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Abstract  Original Research Article 
 

Background: In this paper, an expanded 10-Dimensional deterministic mathematical dynamic model was formulated 

that accounted for the role of global stability analysis in the methodological application of dual-bilinear controls with 

vaccination and impeccable role of adaptive immune response in the control of COVID-19 in Nigeria. In reality, 

following the introduction of both nonpharmaceutical and pharmacotherapy and the recent availability of vaccines for 

the control and treatment of the deadly aerosol viral load known as COVID-19, a number of notable scientific 

investigations on the transmission and treatment dynamics have been conducted but without thoughtful contributions 

on the combination of these multi-facet control functions that could lead to feasible eradication of the deadly virus. 

Methods: The model was formulated based expanded 10-Dimensional deterministic dynamic mathematical 

subpopulations with compartmental interactions investigated using triple-bilinear control functions: bilinear 

nonpharmaceutical (face-masking and social distancing - 
1u ,

2u ), bilinear pharmacotherapies (hydroxylchloroquine and 

azithromycin - 
1a ,

2a ) and bilinear immunity controls (adaptive immune effectors and BNT162b2 vaccine - 
im ,

iv ). 

Experimental Data was collected from University of Calabar Teaching Hospital from the period July, 2022 through 

September, 2022, as the initial and final time intervals. Apart from fundamental theory of differential equations 

explored for system mathematical properties, analytical predictions explored classical method of Lyapunov functions 

with the incorporation of the theory of Volterra-Lyapunov stable matrices for the analysis of the system global stability 

conditions. Results: System mass actions ˆ( )i N  and the reproduction numbers for both off-treatment 0( )bR  and onset-

treatment 0( )eR  scenarios was for the first time computed with explicit results obtained ( 4 5ˆ1.69 10 ( ) 3.379 10i N      and

0( ) 0( )10.159, 3.01b eR R   ). Moreso, off-treatment scenario showed that population extinction was eminent following the 

unabated exponential spread of the virus after 12ft  days of asymptomatic infection period. Remarkably, with 

introduction of triple-bilinear controls, rapid rejuvenation of the susceptible and massive threshold of adaptive immune 

effectors was achieved at 20ft  days with resultant high significant reduction to near-zero of viral load and docile 

COVID-19 environment. Contributions: The results of this findings are not only vital in epidemiological studies and 

applied mathematics but serve a useful source of decision and policy making in the control of COVID-19 and design 

control for the health sector in Nigeria. 

Keywords: Triple-bilinear control, adaptive-immune-effector, hypo-hyper-infections, super-spreader, Volterra-

Lyapunov-stable, Lyapunov-constant, exponential-spread. 
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1. INTRODUCTION 
Amidst the most spiking deadliest diseases, 

which by consideration has been assumed to surpass 

some earlier thought to be the deadliest infectious 

diseases of the like – human immunodeficiency virus 

(HIV) and the Ebola virus, is the devastating 

coronavirus known commonly as COVID-19. The 

history of COVID-19 is very much and is still all-over 

scientific literatures and resource environment world-

over. The fact that the current COVID-19, which is an 

offspring of severe acute respiratory syndrome (SARS-

COV-2) and which came into the limelight in 2019 in 

https://saspublishers.com/sjpms/
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the city of Wuhan, China, assume an integral part of the 

human race, cannot be overemphased [1, 2]. 

 

None-the-less, based on standing literature, 

symptoms of COVID-19 include the appearance of 

typical pneumonia marked by cough, fever, headache, 

dry throat, and subsequent onset acute respiratory 

syndrome – coronavirus 2 (SARS-COV-2) with life-

threatening respiratory failure, [2, 3]. With the 

transmission of aerosol viral load (COVID-19), cutting 

across all human races and having the ability of 

spreading faster in artic-polar regions, the most 

vulnerable are the elderly (adult of age 65 years). A 

notable characteristic of COVID-19, which justify its 

huge existence at asymptomatic infectious stage and 

which subsequently account for the seeming 

exponential spread, is the incubation period of 2 14

days [4, 5]. 

