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In recent years, the study on topological indices related to network security has attracted attention from mathematics
and computer science fields. Although several gratifying theoretical results exist, definitions and conclusions under
most mathematical frameworks need to be expanded. The focus topic of this paper is to use a graph model to represent
the network structure, and the membership functions (MFs) of vertices and edges describe the uncertain nature of
stations and channels. The connectivity index is used to describe the robustness and the stability of the fuzzy graph of
the corresponding network. In this paper, the definition of the connectivity index and the derived concept are given in
a bipolar intuitionistic fuzzy graph (BIFG) setting, and the characteristics of connectivity indices are given from the
theoretical point of view. These results have potential applications in the field of computer security, and we analyzed

topics for future research.
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1. INTRODUCTION

Graph models are often used in computer
frameworks. For example, in a network, vertices are
used to represent sites, and (directed or undirected)
edges represent (directed or undirected) channels
between vertices. Then the entire computer network can
be shown by graph structures.

In recent years, graph network models and
fuzzy graph (FG) network frameworks have raised
ample attention of researchers [1], considered the
relationship between toughness and fractional flow in
network when certain number of vertices is removed
[2]. Discussed the toughness condition for computer
communication networks when channels are attacked,
and its corresponding isolated toughness analysis was
given by [3-5] focused on the parameter condition for
data transform path in networks [6]. Raised new
complex wave patterns to the electrical transmission
line model arising in the network systems [7]. Studied
the degree-based topological indices of some derived
networks, and topological indices of certain OTIS
Interconnection networks are determined in [8]. More
related results can refer to [9, 10].

This article considers the following two backgrounds of

the network:

e  Stations and channels may have many uncertain
attributes, and definite quantities cannot represent
these uncertain characteristics. Therefore, tools of
fuzzy mathematics are needed to express these
uncertain quantities. Therefore, when we need to
deal with the uncertainty in the network structure,
we use fuzzy graphs instead of traditional graphs to
represent the network. That is, each vertex and
each edge in the network graph has a
corresponding membership function. When there
are multiple uncertain attributes that need to be
represented, the multiple membership functions of
vertices or edges can be defined.

e Network security has received extensive attention
in recent years, the current popular research topics
are network attacks, defense, privacy protection,
data security, etc. Under the graph model,
researchers have worked out how to characterize
the vulnerability of the network and the security of
data transmission between vertices from the
perspective of modern graph theory. Some graph
topology indicators are defined, such as toughness,
isolated toughness, the connectivity.
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In this paper, the above two issues are
considered together, that is, to study the security-related
indexes of network fuzzy graphs. The object of our
investigation is the bipolar intuitionistic fuzzy graph
(BIFG), and the corresponding index is the connectivity
index of this kind of FG. The paper is roughly
organized as follows: First, we give the existing concept
of the BIFG; then, the new connectivity index on the
BIFG is defined, and some theoretical features are
obtained as well.

2. Preliminary Definitions

This section aim is to introduce the extant
concepts on BIFG and connective indices on the
intuitionistic fuzzy graph.

2.1. Bipolar Fuzzy Graph
Let V be a universal set. The set

A={(v,  (V), 2 (V)):veV}is a bipolar fuzzy
set (BFS) in V if two maps satisfy 2z, :V —[0,1]

2.2. Bipolar Intuitionistic Fuzzy Graph

and uy NV —[-10]. If
A={(v, ; (V),  (V)):v eV} is a bipolar fuzzy
set on an underlying set Vand B = (x5, 14 ) isa BFS
in V2 where zf (v,v) <min{g (v), h (V)},
W) el (), ()} for ey
(v,v)eV? and f(v,v)= b (v,v)=0 for any
(v,v)eVZ—E, then G=(V,A B)is a bipolar

fuzzy graph (BFG) of the graph G*=(V,E). In the

whole paper, A and v mean minimum and maximum
operations, respectively.

The order, neighborhood, neighborhood
degree, irregular and subdigraph of bipolar fuzzy graphs
were recently revised and defined by Poulik and Ghorai
[11] which were firstly defined by Akram [12].

