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Abstract  Review Article 
 

As we know that every partial differential equation can be solve by algebraic method or numerical method, so in this 

paper we will use finite difference method with Elliptic, parabolic and hyperbolic partial differential equation to solve 

numerically any partial differential equation.  
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INTRODUCTION  
A partial differential equation illustrate relevant between unfamiliar function and its partial derivative, partial 

differential equation appear repeatedly in most areas of physic and engineering. Further, in recent year we have seen an 

exhibitive augmentation in the use of partial differential equation in sectors such as chemistry, biology, and economy and 

computer science. Work out ordinary differential equation initiate finding a function or a set of a function of one implicit 

variable but partial differential equation for functions of two or more than two variables. Partial differential equations 

step up in the study of many branch of applied mathematics for example in fluid dynamics, heat transfer, boundary layer 

flow, electro-magnetic, elasticity and quantum mechanics. The analytical manner of these equations is more preoccupied 

process and requires application of advance mathematical methods. On the other hand it is commonly easier to generate 

enough approximation solution by uncomplicated and impressive numerical method. Various numerical methods have 

been suggested for the work out of partial differential equation, but just the finite difference methods have become 

famous and effective occupied than others.  

 

In this paper I have discussed about finite difference approximation to solve Elliptic, Parabolic and Hyperbolic 

partial differential equation. As we understand that every partial differential equation can be solve analytically or 

numerically, so I have search my work on the numerical parts to solve PDEs by finite difference scheme with all three 

equations. The work that I have done are driving Jacobi’s method and Gauss-Sidle method with Elliptic part and deriving 

of explicit and implicit of both Parabolic and Hyperbolic partial differential equation by finite difference scheme and at 

the end of this paper I have used truncation error with fundamental thermo of numerical analysis as well. The general 

form of partial differential equation as follows  

 
2 2 2

2 2
(1)a b c d e f g

x x y y x y

    


    
     

     
 

This can be written also as follows  

 

xx xy yy x ya b c d e f g            

 

Where a,b,c...  are all function of x  and y , also equation (1)  can be classified as follows. 

21)if b 4 0ac  Then the PDE belongs to the elliptic equations Laplace equation.  

22)if b 4 0ac  Then the PDE belongs to the parabolic equations or Heat condition equation.  
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23)if b 4 0ac  Then the PDE belongs to the hyperbolic equations or Wave equation. 

 

It is simple to see that Laplace equation is the form of Elliptic type, the wave equation is of the form hyperbolic 

type and the Heat equation is the form of parabolic type [5]. 

 

Finite difference for Laplace equation 

As we see form interdiction that the Laplace equation is an equation which is given as the form of    
2 2

2

2 2
0 0 0 (2)xx yyor or

x y

 
  

 
     

 
 

 

Now we have from finite difference approximation  

2

2

1
[ ( , ) 2 ( , ) ( , )] ( ) (3)xx x h y x y x h y o h

h
          

2

2

1
[ ( , ) 2 ( , ) ( , )] ( ) (4)yy x y k x y x y k o k

k
          

 

Now substituting equation (3) and (4) in equation (2) then we get  

2 2

1 1
[ ( , ) 2 ( , ) ( , ) [ ( , ) 2 ( , ) ( , ) 0 (5)x h y x y x h y x y k x y x y k

h k
                

 

If h k the from above equation we get 

2

1
[ ( , ) 2 ( , ) ( , ) ( , ) 2 ( , ) ( , )] 0

( , ) ( , ) ( , ) ( , ) 4 ( , ) 0

1
( , ) [ ( , ) ( , ) ( , ) ( , )] (6)

4

x h y x y x h y x y k x y x y k or
h

x h y x h y x y k x y k x y

x y x h y x h y x y k x y k

     

    

    

         

        

       

 

 

Were h is the grid size. 

We can also show the above relevant in the following figure which will shows that the value of   at any point 

is the mean of its values at the four vicinity points.   

 

As a suitable notation for grid points and analogous values of the solution is by choosing x ih  and y jh  

where                  0,1,2,3... ,1,2,3...i and j   

,

1,

1,

, 1

, 1

( , )

( , )

( , )

( , )

( , )

i j

i j

i j

i j

i j

x y

x h y

x h y

x y h

x y h

 

 

 

 

 











 

 

 

 

 

 

 

Now equation (b) can be written as  

, 1, 1, , 1 , 1

1
[ ] (7)

4
i j i j i j i j i j            

 

Which shows that the quantity of  at any interior grid points (nod point) are the average of its values at four 

neighboring points to the right, left, below and above [17]. 