 

Of note, since the advent of the deadly aerosol 

viral load, multiple yet epileptic treatment measures, 

mostly in developing countries have been focused 

largely on nonpharmaceutical and spatially on clinical 

testing and diagnosis mechanisms with the use of real-

time reverse transcription polymerase chain reaction 

(RT-PCR) as well as chest computed Tomography 

(chest CT), (see details [2, 6, 7, 8]. Furthermore, from 

the evaluation of COVID-19 vaccine efficacy (VE) by 

the World Health Organization recommended use of 

laboratory-confirmed outcomes in the form of real-time 

reverse-transcription polymerase chain reaction (rRT-

PCR) for VE evaluation with emphasis specifying 10 

days of collection of samples specimens from the onset 

of infection [9]. Moreso efforts in handling severe cases 

have led to isolation/quarantization and subsequent 

hospitalization with the introduction of designated 

therapeutics. The combination of nonpharmaceutical 

and designated pharmacotherapies have further 

enhanced the control of the spread of COVID-19, most 

probably where control guidelines are strictly adhered 

[2]. None-the-less, persistent rejuvenation of the virus 

led to the avocation of an immune boosting mechanism 

known as vaccines. Clearly, the discovery and 

introduction of vaccine programs have proven to be 

significant in the control of deadly disease across the 

globe. However, enormous cases of reemergence of 

infection even after access to designated vaccines have 

equally been reported in many parts of the world. One 

approach that has the capacity to overcome related 

infectious diseases is the application of mathematical 

modeling as a tool for studying the dynamics of 

infectious diseases and the dynamics of the application 

of control functions. 

 

For instance, the use of mathematical models 

was explored to study the combination of Azithromycin 

with Hydroxyl-chloroquine for Patients Admitted to 

Intensive Care due to Coronavirus Disease 2019 

(COVID-19) – Protocol of Randomized Controlled 

Trial AZIQUINE-ICU [10]. The results, although at the 

trial level, indicated that the patients most likely to 

benefit from the treatment are those with severe, but 

with early disease. Curiosity to the possible 

imperfections in the ability of vaccines lead to the 

study, ―Will an imperfect vaccine curtail the COVID-19 

pandemic in the U.S.?‖ [11]. The results indicated that 

the prospect of COVID-19 elimination in the US, using 

the hypothetical vaccine, will be greatly enhanced if the 

vaccination program is combined with other 

interventions, such as face mask usage and/or social 

distancing. Still on the efficacy of the vaccine, research 

was conducted on the existing and emerging challenges, 

strategies and prospects of the development and 

application of COVID-19 vaccines, which yielded 

significant results [12]. With over 78 vaccines evaluated 

at clinical trials worldwide, the study was practically on 

the review of all available COVID-19 vaccines and 

their underlying mechanisms. The study went further to 

give summery on progress researches, development and 

application of COVID-19. Prospects on the crucial role 

of COVID-19 were equally outlined. Moreso, with the 

acceptability of COVID-19 vaccines becoming an issue 

in different quarters, a study on Acceptance of a 

COVID-19 Vaccine and Its Related Determinants 

among the General Adult Population in Kuwait, was 

conducted [13]. The objective of that study was to 

account and determined the acceptability of COVID-19 

vaccine in Kuwait among the adult population. The 

study explored modified Poisson regression analysis 

with 95% confidence intervals. Results obtained 

showed that53.1% among participance were willing to 

be vaccinated against COVID-19 but not without its 

adverse influencing factors. 

 

Recently, in the United Kingdom, a study 

aimed to identify risk factors for post-vaccination of 

SARS-CoV-2 infection users of the COVID Symptom 

Study app: a prospective, community-based, nested, 

case-control study was investigated [14]. The studies 

described the characteristics of post-vaccination illness 

and came with the results that COVID-19 vaccines 

show excellent efficacy in clinical trials and 

effectiveness in real-world data, but some people still 

become infected with SARS-CoV-2 after vaccination. 

In that study, it was suggested that any further research 

on how to enhance the immune response to vaccination 

in those at higher risk of post-vaccination infection will 

be highly welcomed. Intensive and related 

mathematical models on the dynamics of COVID-19 

transmission and treatment and/or control measures can 

as well be found, for example [15-20]. 