Shannon and Atanassov [13, 14] introduced the intuitionistic fuzzy graph (IFG), and Ezhilmaran and Sankar
[15] introduced bipolar intuitionistic fuzzy set (BIFS) and BIFG. A BIFS on universal set V' is denoted by;

A={V, 425 (V), 13 (V). 775 (V). 775 (V) 1V €V},

Where ,ui 'V —[0,1], ,uAN 'V —>[-1,0], 77; 'V —[0,1], 77AN 'V —[-1,0]. Furthermore, we have
0< (V) +77, (V) <1 and —1< ) (V)+770 (V) <O for any VeV . A mapping B=(uf, 1 ,75,1m5):
V xV — ([0,1]x[~1,0]x[0,1] x[-1,0]) a bipolar intuitionistic fuzzy relation (BIFR) such that £ (v,v") €[0,1],
uy (v,v) e[-L0], ni(v,v)e[0d] . 7y(v,v)e[-10] with O<zf(v,v)+75(v,v)<1 and

1< 2] (v, V) +75 (v,v') <0 forany v,v'eV .

ABIFG G =(V, A B) with A=(u,, s,y ) and B=(u5, 145,775,775 ) is @ BIFR such that

Hg (VYY) < g (V) A g (V).
H (V,V) 2 a3 (V) vy (V)
s (V) 277, (V) v (V)

g (V) <77, (V) Az (V)

forany (V,v') eV xV ,and g (V,V") = 18 (V,v) =nf (v,v") =75 (v,v) =0

forany (v,v) eV xV —E .

3. Connectivity Indices of BIFGs

Now, we present our new concepts and theoretical results on connectivity indices of BIFGs which can be
regarded as an extension of connectivity indices of intuitionistic fuzzy graph raised by Naeem et al., [16]. We begin with

the new definitions of BIFGs.

Definition 1: A BIFG is complete if
H (V) = 1 (V) A g1 (V).

H (V) = 1 (Vv (V)
g (V,V) =17, (V) vz (V).
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Mg (VV) =173 W) A7y (V)
forany (V,v)eV xV .

Definition 2: A sequence of V,,V,,---,V, distinct vertices is a path P in a bipolar intuitionistic fuzzy graph if for some i
and j, one of the positive relation conditions (i)-(iii) holds and one of the negative relation conditions (iv)-(vi) holds:

(i) 445 (V;,v;) >0 and 775 (v;,v;) =0;

(ii) 4 (V;,v;) =0 and 775 (v;,v;)>0;

(iii) 4 (V;,Vv;) >0 and 775 (v;,v;) >0

(V) uy (V;,V;) <0 and 775 (V;,v;) =0;

) Uy (v;,v;) =0 and 7 (v;,v;) <0;

(vi) g (v;,Vv;) <0 and 775 (v;,v;) <O.

Definition 3: For a path P =V,,V,,---,V, and the u —positive strength ( 2 —PS), 17 —positive strength (77 -PS), u —
negative strength ( £ —NS), 77 —negative strength (77 —NS) are denoted by

7 = min{uf (v.v,)}
S, =max{ig (v,v;)}
s = max{ad (v, )}
S: = ni1’ijn{77§ (V;,V;)}, respectively.

Definition 4: If both S; and S,]P exist for the same edge, then (S; , S:) is called the positive strength (PS) of path P.

If both S, N and S, N exist for the same edge, then (SN SN) is called the negative strength (NS) of path P. If all S,

N
2

SP sh andSN exist for the same edge, then (S S )

e S,? ) is called the strength of path P.

Definition 5: The 4 —PS of connectedness between V; and V, , 77 -PS of connectedness between V; and V;, £ -NS of

connectedness between V; and Vi, 11 —negative strength of connectedness between V; and V; are denoted respectively
by

CONN? & (v;,v;) =max{S,},
CONNP ¢, (v;,v;) =min{S’},
CONNJ 6 (v;,v,) =min{S}'},

CONNy 6, (v;,V;) = max{S '},

Where the max and min operators traverse all possible paths between V; and V i

Furthermore, we denote CONNﬂ(G) v, )(VI, V), CONNU(G) v, )(V ), CONNﬂ(G) v, )(VI, Vi),

irVj
and CONNN(G) v, )(V,,V )by the £z —PS of connectedness, 77 -PS of connectedness, £ —~NSh of connectedness, 77—

NS of connectedness between V; and V; attained by removing the edge (Vi,vj) from G, respectively.