 

Relation (18) is known as standard five points formula which will shown in the below figure [17] 

Some time we can use from finite difference approximation to briefly write as follows. 
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4( , ) ( , ) ( , ) ( , ) 4 ( , ) ( )x h y k x h y k x h y k x h y k x y o h                

 
1

( , ) [ ( , ) ( , ) ( , ) ( , )]
4

x y x h y k x h y k x h y k x h y k or                  

, 1, 1 1, 1 1, 1 1, 1

1
[ ] (8)

4
i j i j i j i j i j                

 

 
 

Which shows that the quantity of 
,i j  is the average of four neighboring diagonal grid points and relation (8) is 

known as diagonal five points formula which is shown in the below figure. 

 

Note: We should observed that relation (8) is less accurate than relation (7) yet it answer as a wisely good 

approximation for acquire the starting quantities at the grid points [10]. 

 

Computation of Laplace equation 

Laplace equation is the form of
2 2

2

2 2
0 0 0xx yyor or

x y

 
  

 
     

 
, now consider a rectangular 

region in xy plane . 

 

Divide this region in square grid points of sides x h and y k    which is shown in the below figure [10].  
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Now to distinguish the initial values of   at interior grid points, we first use the diagonal five point formula. So 

we have  

 

3,3 1,5 5,1 5,5 1,1

2,4 1,5 3,3 3,5 1,3

4,4 3,5 5,3 5,5 3,3

4,2 3,3 5,1 5,3 3,1

2,2 1,3 3,1 3,3 1,1

1
[ ]

4

1
[ ]

4

1
[ ]

4

1
[ ]

4

1
[ ]

4

b b b b

b b b b

b b b b

b b b b

b b b b











   

   

   

   

    

 

 

The quantities at the remaining interior points are 
3,2 3,4 4,3 3,2, , and     compute by standard five point 

formula, so we have 

 

2,3 1,3 3,3 2,4 2,2

3,4 2,4 4,4 3,5 3,3

1
[ ]

4

1
[ ]

4

b b b b

b b b b





   

   

 
4,3 3,3 5,3 4,4 4,2

3,2 2,2 4,2 3,3 3,1

1
[ ]

4

1
[ ]

4

b b b b

b b b b





   

   

 

 

When we distinguished all the quantities of 
,i j  once then we can find the approximation by the following 

iteration and we repeat the method since we get trivial difference among tow sequential iteration [15].  

 

 

Jacobi’s Methods: From Jacobi’s method we can represent the iterative quantity of 
,i j  by 

( 1)

,

n

i j 
then the 

iterative formula to compute (7) is 
( 1) ( ) ( ) ( ) ( )

, 1, 1, , 1 , 1

1
[ ]

4

n n n n n

i j i j i j i j i j    

       which output better quantities of 
,i j  at 

interior point and is called Jacobi’s formula [10]. 

 

Gauss’- Seidel Method: From the Gauss’ Seidel method we can represent the iterative quantity of 
( 1)

,

n

i j 
then 

the iterative formula to compute (d) is 
( 1) ( 1) ( ) ( 1) ( )

, 1, 1, , 1 , 1

1
[ ]

4

n n n n n

i j i j i j i j i j      

        which output better quantities of 

,i j  at interior point and is called Gauss’-Seidel method [5] 

 

Remark: Gauss’-Seidel method is smooth and can be agreeable to computer calculation and also its convergence 

is slow but the solution is lengthy, So Gauss’-Sidle method convergence twice as fast as Jacobi’s method and the 

accuracy of computing depend on the mesh size, that means if we smaller the h we can find better accuracy [12]. 

 

Parabolic partial differential equation  

We know that parabolic partial differential equation describe Heat condition equation and in this part we are 

going to use finite difference approximation to solve parabolic partial equation and also we are going to use finite 

difference approximation to derive explicit and implicit methods with truncation error of parabolic partial differential 

equation. Also we have used stability, consistency and convergence as well [4].  
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Finite difference for parabolic equation 
In this part we would consider the computing of Heat equation and Heat equation is one of the most famous 

partial differential equation.  