 

Thus, in view of the above suggestions and the 

diverging attempts by world body versa-vice classical 

scientists in diffusing the main route of transmission 

and control interventions for surging COVID-19 

infection, it has been obvious from literature reviews 

that no clear classical mathematical model, that had 

considered COVID-19 transmission and treatment 

dynamics under the methodological combination of 
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non-pharmaceuticals and multi-therapies in the 

presence of enhanced adaptive immune system and 

clinical vaccination programs. Moreso, the dual role of 

adaptive immune effectors in treatment of COVID-19 

has not been incorporated among the aforementioned 

control measures. Even in the study [38], where simple 

enrich model was constructed, which accounted for the 

pharmacological and non-pharmacological policies was 

investigated, the model was devoid of the dual role of 

adaptive immune effectors in treatment of COVID-19 

pandemic. Therefore, the present proposed investigation 

considering environment-to-human (hypo) and human-

to-human (hyper) transmission outlets, seeks to 

investigate the interactions evolving around set of 

varying subpopulations and aerosol viral load (COVID-

19) under a designed methodological application of 

triple-bilinear control functions constituted by: a 

bilinear nonpharmaceutical (face-masking and social 

distancing), bilinear pharmacotherapy 

(hydroxylchloroquine - HCQ and azithromycin – AZT) 

and bilinear immunity controls (adaptive immune 

response and BNT162b2 – vaccine).  

 

Thoughtfully, while Section 1 has been 

devoted to the introductory aspect, Section 2 depicts the 

material and methods adopted for the entire 

investigation. Here, we also highlight the problem 

statement and derivation of the desired model. In 

Section 3, we present an explicit investigation of the 

system mathematical characterization of state- space. 

The system stability analysis for multiple locally 

asymptomatic stability as well as its global conditions 

for COVID-19 is investigated in Section 4. In Section 5, 

we test the numerical validation of the derived 

analytical predictions of the study. The evaluation and 

analysis of the observed outcomes are conducted in 

Section 6. Constituting the final section 7, are our 

incisive conclusion and scientific suggestions. The 

entire study is aimed at providing insight to the possible 

eradication of the dead infection not only in Nigeria but 

to the world via enhanced designated triple-bilinear 

control functions.  

 

2. MATERIALS AND METHODS 
Here, we shall consider the material and 

methods of the study as a function of the study problem 

statement, Derivation of the study mathematical 

equations and the investigation of the characteristic 

properties of the model state space.  

 

2.1. Problem statement for untreated COVID-19 

dynamics 

In relation to the present study, two compatible 

models came to focus. For instance, a COVID-19 

transmission dynamic model for the case study of 

Wuhan in China with nonspecified treatment schedules 

has been formulated [19]. Facilitated by the results of 

this finding, an extended version of the model with the 

introduction of dual-bilinear control functions was 

formulated and studied [2]. In-depth review of these 

models revealed the following limitations: 

i. The model by [19] is by implication 

peculiar to Wuhan, China, and without the 

incorporation of treatment functions. 

ii. Death compartment, which was 

considered as the state variable in the 

model by [19], is impotent since the 

deaths do not transmit the virus. 

iii. The non-inclusion of natural source by 

[19] could lead to abrupt termination of 

the investigation without desired results. 

iv. Treatment and control measures were not 

parametrically specified in [19].  

v. The role of the adaptive immune response 

was not accounted for in both [2, 19] 

models. 

vi. Immunological time delay lag was not 

considered for both [2, 19].  

vii. Control function in the model by [2] were 

vaccine non-inclusive. 

viii. The models [2, 19] were analyzed based 

on human-to-human transmission mode 

without accounting for the contributive 

role of environmental factors. 

 

Thus, in an attempt to overcome the 

aforementioned limitations, the present investigation 

using the study [2] as a motivating factor, sought to 

formulate an improved extended version of COVID-19 

model that considers the role of adaptive immunity 

following the implementation of both the vaccine 

program and dual-bilinear control functions. 

 

2.2. Derivation of model mathematical equations 

In view of the aforementioned limitations, we 

present an expanded 10-Dimensional deterministic 

COVID-19 mathematical dynamic model, following the 

incorporation of infectious virus and immune effectors 

as state variables. The model is studied under triple-

bilinear control functions: a bilinear non-

pharmaceutical (face-masking and social distancing), 

bilinear pharmacotherapy (hydroxylchloroquine - HCQ 

and azithromycin – AZT) and bilinear immunity 

controls (adaptive immune response and BNT162b2 – 

vaccine). Furthermore, in addition to the existing 

assumptions of the model [2], the uncertainties of the 

present study are limited by the following basic 

assumptions. 

 

Assumption 1 

i. Only severely infectious die due to virus 

i.e. 1,..,5 0i   . 

ii. Transmission dynamics revolve within 

environment-to-human and human-to-

human with 1,...,5 0i   . 

iii. Immunity delay lag 1 1 0e


 . 

iv. Only the susceptible and isolated receive 

vaccine i.e., 1,2 0i   . 
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v. Immune effectors exhibit a dual role – as 

state variable
iE  and as control function

1,2im  . 