Definition 6: An edge (Vi , V.) is a positive bridge (PB) in G if one of the positive conditions (i) and (ii) is hold:
(i) CONNT ) (v (Vi V;) < CONNF ¢ (v, v;) , CONNJ ), ) (V,V;) 2 CONNY ) (v, V) ;
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P
(i) CONN,, 6y, v,) (V52 V; ) <CONN? ¢ (v;,v;), CONN; ¢, o ViV )>CONN? (i, V;).
That is to say, removing (Vi , Vj) reduces the PS of connectedness between any pair of vertices.

Correspondingly, an edge (vi , V.) is a negative bridge (NB) in G if one of the negative conditions (iii) and (iv) is hold:
(iii) CONNJ 6y ) (Vi:V;) > CONNJ e (v, v;) , CONN gy (Vi V;) SCONN ) (Vi V)
(iv) CONNy) ) (V,V;) 2 CONNJ 6 (v, v;) , CONNJ ),y (V,V;) <CONNy ) (V;,V)) .

That is to say, removing (V;, Vj) increases the NS of connectedness between any pair of vertices.
Anedge (V;,V;) isabridge in G if (V;,V;) is botha PG and a NG.

Definition 7: Anedge (V;,V;) is strong if
Hs (VuV )= CONN/I(G)(Vij):

s (VN J) < CONNU(G)(Vi’V') '

e (V. V. ;) <CONN (G)(v,, Vi),

and

1 (V;,V;) = CONNT o (V;,V;).
Anedge (V;,V;) is weakest if

U (vI WV )< CONN#(G)(Vi ,v].) ,

s (VuV ) > CONN?](G)(Vi’Vj) :

zuB (VHV ) > CONN,U(G)(Vi’Vj) J
and
78 (vi,v;) < CONN”(G)(vi,vj).

Definition 8: The strongest path (SP) between two vertices in a BIFG is a path P having its PS and NS equal to
CONNP(G)(V,,V ), CONNP(G)(V ), CONNN(G)(V ) and CONNN(G)(V,,V ) lying in the same edge.

I’j I’J

Definition 9: Apath PV, =V, in a BIFG G is called strong path if each edge in P is strong.

Definition 10: An edge (V,,V i
#g (V;,v;) > CONNF g, ) (Vi1V))
UB (VI’V ) < CONN]](G) (V Vi )(V| IV) 1

luB (VI’ J)<CONN (G)- (vv)(vw J)
and
773 (VuV )>CONN77(G) —(v v )(V.’V ).

Anedge (V;,V;) inaBIFG G is called S —strong if
Hg (V;,v;)=CONNT ) ) (V;,V)),
nB (VUV ) CONN 7(G)=(v;,v; )(Vw J)

) inaBIFG G is called & —strong if;
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Ha (v, vj) = CONNE(G)—(vi,vj)(Vi’Vj) ,

and

773 (VuV )= CONN;;(G) —(v;V )(Vi’vj)'

Anedge (V;,V;) inaBIFG G is called & -weak if
#s (V;,V;) <CONNT ) 3 (vivy),

U (VuV ) > CONN;;(G) —(vi; )(Vi'Vj),

,UB (V,,V )>CONN,u(G) Vv )(Vi’vj)1
and
772‘ (V|'V )<CONNN(G) (v;,V; )(VUV )

Moreover, a path in a BIFG containing only o —strong edges is called & —strong, and a path having only /3 —
strong edges is called /3 —strong.

Definition 11: A BIFG G is called a cycle if its crisp graph is a cycle. A BIFG G is called a bipolar intuitionistic fuzzy
cycle (BIFC) if its crisp graph is a cycle and there is no unique (V,V') € E*satisfying

Hg (V) =min{ug (%, y) 1 (X, y) e E'},

Hg (v,v') =max{ug' (x,y): (x,y) eE},

g (V,v') = max{rg (X, y): (%, y) € E'},

and

75 (V,Vv') =min{rg (x,y): (x,y) e E'},

Where E is denoted by the edge set of crisp graph of G.

Below we formally introduce the concept of connectivity index (ClI) for the BIFG.