 

One dimension Heat equation is the form of  
2

2 2

1
(9)

t c x

  


 
 

 

Heat equation is usually discussed for   in some specific distance 0 x l   and time 0t   initial temperature 

(0, ) ( )t f x  is given.  

 

The bounder condition at 0x  and x l for all 0t  are gives (0, ) 0 ( , ) 0t and l t   .  

 

Explicit method of parabolic partial differential equation 

Consider the Heat condition equation  
2

1
t xx

c
   approximate by forward time t>0 and central difference 

space (x) then as follows we have  

 

2

( , ) ( , )

( , ) 2 ( , ) ( , )

t

xx

x t k x t

k

x h t x t x h t

h

 


  


 


   


 

 

Choosing 0,1,2,3... 0,1,2,3...x ih and y ih where i and j    we get  

 

2

( , 1) ( , )

( 1, ) 2 ( , ) ( 1, )

t

xx

i j i j

k

i j i j i j

h

 


  


 


   


 

 

Now substituting the value of t  and xx  in Heat conduction equation then we get 

2

2

( , 1) ( , ) ( 1, ) 2 ( , ) ( 1, )
(10)

i j i j i j i j i j
c

k h

         
  

Interpretation of (10) initiate four points, which are sign in the following figure such that on left hand side of 

((10), we have used forward difference since we don’t have information for negative   at the beginning [11]. 

From (10) we can calculate 
, 1i j 

 which is  

 
 

2

, 1 , 1, , 1,2
[ 2 ]i j i j i j i j i j

c k

h
           

 

Putting 

2

2

c k
r

h
 we get  
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, 1 , 1, , 1, , 1 , 1, 1,[ 2 ] (1 2 ) [ ] (11)i j i j i j i j i j i j i j i j i jr r r                       

 

Computing of such equation is determined for values of   from 0 to l and time t from 0to  .  

So the computation is not determined in a close domain but progress in an open terminate region from initial 

values, satisfying the boundary condition. The above formula (11) is known as Schmidt’s formula enables us to define 

the value of  at the ( , 1)Thi j   nodal point in duration the value of the known value at the points 
1 1,i i ix x and x 

 at the 

immediate
jt .  

 
 

This relevant discus two time levels j and 1j  so therefore it is called two level formulas and is reliable for

1
0<r

2
 . In specific if 

1

2
r  then the formula (11) can be change in the form of below  

, 1 1, 1,

1
[ ] (12)

2
i j i j i j       

 

This relevant is called Bender Schmidt relation [13]. 

 

Remark: In explicit method we have one quantity at level above to the right hand side of equation (11), so for 

each value of each time step we get explicitly the values [12]. 

 

Implicit method of parabolic partial differential equation  

Consider the Heat condition 
2

1
t xx

c
   we use the backward difference with  t  and central difference with 

xx  in Heat equation then we have 

 

2

2

2

( , ) ( , 1) ( 1, ) 2 ( , ) ( 1, )

( , ) ( , 1) ( 1, ) 2 ( , ) ( 1, )
(13)

t xx

i j i j i j i j i j
and

k h

i j i j i j i j i j
c

k h

    
 

    

     
 

     


 

 
Now written the above approximation at level (j+1)th then we get 

 

2

2

( , 1) ( , ) ( 1, 1) 2 ( , 1) ( 1, 1)i j i j i j i j i j
c

k h

            

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2

2
( , 1) ( , ) [ ( 1, 1) 2 ( , 1) ( 1, 1)]

c k
i j i j i j i j i j

h
               

If 

2

2

c k
r

h
 the we have 

( , 1) ( , ) [ ( 1, 1) 2 ( , 1) ( 1, 1)]

( , ) (1 2 ) ( , 1) [ ( 1, 1) ( 1, 1)] (14)

i j i j r i j i j i j

i j r i j r i j i j

    

   

         

        
 

This result is called implicit method formula 
 

Remark:  In implicit method we get system of equation, because we have more quantity at level explicit then 

implicit [2]. 