 

Now, suppose the formulation and analysis of 

the study is based on the following subpopulations: 

susceptible population who are not COVID-19 positive 

but may be infected if completely exposed ( )pS t , the 

exposed class ( )pX t , the unaware asymptomatic 

infectious population ( )uA t , subpopulation of COVID-

19 aware infectives ( )aI t , isolated infectious 

subpopulation ( )sI t , proportion of super-spreaders 

( )sS t , proportion of hospitalized infectives ( )iH t , 

recovered population ( )pR t , the immune effectors ( )iE t

and ( )vC t  representing the concentration of infectious 

coronavirus. Then, for the population with volume 

measure in
3/cells ml , the differential epidemiological 

dynamic equation for the present study are derived as:  

 

1 1 2 1
ˆ( ) ( ) ,

p

p i p p i p p

dS
b m E X R N S v S

dt
           

2 3 1 1 1
ˆ( ) (1 ) ( ) ,

p

i p i u p i p

dX
N S m E A u X m E X

dt
           

1 1

1 2 1 2 1 2 2 3(1 ) [(1 ) (1 )(1 ) ] ( ) ,u

p u i u

dA
u X u k a a e A m E A

dt

                 

1 1

2 1 2 2 1 1 1 1 2 2(1 ) [(1 )(1 ) (1 )] ,a

u a a

dI
u k e A a a a I I

dt

                  

1 1 1 1 2 1 2 4 2 2[(1 )(1 ) ] ( ) ,s

a s s h s s

dI
a I a S a a I v I

dt
              …………… (1) 

1 1 2 1

2 1 2 1 2 1 2 2 5 3(1 ) [(1 ) ] ( ) ,s

u a s s s s

dS
e A I a S e S S

dt

                        

1 1

2 1

1 2 1 1 2 2

1 2 1 2 3 1

(1 )(1 ) (1 )(1 )[ ]
,

[(1 )(1 )[ ]] ( )

u a h si

h i i

a a e A a a I IdH

dt a a e H H

 

 

  

    





      
 

      
  

2 1 2 1

1 2 2 1 2 1 21 (1 ) [(1 )(1 )[ ]] ,v v

v s h i v v

dC C
s C e S a a e H C

dt Q

           
           

 

1 2 2 3 1 2( )
p

i s s p p

dR
H v I S v S R

dt
          , 

( ) ( )

( ) ( )

i E s i E s i

E i i E i

s i b s i d

dE b S H d S H
E E E

dt S H C S H C
 

 
   

   
, 

 

with initial conditions 
0( ) 0,pS t  0( ) 0,pX t  0( ) 0,uA t  0( ) 0,aI t  0( ) 0,sI t  0( ) 0,sS t  0( ) 0,iH t 

0( ) 0pR t  , 

0( ) 0vC t  , 0( ) 0iE t  for all 
0t t  and having system mass action ˆ( )i iN defined by 

5

1 2

1

ˆ ˆ( ) (1 ) ( )v

V

C

i i i iQ C
i

N u u c N


 




  
     

  
 , 1,....,5i  ………………. (2) 

 

where 
ˆ ( )i p u a s iN X A I S H     . 

 

Of note, system (1) represents an expanded 

environmental-to-human (hypo infectious) and human-

to-human (hyper-infectious) untreated COVID-19 

dynamic model, provided control functions fc is such 

that ( , , , ) 0f i i i ic u a m v  , 1, 2i  for all

ˆ( ) 0, 1,...,5i N i   . Critically, the right-hand side of 

system (1) is continuous within time interval 0[ , ]ft t , 

bounded by sum of control functions and is described 

by a number of nonlinearities terms, [22, 39, 40]. 

 

In explicit terms, we present the description of 

system (1) as follows: in the first equation, the first 

three terms 1 1 2, ,p i p pb m E X R   present source rates for 

the susceptible population. The rate at which the 

susceptible becomes infected following a varying range 

of interactions is known as system mass action and is 

depicted by ˆ( )i pN S . The last term 1( ) pv S 

represent the natural clearance rate and the proportion 

of susceptible that are successfully vaccinated. In the 
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second equation, the source rate of the exposed 

population is routed to the rate of mass action denoted 

by ˆ( )i pN S and the proportion of reversed unaware 

infectives due to efficacy of adaptive immune effectors

2 3i um E A . The proportion of exposed to face mask that 

progresses to asymptomatic infectious is given by

1(1 ) pu X  , while the last term 1 1( ) pm X   define 

clearance rate due to natural death and activity of the 

immune response. 