Definition 12: The Cl of BIFG G = (V, A, B) with A= (u,, 1y 175,775 ) and B= (4, gt 175,175 ) is defined
by
CIG)= D {(uh (u), pap (), 7z (U, 77 (U)) (et (V) pp (V). m5 (V). ;5 (v)) CONNg (u, v)}

u,veV (G)

= 2 Qg (), ()7 (), 772 (u)) (et (W), 4 (W), 77 (V). 7730 (V))(CONNG (u, v), CONNG (u, v))}

u,veV (G)

z {(IUA (u), /JA (u), 7, . (U), 77A (u))(ﬂA V), /JA V), 174 2 (V), 77A (V))(CONN;,(G)(UvV) +

u,veV (G)

CONN; ¢, (u,v), CONNJ, 5 (u,v)+CONN? ¢ (u,v))}

Z (/JA (u):uA (v) CONN;;(G) (U,v) +1, (U)UA (V) CONNn(G) (u,v),

u,veV (G)

Ha (u)lLlA (V) CONNN(G)(U V) +77A (U)UA (V) CONNN(G)(U V)
=( D #aWpg(v)CONNG ) (uv)+ D" 775 (U): (v) CONNy g (u, V),

u,veV (G) u,veV (G)
Z #a (U) 2, (V) CONNN(G)(U v)+ Z 7a (U775 (V) CONNN(G)(U v))
u,veV (G) u,veV (G)

— (CI?(G)+CI (G),CI"(G)+CI(G))
=(CI*(G),CI™(G)),
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Where

CII@)= 3 i) () CONN] e, (0.).
CI7(G) = Zijn (U} (v) CONNZ ¢, (uv)
CI}(G) —Z 1 (U2 (1)) CONN (U, ),
CIN(G) —2::n (u)7} (V) CONNYg (u,v)

Are positive 1 -connectivity index, positive 77 -connectivity index, negative ¢ -connectivity index, negative 1
-connectivity index of G, respectively. Moreover,
P _ P P
CI?(G) =CI?(G)+CI (G),
N _ N N
CI"(G) =CI" (G)+ClI) (G)

Are positive Cl and negative Cl of G, respectively.

Theorem 1: Let G = (V, A, B) be a BIFG with vertex set V ={V;,V,,-+,V. }. Assume that
P _ 4P P PP P N _ 4N N
0<tP <P <-<t? <1, 128" >80 > 25" >0, ~1<t" <t <---<t" <0,

Ozslp 255 2"'25: > —1, where tip :/u;(vi)' SiP :UX(Vi)' tiN :ﬂ/’;l(vi)! SiN :77AN ()
Then, we get

CI(G) =(CI*(G),CI"(G)) = (Z(t )2 th+2(s )? ZS Z(t )? ZtN+Z(s )? Zs ).

j=i+l j=i+l i=n j=i-1 j=i-1

Proof. Since Naeem etal., [16] have proven the positive part

CI?(G) = Z(t )? Zt +Z(s )? Zsj,

j=i+l j=i+l

We only need to verify the negative part:

CIN@G) = Z(t )2 Zt +Z(s )2 Zs

j=i-1 i=n j=i-1

Let VvV, be the vertex with the largest negative truth membership value tnN. For a complete BIFG,

wy (V,V') = CONNN(G)(VV')for any V,V'eV*. Thus, 25 (v.,v,)=t" for 1<i<n-1 and

iy (V) (v, )CONNN(G)(Vn,V )=t" th = (t")?t" for 1<i<n—1. Taking summation over i, we get
Z Ha (V) 4 (V;) CONNGi) (v, ;) = z (A
i=n-1 i=n-1

Similarly, for vertex V. ;, we yield z wx (V) (V)CONNN(G)(Vn V)= Z )t . For v, ,,

i=n-2 i=n-2
1

Z INUAR YN )CONNN(G)(Vn V)= z (t",)?t" and so on. Finally for Vv, , we obtain

i=n-3 i=n-3

1 1
Z,UAN (Vz)lu/';l (Vi)CONNZ(G)(VZ’Vi) = Z(tzN)ztiN :
i1

i=1
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In terms of adding all the above equations, we infer

Cl (G)—Z(t )’tN +Z(tnl)t +- +Z(t )t = Z(t )? Zt“.

i=n-1 i=n-2 j=i-1

Let v, be the vertex with the smallest negative falsity membership value Sr:“. For a complete BIFG,

nQ'(VV')=CONNN(G)(VV')for any VV'eV*. Thus, 75 (V,,v)=s"' for 1<i<n-1 and

17a (V)75 (v.) CONN (G)(Vn,v )=s) =(s)')?s" for 1<i<n—1. Taking summation over i, we get
ZUA (v, )77A (v;) CONN (G)(Vn’ Vi) = Z(S )2 ¥
i=n-1 i=n-1