 

Truncation error on parabolic partial differential equation  

Consider the Heat condition t xx    Approximation by i,jF 0   or i,jL F 0   . Let   be the exact 

solution 
i,j ,L F 0i jT    is locale truncation error then  

 

2

, 2

, 2

( , ) ( , 1) ( 1, ) 2 ( , ) ( 1, )
( ) ( ) 0

( , 1) ( , ) ( 1, ) 2 ( , ) ( 1, )
0

i j

i j

i j i j i j i j i j
L o k o h or

k h

i j i j i j i j i j
T

k h

    

    

     
    

     
  

 

 

Now by Taylor series we have  
2 2 3 3 4 4

1, 1, 2 3 4
( , ) ( , ) (15)

2 6 12
i j i j j i j

i i i i

h h h
x t x t h

x x x x

   
   

   
      

   

2 2 3 3 4 4

1, 1, 2 3 4

2 2 3 3 4 4

, 1 2 3 4

( , ) ( , ) (16)
2 6 12

( , ) (17)
2 6 12

i j i j j i j

i i i i

i j i j

i i i i

h h h
x t x t h

x x x x

k k k
x t k

x x x x

   
  

   
 

 



   
      

   

   
     

   

 
 

Now we substitute equation 15, 16 and 17 in equation 14 then we get 
2 2 3 3 4 4 2 2 3 3 4 4

, 2 3 4 2 2 3 4

2 2 3 3 4 4

2 3 4

1 1
{ ( , ) ... ( . )} { ( , )

2 6 12 2 6 12

... 2 ( , ) ( , ) ...} 0
2 6 12

i j i j i j

i i i i i i i i

i j

i i i i

k k k h h h
T x t k i j x t h

k x x x x h x x x x

h h h
i j x t h

x x x x

       
  

   
 

       
           

       

   
        

   

 

 

After some calculation it can be reduce as follows  
2 2 2 4 2 3 4 6

, 2 2 4 3 6
( )

2 12 6 360
i j

k h k h
T

t x x x x x

          
     

     
 

Since   is the exact solution of 

2

2t t

 


 
 the leading non zero form (principle part of the local truncation error is

2 2 4 2 2 4 2 3 4 6

,2 4 2 4 3 6
...

2 12 2 12 6 360
i j

k h k h k h
T

x x x x x x

          
      

     
Lead form 

2 2 2

1 2 ,c ( ) ( )i jk c h o k h T o k h     .  

 

Hence it is the local truncation error [6]. 

 

Notes:  By local truncation error we can minimize the error as much as we can [26]. 

 

Convergence: A one step finite difference scheme approximated partial differential equation is a convergence 

scheme if the computing of the finite difference scheme      convergence to  ̅      such as any computation of the partial 

differential equation          [7]. 
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Stability:  The error caused by a small disturbance in the numerical method remains bounded, that means it 

could happen unconditionally in the entire domain or it could happen conditionally within a range [16]. 

 

Consistency: Given a partial differential equation      approximated by the finite difference scheme 

        is consistent with the partial differential equation if                       for   smooth enough, that 

means scheme approximating a partial differential maybe stable but has a solution that converge to the solution of 

differential equation has the mesh length in consistency, for example we can compute the below equation [14]. 

 

L a and L a
t x t x

 


   
   
   

 

 

Now ,i jL  is a forward space and forward time then we have 

,

2 2
2

, 1 , 2

2 2
2

1, , 2

( , 1) ( , ) ( 1, ) ( , )
(18)

( )
( ) (19)

2!

( )
( ) (20)

2!

i j

i j i j

i j i j

i j i j i j i j
L a

t x

t
t O t

t t

x
x O x

x x

   

 
 

 
 





   
 

 

  
     

 

  
     

 

 

 

Now we substitute (19) and (20) in equation (18) then we get  
2 2 2 2 2 2 2 2

2 2 2 2

, , ,2 2 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2! 2! 2! 2!
i j i j i j

t x t x
L a O t O x L L a O t O x

t x t x t x

     


         
                
     

Hear , , 0 , 0i j i jL L as x t      Therefore the scheme is consistency [18]. 

 

Fundamental theorem of numerical analysis ( consistdncy+stability<=>convergence ) 

 

Suppose a liner finite difference scheme is consistent with a well defined linear initial value problem then 

stability guaranties convergence as mash length goes to zero, for example we have as follows  

Suppose 

2

2
0

t x

  
 

 
 Be approximated by  

1, , 1 , 1 1,
, 1 ,

2

3 1
( )
2 2 0 (21)

2

i j i j i j i j
i j i j

k h

        


  
   

 

Now substituting the value of , 1 , 1i j i jand    by using finite difference method in (14) then we get 

 
2 2 3 3 4 4 2 2 3 3 4 4

, 1 , 1 2 3 4 2 3 4

3 3

, 1 , 1 3

... { ...}
2! 3! 4! 2! 3! 4!