 

In the third equation, the first term 1(1 ) pu X , 

represent the proportion of exposed class under face-

masking that becomes unaware asymptomatic 

infectious. The second term 
1 1

2 1 2 1 2[(1 ) (1 )(1 ) ] uu k a a e A
    

      depicts the 

rates at which the unaware asymptomatic progresses to 

become aware, infective, get hospitalized, and super 

spreaders, noting the biological implication of immune 

time delay lag 1 1e


. Clearance in this compartment is 

due to natural death rate and immune effectors denoted 

by
2 3( )i um E A   . The fourth equation describes the 

aware infectives with source rate given by
1 1

2(1 ) uu k e A
  

 . The progression rate of this 

compartment to isolation, super spreaders, and 

hospitalization is given by

1 2 2 1 1 1 1 2[(1 )(1 ) (1 )] aa a a I           , while 

death rate due to infection is 2 aI . Accounting for the 

dynamical flow within the isolated compartment, we 

observe that the supply source emanating from aware 

infectives and super spreaders are given by 1 1 1 aa I  and

1 2 s sa S  . The proportion that has access to multi-

therapies is denoted by 1 2[(1 )(1 ) ]h sa a I    and 

clearance rate due to both infection death rate and 

dynamic activity of immune effectors is given by

4 2 2( ) sv I   . 

 

The super spreader are represented by the sixth 

equation with its source coming from the asymptomatic 

infectious and aware infectious population depicted by
1 1

2 ue A
   and 1 2(1 ) aI   . The proportion of super 

spreaders move to isolation compartment is given by

1 2 s sa S  . Here, the amount of virus proliferation in 

concentrated virions is defined by
2 1

1 2 2[(1 ) ] se S
    

   , while spatial recovery and 

death rate arising from infection is described by

5 3( ) sS   . From the seventh equation, we see the 

influx of hospitalization of the varying infectious 

population depicted by 1 1

1 2 1(1 )(1 ) ua a e A
  

  and

1 2 2(1 )(1 )[ ]a h sa a I I    . The rate of proliferation of 

virus under multi-therapies is given by
2 1

1 2 1 2[(1 )(1 )[ ]]h ia a e H
    

     . Other clearance 

rate due to virus infection and recovery rate is given by

3 1( ) iH   . The virulence ingress is represented by 

the eightieth equation with carrying capacity, resource 

rate and proliferations of super spreaders and 

hospitalization given by  1 vC

vQ
s C , 2 1

1 2 2(1 ) se S
    

 

and 2 1

1 2 1 2[(1 )(1 )[ ]]h ia a e H
    

    . Only clearance rate 

is denoted by
v vC . 

 

Equation nine represents the sum population 

that must have recovered through the period of 

investigation. Constituting this recovery compartment 

are from the hospitalized unit
1 iH , from vaccinated 

isolated unit
2 2 sv I , from spatial recovery of super 

spreaders 
3 sS and from vaccinated susceptible 

population 1 pv S . Notably, the recovered populations are 

expected to be integrated with the susceptible 

population and observed occasional death rate given by

2( ) pR   . Finally, the activity of the human 

immune effectors are described by the tenth equation. 

Here, sustainability of the compartment is constituted 

by natural source rate E and reversion of the immune 

system from super spreaders and hospitalized 

compartment denoted by
( )

( )

E s i
i

s i b

b S H
E

S H C



 
. Clearance rate 

due to the concentration of super infectivity and 

truncated inefficacy from treatment at hospitalization is 

given by
( )

( )

E s i
i

s i d

d S H
E

S H C




 
, while E iE depicted natural 

immune effectors death rate. 