1
Similarly, for vertex V__,, we yield Z 17 (Vo )ma (V) CONNY o (v, 1, Vi) = D (say)?s! s for v, ,

i=n-2 i=n-2
1
Z nn (V. _,)nx (v.) CONNY ) Vo2 Vi) = Z (sM,)?s" and so on. Finally for V,, we obtain
i=n-3 i=n-3

D71 (V)77 () CONN i, (v, v;) = Z(S)

i=1

In terms of adding all the above equations we infer

Cl (G)_Z(s )zsN+Z(s LS 4+ +Z(s s = Z(s )? Zs

i=n-1 i=n-2 j=i-1
Hence, we prove the desired result. []

The following conclusion reveals that the value of C1(G) is affected by deleting a bridge of BIFG G.

Theorem 2: Let H be the bipolar intuitionistic fuzzy subgraph (BIFSG) of a BIFG G by removing an edge uv € E(G).
Then C17(G) >CI"(H) and CI™(G) < CI™(H) ifand only if UV is a bridge of G.

Proof. Since Naeem et al., [16] determined that CI1”(G) > C17(H) if and only if UV is a PB. Here, we only confirm
that CI™ (G) < CIM(H) ifand only if UV isa NB.

If UV is a NB, then using its definition, there exist v and u such that their negative strength of connectedness
will increase. Hence, we have CI™ (G) <CI"V(H).

On the contrary, assume that CI™ (G) < CI™ (H), and then we consider the following three cases.

Case 1: UV isa O -edge.
In this case, we have;

CONNJ;, (u,v) =CONNY ¢ (U, V),
CONN; 6, (U,v) =CONN/ ¢, .y (U, V).
Thus, Cly (G)= Clﬂ (H) and CIU G)= CI,]N (H), which implies CI" (G) = CI™(H), a contradiction.

Case 2: UV isa £ -strong edge.
In this case, we get

#g (U,v) = CONNJ G-y U V) |
1 (U,v) = CONNJ () (U, V).
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Thus there is another U —V path different from
edge UV and removing UV doesn’t change the negative
strength of connectedness between u and v, which also

implies CI" (G) =CI"(H), a contradiction.

Case 3: UV isa & -strong edge.
In this case, we have

1 (u,v) < CONN" (u,v),

#(G)—(u.v)

78 (U,V) > CONN,’j(G)f(u'V) (u,v).

Thus the only SP is UV edge having NS equal
to (g (U,v),n (u,v)), which also implies

CIN(G)<CIN(H).
We get the result of Theorem 2. [J

According to the proof of Theorem 2, we directly get
the following two corollaries.
Corollary 1; Let H be the BIFSG of a BIFG G by

removing  an  edge uve E(G).  Then
CI(G) =CI(H) ifand only if UV isa & -edge or
-strong edge.

Corollary 2: Let H be the BIFSG of a BIFG G by
removing an  edge uve E(G).  Then

CI(G) #CI(G —uv) if and only if UV is a unique
bipolar intuitionistic fuzzy bridge of G.

When two BIFGs are isomorphic, there is a
bijection between them. We believe that they have the
same properties, so we have the following conclusion
and the detailed proof is skipped here.

Theorem 3: Let G, =(,,A,B)and
G, =(V,, A,, B,) be two isomorphic BIFGs. We have
CI(G,) =CI(G,).

Definition 13: The positive truth and positive falsity
values of the weakest edge in a cycle C are defined to
be the positive strength of C, and negative truth and
negative falsity values of the weakest edge in a cycle C
are defined to be the negative strength of C in a BIFG
G.

Definition 14: Let C be a cycle in BIFG G. Then C is
called intuitionistic fuzzy strongest strong cycle if it is
the union of two strongest strong U —V paths for each
uand vin C unless UV is a bipolar intuitionistic bridge
of G. Cycle C is a strong cycle (in short, SC) if and only
if each edge is strong.