2 ...
3

i j i j

i j i j

k k k k k k
k k

t t t t t t t t

k
k

t t

       
   

 
 

 

 

       
            

       

 
    

 

 

 

Now we have  
2 2 3 3 2 2 3 3 2

2

, 1 , 1 2 3 2 3 2

3 1 3 1
[ ...] [ ...] 2 2 ...

2 2 2 2! 3! 2 2! 3!
i j i j

k k k k
k k k k

t t t t t t t t

       
     

       
              

       
 

Now we have , 1 , 1i j i jand   as follows 

 
2 2 4 4

, 1 , 1 2 4
2 ...

12 12
i j i j

h h

x x

 
   

 
    

 
 

 

By using all above relation we get 
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2 3 5 5 2 4 4 2
2 2

, 3 5 2 2 4 2

2 2 2 2 3 2 4

, 2 2 2 2 3 4

1
[2 ... 2 2 ...

6 120 12

( ) 2 ...
6 12

i j

i j

k k h
T h k k

t t t h x t t t

k k k h
T

t x h t h t t x

      
 

     

      
          
      

     
      

     

 

 

Case (1):  If k rh  Then it is reduces to  

2 2 2 2 3 2 4
2

, 2 2 3 4
( ) 2 ...

6 12
i j

r r h h
T r

t x h t t t x

          
      

     
 

As 0
r

h then
h t


 


Therefore it is inconsistency. 

 

Case (2):  If 
2k rh Then it is reduces to  

2 2
2

, 2 2
( ) ...i jT r r

t x t t

      
    

   
 

As 0 0r then h  hence it is consistent [15]. 

 

Hyperbolic partial differential equation  
We know that hyperbolic parabolic partial differential equation describe Wave equation and in this part we are 

going to use finite difference approximation to solve hyperbolic parabolic partial equation and also we are going to use 

finite difference approximation to derive explicit and implicit methods with truncation error of hyperbolic parabolic 

partial differential equation. Also I have used stability, consistency and convergence as well [5]. 

 

Finite difference for hyperbolic equation 
      As we have defined in interdiction, the second order linear partial differential equation

xx xy yy x ya b c d e f g           , it is called hyperbolic partial differential equation 
2if b 4 0ac   is 

holed.   

 

The simplest instance of hyperbolic equation is the one dimensional wave equation. The study of waves is one 

of the famous areas in engineering and all vibration problems covered by wave equation. Consider the elastic string 

vibrating with length L , exist on x-axis  the interval [0,L] , suppose that (x,t) denote displacement of the string in the 

vertical plane, then the vibration of the elastic string is covered one dimensional wave equation 
2 (22)xx ttc   

 

Where 0 , 0x L t    such that 
2c  is a constant and depend on the property of string and for solving hyperbolic 

equation we need to prescribe the following conditions   

 Initial condition or initial displacement ( ,0) ( ) 0x f x x L    and initial velocity   

( ,0) ( ,0) 0t x g x x L     

 Boundary condition (0, ) 0 ( , ) 0 0t and L t t    we consider the case when the ends string is fixed. 

 

Since the initial and boundary condition are both prescribe then the problem is called initial and boundary value 

problem. 

 

Likewise of Heat condition equation, we are going to derive Waveequation then explain explicit and implicit 

hyperbolic partial differential equation [13]. 

 

Derivation of one dimensional of wave equation 

Consider the following cortisone coordinate ( , )x y  with the deflection of string in the vertical discretion at a 

given time   and given spatial location x . 

 

Let take an infinitesimal points PQ in the length of spring vibration, then we will have the following 

assumption 

1. The mass per unit length is constant and its shows by   . 

2. The string perfectly should be elastic and often no resistance to bending.   

3. The gravitational force is negligible. 
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4. The string perfectly small\negligible transverse deflection   direction. 

5. The vertical deflections are small at all times and therefore slopes are small. 

 

 
Now from assumption (3) to holds we need the horizontal component force to be equal, so we have 

 

1 2cos cos (23)T T T    

If the angel  or   are small, then     of but tens to one the
1 2T T T   It means that the horizontal 

component are equal. Now according to the vertical direction we have, sum of the force in vertical direction equal to the 

mass with the acceleration in vertical direction.   