 

Of interest is the incorporation of the term
1 1e


representing the probability of immature 

infectious virions produced by the virus ingress that are 

yet to be virus-producing cells and which constitute the 

system immune delay lag. On the other hand, the term 
2 1e

 
is the probability if immature virions survive 

through the delay period, where 1

i
, 1,2i  is the average 

lifetime for an immature virions. That is, 

1( ) , 1,2ie i


  represent mature viral particles 

produced at time t . Thus, a more explicit description of 

model (1) is depicted by the following schematic flow 

chart as seen in Fig 1 below. 
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Fig 1: Schematic representation of COVID-19 infection dynamics under multi-therapy and vaccination control functions 

 

Aligning with system (1) and Fig 1, it is 

obvious that the basic model is characterized by a vital 

index – system mass action (or the incidence rate). This 

mass action not only determines the biological 

magnitude of the exponential spread of the virus but 

acts as a major component of the system reproduction 

number often denoted by 0 . Notably, the invoking 

nature of the present model (1) is spanned by the 

dynamic incorporation and identification of the 

environmental reservoir of hyper-concentrated viral 

load vC and the biological activities of the immune 

effectors iE . Moreso, the crystal methodological 

clinician of triple-bilinear infusion of control functions 

at designated stages of infection affirmed the novelty of 

the present investigation. Intuitively, the practical 

illustration of derived model (1), can be enforced by the 

description of the state variables and parameters with 

accompanying initial data emanating University of 

Calabar Teaching Hospital and from certified data from 

existing models (see notes below Tables 1 and 2). That 

is, the data for simulation are depicted in Tables 1 and 2 

below: 

 

Table 1: Description of state variables with values – model (1) 

Variables Dependent variables Initial values Units 

Description 

pS  Susceptible population to COVID-19 virus 0.5 cells/ml
3 

pX  Exposed population 0.3 

uA
 

Unaware asymptotic infectious population 0.1 

aI
 

Aware infective population 0.15 

sI  Isolated infectious population 0.03 

sS  Super-spreaders infectious population 0.05 

iH  Hospitalized infectious population 0.0 

pR
 

COVID-19 recovered population 0.0 

vC  

iE  

Aerosol infectious virions 

Immune effectors 

0.025 

0.1 

/copies ml  

Note: the initial data for table 1 is generated from UCTH, Calabar and inclusive of modified data from models [2, 22]. 
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Table 2: Description of constants and parameter values for model (1) 

Parameter 

symbols 

Parameters and constants Initial 

values 

Units  

Description  

pb  Source rate of susceptible population 10.5pb   3 1ml d   

  Natural death rate for all sub-population 0.1  

day
-1

 
k  Clearance rate of virus 0.25 

( 1,..,5)i i   
Death rates due infection at varying stages 0.2;0.3;0.0;0.4;0.5 

1,2i   
Rate at which 

aI progresses to 
sI and 

sS  0.3, 0.5 

( 1,..,5)i ic   
Rates of contact of susceptible with various infectious stages 0.5;0.4;0.3;0.2;0.1 

1,2,3i 
 Rates of recovery from 

iH , 
sI and 

sS  0.5; 0.27; 0.13 

(1,..,5)i  Probability of interactions of susceptible with varying infectious 

classes 

0.32;0.27;0.175; 

0.125;0.05 

3 1 1ml vir d 
 

1,2i   
Proportions of 

uA that progresses to 
iH  and 

sS  0.3;0.18  

 

ml
3
d

- 

 

 

 

 

  Proportion of 
pX  becoming

uA  0.58 

  Proportion of
uA becoming 

aI   0.32  

1,2,3i 
  Proliferation of recovered population to susceptible 0.14; 0.6, 0.24 

s  Proportion of
sS progressing to 

sI  0.22 

h  

1,2i   

Proportion of 
sI progressing to 

iH  

Proportion of 
aI progressing to 

sI and
iH  

0.14 

0.34; 0.48 

1 2(1 )    Proportion of 
aI that progresses to 

sS  0.18 

( 1,2) ( )i iu t
 Rates at which face-masking and social distancing are used [0,1]iu    

( 1,2) ( )i ia t
 Treatment control functions (HCQ and AZT) [0,1]ia   

1,2iv   Vaccination rates to 
pS  and 

sI compartments 0.06; 0.04 day
-1

 

1,2im   Immune-induced recovery and clearance rates 51.0 10  
3 3 1ml cell d 

 

1,2i   Average lifetime of immature viruses 0.01; 0.01  

s  Per-capita rate of aerosol viral load 0.73 day
-1

 
Q  Carry capacity of aerosol viral load 5.0 1cellsml  

v  Virions death rate 0.33 day
-1

 

  Rate of mass action (incidence rate) 0.5  

E  Source rate for immune effectors 0.8 1 1cellsml d 
 

Eb  Maximum birth rate for immune effectors 0.3 day
-1

 

bC  Saturation constant for immune effectors birth 100 1cellsml  

Ed  Maximum death rate for immune effectors 0.25 day
-1

 

dC  Saturation constant for immune effectors death 500 1cellsml  

E  Natural death rate for immune effectors 0.1 day
-1

 

Note: the initial data for table 2 is generated from UCTH, Calabar and inclusive of modified data from models 

[2,22,23,24,25]. 