Definition 14: Let G be a BIFG. Then the positive Gﬂ
—evaluation of two vertices u and v in G is denoted by

H; (u,v)={a" :a" (0,11},
where o represents 4 -PS of a strong cycle passing
through both u and v. The positive 9,7 —evaluation of
two vertices u and v in G is denoted by
6, (u,v)={p": " (0,11},
where ,BP represents 77 -PS of a strong cycle passing
through both u and v. The negative Gﬂ —evaluation of
two vertices u and v in G is denoted by
6’!’,\' (u,v)={a" :a" €[-1,0)},
where " represents 4 NS of a strong cycle passing
through both u and v. The negative 0,7 —evaluation of
two vertices u and v in G is denoted by

N _fpN . pN
0" (uv) ={s" : p" e[-1,0)},
where ﬁN represents 77 -NS of a strong cycle passing
through both u and v.

If strong cycles through u and v don’t exist, then

7 (u,v) =6, (u,v) =3,
6, (u,v)=6)(u,v)=2.

Definition 15: Let G be a BIFG. The positive cycle u -
connectivity between u and v in G is denoted by

Cil =v{a":a” €6 (u,v);uveV}.

The positive cycle 77 -connectivity between u and v in G
is denoted by

Clv=rB":B" <6 (uVv)uveVl

The negative cycle g -connectivity between u and v in
G is denoted by

N N. N N . *
Civ =Ma” a” €6, (u,v);uveV }.

The negative cycle 77 -connectivity between u and v in
G is denoted by

ClY =AB" : p" €6 (u,v);uveV}.
Furthermore, we get

67 (u,v)=F=Cy/ =0,

67 (UY) =@ = Clf =0,

0, (uv)==C/" =0,

6, (uv)=2=Cly' =0.
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Theorem 4: Suppose that G is a BIFG and for any U,V €V (G), there is a strong cycle containing both u and v. Then,
we obtain

CI(G) = (CI”(G),CI"(G))
=( D, W CET+ Do aara(MCHT, Doy (Way MCH+ D g Wy MCHY)

u,veV (G) u,veV (G) u,veV (G) u,veV (G)

Proof. Since Naeem et al., [16] have proved the positive part, and we only proof the negative part, i.e.,
CIG)= D (uaUuy (MCL +m (W) (VCIY).

u,veV (G)

Assume that u,veV  lie on a common bipolar intuitionistic fuzzy strongest strong cycle. Then
CLff;,N =min{a" :a" e 6’;‘ (u,v);u,veV’}, where G/IN (u,v) ={a" €[-1,0):a" is 1 -NS of a strong cycle

through u and v}. Hence CONN ; (u,v) = C/," and

CLY(G)= > mWu (v)CL".

u,veV (G)

similar, C)' =max{s" : " €6 (u,v);u,veV'}, where 6 (u,v) ={B" €[-1,0): 8" is n-Ns
of a strong cycle through u and v}. Hence CONN,':(G)(U,V) = Cfl'vN and
CIYG)= D m (W (VC.

u,veV (G)
Therefore, we finish the proof of Theorem 4. [J

Definition 16: Let G be a BIFG. Then the positive average £ -connectivity index of G is denoted by
1
P P P P
ACI(G) =75 2w (u)u (v)CONNE g, (uv)
u,veV (G)

The positive average 77 -connectivity index of G is denoted by

1

ACI;’(G)(nj ZV:(G)n,f(u)n;’(v)CONN;’(G)(u,v).
2

The negative average 1 -connectivity index of G is denoted by
1
ACLI@) =7y 3, 4 ()i} () CONNjg, (1),

The negative average 77 -connectivity index of G is denoted by

ACI(G) = (i > na U)ny (v)CONNNG (U, V).
)

u,veV (G)

Definition 17: Let G be a BIFG. The average connectivity index of G is defined by
ACI(G) = (ACI®(G), ACI"(G)) = (ACI (G) + ACI  (G), ACI \ (G) + ACI ) (G)),
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where ACIP G)= ACIE(G) + ACI:(G)
is called the positive average connectivity index of G,
N _ N N .
and ACI™(G)=ACI  (G)+ACI,'(G) is called
the negative average connectivity index of G.

Obviously, ACI”(G) as well as CI"(G)
will not increase by removing an edge, and ACI M (G)
as well as CI™(G) will not decrease by deleting an
edge.  Furthermore, O0<ACI"(G)<1 and

~-1<ACIN(G)<0.