 

F Ma Where   shows the force in vertical direction,  shows mass and a  shows the acceleration in vertical 

direction   

 
2

2 1 2
sin sinT T M

t


 


 


Where 

2

2
a

t





is acceleration and also M x   

 
2 2

2 1 2 12 2
sin sin sin sinT T M T T x

t t

 
    

 
     

 

 
 

Now we divide but said byT , then we get  

 
2

2 1

2

sin sin
(24)

T T x

T T T t

    
 


 

 

Now from equation (16) we put the value of   in L.H.S of      then we get 

 
2

2 1

2

2 1

sin sin

cos cos

T T x

T T T t

   

 

 
 


 

2

2
tan tan (25)

x

T t

 
 

 
 


 

( )Tag  Is slope of the string at ( )
x x

Q x x
x






   


and ( )Tag  is slope of the string at 

x

P x
x


 


now from 

     we get  
2

2

x x x

x

x x T t

   



   
 

  
 

 

Now divide but said by x , then we get 

2

2

1
(26)

x x xx x x T t

   



   
  

    
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An question arise hear that how much did the slope 
x




 change between the point P and Q it means that the 

second derivative of deflection with respect to   arise, therefore we get 

 
2 2 2 2

2 2

2 2 2 2
, (27)tt xx

T T
or c wherec

x T t t x

    
 

 

   
    

   
 

 

Hence equation      is called wave equation [2]. 

 

Explicit method for wave equation 

The one dimensional wave equation is given by

2 2
2

2 2
c

t x

  


 
. Suppose the step sizes for         equal to 

h and k such that
0ix x ih    and

0it t jk  , now by using central difference, we write the approximation  

 
2

1, , 1,2 2 2

1 1
[ ( , ) 2 ( , ) ( , )] [ 2 ] (28)xx i j i j i jx h t x t x h t

x h h


       


        


2

, 1 , , 12 2 2

1 1
[ ( , ) 2 ( , ) ( , )] [ 2 ] (29)tt i j i j i jx y k x y x y k

t k k


       


        


 

 

Now applying equation (28) and (29) in Wave equation then we get 

2

, 1 , , 1 1, , 1,2 2

1 1
[ 2 ] [ 2 ]i j i j i j i j i j i jc

k h
            

2 2

, 1 , , 1 1, , 1, , 1 1, 1, , , 12
2 [ 2 ] [ ] (2 2 ) (30)i j i j i j i j i j i j i j i j i j i j i j

k c
r r

h
                           

Where 

2 2

2

k c
r

h
  

 

Equation (30) is called finite difference explicit method of hyperbolic partial differential equation [5]. 

 

Observation 

1) If 

2 2

2
1

k c
r

h
  Then the coefficient of ,i j  vanish and formula (30) take the form

, 1 1, 1, , 1 (31)i j i j i j i j        
 

2) If
1

r
c

 , Then the solution of (30) is stable and coincides with the solution of Wave equation. 

3) If
1

r
c

  , Then the solution is stable but inaccurate. 

4) If
1

r
c

 , Then the solution is unstable. 

5) If 1r i e k h   , Then the formula (30) is convergence [16]. 

 

Truncation error in hyperbolic partial differential equation  

Consider the below explicit wave equation, express by Taylor series  
2

, 1 , , 1 1, , 1,2 [ 2 ] (32)i j i j i j i j i j i jr              

2 2 3 3 4 4

1, 1 2 3 4
( , ) (33)

2! 3! 4!
i j i

h h h
x t h

t t t t

   
   

   
     

   
 

2 2 3 3 4 4

1, 1, 2 3 4
( , ) ( , ) (34)

2 6 12
i j i j j i j

i i i i

h h h
x t x t h

x x x x

   
   

   
      

   
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2 2 3 3 4 4

, 1 2 3 4

2 2 3 3 4 4

, 1 2 3 4

( , ) (35)
2 6 12

(36)
2 6 12

i j i j

i i i i

i j

i i i i

k k k
x t k

x x x x

k k k
k

x x x x

   
 

   
 





   
     

   

   
     

   

 

 

Now substitute equations (33), (34), (35) and (36) in equation (32) then we get  
2 2 3 3 4 4 2 2 3 3 4 4

2 3 4 2 3 4
\ ... 2 ...

2! 3! 4! 2 6 4!i i i

h h h k k h
h k

t t t t x x x t

       
  

       
           

       
 

 

From L.H.S we get 

2 4 4
2

2 4
[ ...]