 

From Tables 1 and 2, it is crystal clear that the 

choice of our model is motivated by multiple steady 

states. This quantitative feature explains why some 

patients develop immune responses sufficient to control 

infection as depicted by 1 1im E and 2 3im E of the 

exposed unit and the unaware asymptomatic infectious 

population. These compartments could exhibit 

somewhat strong COVID-19 specific immune 

responses capable of containing the infection mostly at 

the early stage. Whereas, in others, the virus rebounds 

or fails to contain the virus at all, resulting to 

decimation of the immune system. Further credence to 

the choice of the model is our ability to demonstrate 

that the mathematical capability of the system state-

space is a complete representation of a set of living 

organisms.  
 

3. Mathematical characterization of system state-

space 

Intuitively, if we assume system (1) to 

represent a set of living organs, then the state-space 

compactness requires, then we verify the existence and 

uniqueness of the system solutions, the positivity of the 

solution and that the dynamic flow of model (1) is 

bounded in certain invariant region , [37]. 
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3.1. Existence of solution  

Let  
10:    such that  

( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( )

p p u a s

s i p v i

S t X t A t I t I t
t

S t H t R t C t E t

 
 
 

 

 

and  
10:F   such that  

 
( ), ( ), ( ), ( ), ( ),

( ) ( )
( ), ( ), ( ), ( ), ( )

p p u a s

s i p v i

S t X t A t I t I t
t F t

S t H t R t C t E t

    
   
     
 

. 

Then, system (1) becomes 

 ( ) ( )t F t   , 0(0)   . 

 

Theorem 1 (Existence and Uniqueness)  

The system (1) is continuous and satisfies Cauchy-Lipschitz condition. 

 

Proof 

Here, we invoke the results from the proofs of the existence and uniqueness theorem [23, 37]. Then, we show 

for one equation and the rest follows the same procedure. Let  
5

1 1 2 1 2 1

1

ˆ( , ) (1 ) ( ) ( )v

V

p C

p i p p i i i p pQ C
i

dS
G t s b m E X R u u c N S v S

dt


   




  
          

  
 ………………. (3) 

 

Then, the partial derives with respect to the susceptible population pS  gives 

5

1 2 1

1

( , ) ˆ(1 ) ( ) ( )v

V

C

i i iQ C
i

G t s
u u c N v

S


 




   
       

   
 ……………….. (4) 

 

We note that the function ( , )G t s and its partial 

derive 
( , )G t s

S




are defined and continuous at all point

( , )t s . Similarly, the right-hand functions of other 

equations and their respective partial derivatives satisfy 

these conditions. Hence, by the existence and 

uniqueness theorem, there exists a unique solution for 

( ), ( ), ( ), ( ), ( ),p p u a sS t X t A t I t I t ( ), ( ), ( ), ( )s i p vS t H t R t C t

and ( )iE t in some open intervals centered at 0t . Then, 

we move to show that the solution satisfies the 

Lipschitz condition. Now, using Eq. (3), we see that  

 

5

1 1 2 1 2 (1) 1 (1)

1

(1) (2)
5

1 1 2 1 2 (2) 1 (2)

1

ˆ(1 ) ( ) ( )

( , ) ( , )

ˆ(1 ) ( ) ( )

v

V

v

V

C

p i p p i i i p pQ C
i

p p

C

p i p p i i i p pQ C
i

b m E X R u u c N S v S

G t S G t S

b m E X R u u c N S v S





   

   







   
          

   
 

   
           

   





 

  
5

1 2 1 (1) (2)

1

ˆ( ) (1 ) ( ) ( )v

V

C

i i i p pQ C
i

u u c N v S S


 




   
          

   
  

5

1 2 1 (1) (2)

1

ˆ(1 ) ( ) ( )v

V

C

i i i p pQ C
i

u u c N v S S


 




   
         

   
 . 

