structure (for example, dendrimer nanostars) is widely appeared in 

several of drugs, materials, and other chemical compounds, and it raised large interest from engineering scientists. Tada 

et al. [21] presented a fragment molecular orbital method which was applied to analyze how the orbitals of the dendrimer 

nanostars are localized in space as well as in energy. Mirzargar [22] calculated the PI, Szeged, edge Szeged indices and 

their polynomials of a class of nanostar dendrimers. Dorosti et al. [23] computed the the Cluj index of the first type of 

dendrimer nanostar. Palma et al. [24] presented a sequential molecular dynamics/quantum mechanics (MD/QM) study 

and steady-state spectroscopy measurements of the dendrimer nanostars to obtain the temperature dependence of the 

electronic absorption process. They considered the nanostar as separate units and performed MD simulations for each 

chromophore at 10 and 300 K to study the effects of the temperature on the structures. Khalifeh et al. [25] and Darafsheh 

and Khalifeh [26] determined several distance-based topological indices of dendrimer nanostars. Manuel et al. [27] 

studied the total-Szeged index of dendrimer nanostar NSC5C6. Alikhani and Iranmanesh [28] computed the Hosoya 

polynomial of an infinite family of dendrimer nanostar denoted by D3 [72]. Alikhani et al. [29] manifested the Harary 

index of dendrimer nanostar NS2 [n]. Quadras et al. [30] yielded the minimum wirelength of embedding circulant 

network into nanostar dendrimer, and the embedding of faulty circulant network into nanostar dendrimer were also 

studied. For more theoretical results and engineering applications on dendrimer nanostars, one can refer to Husin et al. 

[31], Sepulveda-Crespo et al. [32], Cevik et al. [33], and Rivero-Buceta et al. [34]. 

 

In this paper, we focus on the multiplicative Revan indices of special kind of networks. 

 

Setting and network graph description 

For ( )v V G , set ( )d v as the degree of v. Let ( )G  = min{ ( ) : ( )}d v v V G  and ( )G =

max{ ( ) : ( )}d v v V G be the minimum and maximum degree of molecular graph G. The Revan vertex degree of a 

vertex v in G is defined as ( ) ( ) ( ) ( )r v G G d v    . The first and second Revan indices of a graph G are defined 

as (see Kulli [35]): 

1

( )

( ) ( ( ) ( ))
uv E G

r G r u r v


  ; 

2

( )

( ) ( ) ( )
uv E G

r G r u r v


  . 

In this paper, we first introduce the first and second multiplicative Revan indices of a graph G, which are 

described as follows: 

 1

( )

( ) ( ( ) ( ))
uv E G

r G r u r v


   ; 

2

( )

( ) ( ) ( )
uv E G

r G r u r v


   . 

         We consider a family of rhombus silicate networks. A rhombus silicate network is symbolized by nRHSL . A 3-

dimensional rhombus silicate network is depicted in Figure 1. 
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Fig-1: A 3-dimensional rhombus silicate network 

 

Next, we consider a family of rhombus oxide networks. A rhombus oxide network of dimension n is denoted by 

nRHOX . A rhombus oxide network of dimension 3 is depicted in Figure 2.  

 

 
Fig-2: Rhombus oxide network of dimension 3. 

 

Main results and proofs 

In this section, we present the main conclusions.  

 

Theorem 1. The first and second multiplicative Revan indices of nRHSL  are: 

2 24 2 6 +4 4 6 8 2

1 ( ) 12 9 6n n n n

n

nr RHSL      ; 

2 24 2 6 +4 4 6 8 2

2 ( ) 36 18 9n n n n

n

nr RHSL      . 

Proof. It is easy to check that nRHSL  has 
25 2n n  vertices and 

212n  edges. According to the value of ( )d u  and 

( )d v  for each edge uv, the whole edge set can be divided into three subsets: 

 33 ={ ( ) : ( ) ( ) 3}E uv E G d u d v   , 33 =4 2E n ; 

 36 ={ ( ) : ( ) 3; ( ) 6}E uv E G d u d v   , 
2

36 =6 +4 4E n n ; 

 66 ={ ( ) : ( ) ( ) 6}E uv E G d u d v   , 
2

66 =6 8 2E n n  . 