12

k
k

t t

  
 

 
 and R.H.S will take the form 

        
  

  
 

  

  

   

   
 

 

  

   

   
 

  

  

   

   
           

  

  
 

  

  

   

   
 

  

  

   

   
 

 
  

  

   

   
      

 

From R.H.S we get
    

  *     

    
  

  

   

     +      *
   

    
  

  

   

     +, where    
    

   

 

Where all the process on the right hand sides is evaluated at        , so the truncation error is given by 

                          (                   ) 

 *  
   

   
 

  

  

   

   
  +      *

   

   
 

  

  

   

   
  + 

  *
   

   
   

   

   
+  

  

  

   

   
 

      

  

   

   
   

 

Now by using differential equation we have  

   

   
   

   

   
  

   

   
   

  

   
(
   

   
)    

  

   
(
   

   
)    

   

   
 

We obtain form truncation error 

    
    

  

   

   
 

      

  

   

   
   

      

  
*      

   

   
  + 

Since  
  

 
, so the order of method is given by 

      
 

  
               [3]. 

 

Implicit method for wave equation 

As we see from explicit method that it has disadvantages, because explicit method has a stability condition on 

the mesh ratio parameter  
  

 
 .  

 

Explicit method is stable for     and this condition limit the measures that can be for the length   and   ,so 

explicit method is not useful because the time uses is too high, therefore in such case we use implicit method, hence we 

derive the following two implicit methods [6]. 

 

1. At the first step we write the following approximation at         

   

      
 

 

  
  

                                                                                                                                                                

   

   
   

 
 

   
  

 [             ]                                                                                                                               

 

So the difference approximation to the wave equation at the mesh point         is given by  

 

  
  

      
  

   
  

 [             ]        
      

  

 
  

 [             ]    
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[  

          
       ]    

       
  

 
  

                     
  

 
  

                                                                                                  

 

Now we can expand the central difference approximation and write  

  
                                                                                                                                                

  
                                                                                                                                                

 

Now we substitute the                       then we get 

       
  

 
(                         )               

  

 
(                         ) 

       
  

 
         

  

 
        

  

 
         

              
  

 
         

  

 
        

  

 
         

 
  

 
                      

  

 
         

       
  

 
                      

  

 
                                                                                                  

 

Hence equation      shows that the implicit method [12]. 

 

Notes (1): For finding truncation error we can use Taylor expansion in equation     , then we get  (   
  

  ), so the 

order of this method is         . 

 

2. The second step we use approximation     for 
   

    and the following approximation for  

   

   
 
   

   
   

 
 

   
  

 [                  ]                                                                                                        

 

So the difference approximation to the wave equation at the mesh point         is given by  

 

  
  

      
  

   
  

 [                  ]     
          

 [                  ] 

                      
          

        
        

           
                         

          
                                                                               

 

Now if we expand the central difference in equation    , then we get the implicit method. 

  
                                             

                                 [25] 

 

Notes (2): Hear also for finding truncation error we can use by Taylor expansion in equation     , then we get   (   

  

  ), so the order of this method is          [8]. 

 

Remark: We saw that, implicit method often has very strong stability properties, analysis of stability equation 

              shows that the method is stable for all values of the grid ratio parameter  , hence the method is 

unconditionally stable, this shows that there is no restriction on the value of the grid length         [12]. 

CONCLUSION 
     On the basis of the above discussion we get the result obtained by finite difference approximation to provide 

the solution of Elliptic, Parabolic and Hyperbolic partial differential equation, so we know that every partial differential 

equation can be solved analytically or numerically and finite difference approximation is one of the most important ways 

to solve numerically any partial differential equations.  

 

On the above three equation we are used finite difference scheme to derive Gauss-Sidle and Jacobi’s method by 

in Elliptic equation, and derive explicit and implicit formula of both Parabolic and Hyperbolic equations. In the other 

hand we find that Gauss’-Seidel method is smooth and can be agreeable to computer calculation and also its convergence 
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is slow but the solution is lengthy, So Gauss’-Sidle method convergences twice as fast as Jacobi’s method and the 

accuracy of computing depend on the mesh size that means if we smaller the h we can find better accuracy. Also with the 

explicit method for each value of each time step we get explicitly the values but with the implicit method we get system 

of equation, because we have more quantity at level explicit then implicit. 
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