Definition 18: Let G be a BIFG and VeV . If
ACI® (G —{v}) < ACI" (G) and
ACIM (G —{v}) > ACI"(G), then v is called a
bipolar intuitionistic fuzzy connectivity reducing vertex
(BIFCRV); if ACI?(G-{v})>ACI*(G) and
ACI"(G-{v}) < ACI"(G), then v is called a bipolar
intuitionistic fuzzy connectivity enhancing vertex
(BIFCEV); if ACIP(G—-{v})=ACI?(G) and

ACIN(G —{v}) = ACIV(G), then v is called a
bipolar intuitionistic fuzzy connectivity neutral vertex
(BIFCNV).

Theorem 5: Let G be a BIFG with at least three

P
vertices and VeV . Set a:?—(G)
ClI " (G—-{v})
N
:CI—(G).Then
CI"(G-{v})

evisaBIFCEV < a< and b>i;
n-2 n-2
evisaBIFCRV < a > and b<L;
n-2 n-2

_ n
evisaBIFCNV < a= and b=——.
n-2 n-2

The proof of Theorem 5 is similar to what we
presented in Gong and Hua [17] as similar definition
and theorem in BIFG setting. From Theorem 5, we
directly yield the following corollary.

Corollary 3: Let G be a BIFG with at least three

vertices and VeV . Set :%
CI”(G—{})
T (S
CIN(G—{v})

e If visaBIFCEV, then a<b;

e If visa BIFCRV, then a>h:
e If visa BIFCNV, then a=b.

The following conclusion is the extension of Theorem 6
in Naeem et al., [16].

Theorem 6: Let G be a BIFG with at least three

vertices and V €V is an end vertex of G. Set

c= >, (CONN’ . (u,v)+CONN’ (u,v)),
ueV (G)H{v}

d= > (CONN}g, (u,v)+CONN}_ (u,V))-
ueV (G)H{v}

Then,

ev is a BIFCEV if c<i2C|P(G—{v}) and
n_

d>—2_CING-{}):
n-2

ev is a BIFCRV if C> 22C|P(G—{V}) and
n

d<—2 CI"(G-f}):
n-2

ev is a BIFCNV if c=%CIP(G —{v}) and

d =LCIN(G —{v}).
n-2

Finally, we classify the BIFGs by means of the above
definitions.

Definition 13: Let G be a bipolar intuitionistic fuzzy
graph with at least three vertices. Suppose G has at least
one BIFCEV, in that case, G is called bipolar
intuitionistic fuzzy connectivity enhancing graph. If G
has no BIFCRV, then G is called bipolar intuitionistic
fuzzy connectivity reducing graph. Suppose all the
vertices in G are BIFCNV, in that case, G is called
bipolar intuitionistic fuzzy connectivity neutral graph.

4. CONCLUSION

After a graph model represents the network
structure, the MF is used to describe the uncertainty of
the stations and channels in the network, and thus the
entire network is modeled with a FG. To discuss the
stability and connectivity of fuzzy network graphs, we
define the connectivity index of BIFGs. The main
contribution of this paper is to describe the
characteristics of the connectivity index from a
theoretical point of view. However, we have not made
any experimental verification, which requires the
definition of the membership function according to the
network attack’s actual situation and application
background. We will discuss these issues in future
articles.

For the bipolar Pythagorean fuzzy graph
(BPFG), the difference between it and the BIFG lies in
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the restriction condition of the membership function,
that is (e, (V))? + (75 (v))* <land
(up (V))* + (@73 (v))* <1 hold for any vertex v,

WOV GV and
(e (v, V)% + (775 (v,v"))? <1 hold for any pair of
vertices (V,v') €V xV . Therefore, the related

definitions and properties of BIFGs given in this article
can be directly extended to BPFG s. For the sake of
space, we will no longer make a specific narrative.

The following aspects can be considered as topics for
future research:

(1) The bipolar connectivity index reflects the
topology of the positive and negative aspects
of the network graph and is closely related to
the transmission of data, services and
resources. Therefore, it is necessary to
consider practical applications in network
attacks in the future, such as the connectivity
of the remaining subgraphs after a specific
number of vertices are attacked.

(2) More definitions and theoretical characteristics
of connected indices under more FG settings
must be further studied. Furthermore, the
connectivity index needs to be compared with
other types of topology indices, and some
measures for evaluating the quality of
indicators need to be defined.
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