Hence, we have ( ) 3nRHSL   and ( ) 6nRHSL  . By means of definition of Revan vertex degree, the divided 

subset of E(G) can be re-written as follows: 
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 66 ={ ( ) : ( ) ( ) 6}RE uv E G r u r v   , 66 =4 2RE n  ; 

 63 ={ ( ) : ( ) 6; ( ) 3}RE uv E G r u r v   , 
2

63 =6 +4 4RE n n ; 

 33 ={ ( ) : ( ) ( ) 3}RE uv E G r u r v   , 
2

33 =6 8 2RE n n  . 

     Using the definition of the first and second multiplicative Revan index, we have   

1

( )

( ) ( ( ) ( ))
n

n

RHSuv LE

r r u rRHS vL


    

= 

66 63 33

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
uv RE uv RE uv RE

r u r v r u r v r u r v
  

      

=
2 24 2 6 +4 4 6 8 212 9 6n n n n n   

 

Using the definition of the second multiplicative Revan index, we get 

2

( )

( ) ( ) ( )
n

n

RHv E Lu S

r r u rRHSL v


   . 

= 

66 63 33

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
uv RE uv RE uv RE

r u r v r u r v r u r v
  

    

=
2 24 2 6 +4 4 6 8 236 18 9n n n n n   

. 

    Thus, we finish the proof of Theorem 1.                                                                                

 

Theorem 2. The first and second multiplicative Revan indices of nRHOX  are: 

28 4 6 8 2

1 ( ) 64 6 4 n n

n

nRHOr X      ; 

28 4 6 8 2

2 ( ) 256 8 4n

n n nr RHOX      . 

 

Proof. It is easy to check that nRHOX  has  
23 2n n  vertices and 

26n  edges. According to the value of ( )d u  and 

( )d v  for each edge uv, the whole edge set can be divided into three subsets: 

 22 ={ ( ) : ( ) ( ) 2}E uv E G d u d v   , 22 =2E ; 

 24 ={ ( ) : ( ) 2; ( ) 4}E uv E G d u d v   , 24 =8 4E n  ; 

 44 ={ ( ) : ( ) ( ) 4}E uv E G d u d v   , 
2

44 =6 8 2E n n  . 

 

Hence, we have ( ) 2nRHOX   and ( ) 4nRHOX  . By means of definition of Revan vertex degree, the divided 

subset of E(G) can be re-written as follows: 

 44 ={ ( ) : ( ) ( ) 4}RE uv E G r u r v   , 44 =2RE ; 

 42 ={ ( ) : ( ) 4; ( ) 2}RE uv E G r u r v   , 42 =8 4RE n  ; 

 22 ={ ( ) : ( ) ( ) 2}RE uv E G r u r v   , 
2

22 =6 8 2RE n n  . 

     Using the definition of the first and second multiplicative Revan index, we have   

 

1

( )

( ) ( ( ) ( ))
n

n

RHOuv XE

r r u rRHO vX


    

= 

44 42 22

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
uv RE uv RE uv RE

r u r v r u r v r u r v
  

      

=
28 4 6 8 264 6 4n n n    

Using the definition of the second multiplicative Revan index, we get 



 

 

Guoshun Liu et al., Sch.  J. Eng. Tech., Nov, 2018; 6(11): 369-374 

Available online: https://saspublishers.com/journal/sjet/home   

 373 

  

 

 

2

( )

( ) ( ) ( )
n

n

RHv E Xu O

r r u rRHOX v


   . 

= 

44 42 22

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
uv RE uv RE uv RE

r u r v r u r v r u r v
  

    

=
28 4 6 8 2256 8 4n n n   . 

    Thus, we finish the proof of Theorem 2.                                                                                

 

CONCLUSION 

By means of the graph structure analysis and mathematical tricks, we finally infer the multiplicative Revan 

indices of rhombus silicate network and rhombus oxide network. The conclusions deduced in this work also demonstrate 

the promising and wide application prospects in chemical, biological, pharmaceutical and nanoscience engineering. 
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