 

This implies that  

(1) (2) (1) (2)( , ) ( , )p p p pG t S G t S M S S   , 

 

Where, 
5

1 2 1

1

ˆ(1 ) ( ) ( )v

V

C

i i iQ C
i

M u u c N v


 




   
        

   
 is a Lipschitz constant. 
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In a similar procedure, we show for the remaining variables satisfying the Lipschitz condition. Thus, there exists 

a unique solution ( ), ( ), ( ), ( ), ( ),p p u a sS t X t A t I t I t ( ), ( ), ( ), ( ), ( )s i p v iS t H t R t C t E t for all 0t  . 

 

3.2. Positivity of system solutions 

We use the following theorem to show that the system solutions remain positive for all 0t  .  

 

Theorem 2 (Positivity) 

Let system (1) have the initial conditions
10

(0), (0), (0), (0), (0),
0

(0), (0), (0), (0), (0)

p p u a s

s i p v i

S X A I I

S H R C E


   
    

   

. Then, the solution set  

 ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )p p u a s s i p v iS t X t A t I t I t S t H t R t C t E t of system (1) is non-negative for all 0t  . 

 

Proof 

Using exiting results, [37]. Then, from the first equation of system (1), we deduce that for all 0t  ,  

5

1 2 1

1

ˆ(1 ) ( ) ( )v

V

p C

i i i pQ C
i

dS
u u c N v S

dt


 




   
         

   
 ……………….. (5) 

 

Let
5

1 2 1

1

ˆ(1 ) ( ) ( )v

V

C

i i iQ C
i

u u c N v


  




   
        

   
 . Then, eq. (5) becomes 

p

p

dS
S

dt
  ………………………………………… (6) 

 

Integrating, we have 

ln pS dt A   
A

dt

p
eS e

   (0)

dt

p pS S e
 . 

 

Hence,  
5

1 2 1

1

ˆ(1 ) ( ) ( )

(0) 0
Cv

i i iQ CV
i

u u c N v dt

p pS S e


 




   
       

      
  ……………….. (7) 

 

Where (0)pS is the susceptible population at 0t  . 

 

Similarly, we obtain for the rest of the equations of system (1). Therefore, any solution of system (1) is such that 

the set    10(0), (0), (0), (0), (0), (0), (0), (0), (0), (0) 0p p u a s s i p v iS X A I I S H R C E   and the proof is completed. 

 

Next, in the following theorem, we show that it is sufficient to consider the dynamic flow of system (1) in a 

certain region – the invariant region,  . 

 

Theorem 3 (Boundedness) 

All solution of model (1) is bounded and positively invariant in the region  

D N v   …………………………… (8) 

 

where  

 9( , , , , , , , , ) : 0 ( ) ( ) ...... ( )
p

N p p u a s s i p i p p i

b
S X A I I S H R E S t X t E t




 
        

 
………………. (9) 

 

and  

: 0 ( )
p

v v v

v

b
C C t



 


 
     

 
…………………. (10) 

for all 2 1 2 1

1 2 2 1 2 1 21 (1 ) [(1 )(1 )[ ]]v

v s h i

C
s C e S a a e H

Q

           
          

 
. 
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Proof 

Invoking existing results for boundedness of 

solutions [2, 23, 26, 37], then, we begin by splitting the 

model (1) into human and virus populations ( )N t , ( )vC t

. Then, taking the human population from model (1), we 

have 

ˆˆ
p E v i

dN
b N N E

dt
         

 

If population is free of virus, then ˆ 0  . That is, we 

have 

p E v i

dN
b N E

dt
       

or 

p E v i

dN
N b E

dt
      . 

 

Integrating in the presence of initial conditions, we 

obtain 

( ) ( )
( ) (0)

tp E p Eb b
N t N e

 

 

  
   

 
. 

 

Thus, taking the limit, we have 

( )
( )

p E

t

b
N tLim






 …………… (11) 

 

Similarly,  

( )
pV

s i v v v v

bdC
S H C C

dt
   


     , 

or 

( )
p

t v

b
N tLim



 

 ……………….. (12) 

 

From Eqs (11) and (12), we see that the human and 

virus populations are biologically feasible in the regions 

(9) and (10), which is defined by Eq. (8) i.e.  
9

D N v        . 

 

Therefore, the solution of model (1) with 

initial conditions, is bounded in the invariant region (8) 

for all [0, )t  .hence, the system is well posed. 

 

Next, in our coming section, we shall derive 

the system threshold number and identify the biological 

equilibria for model (1). 

 

4. Stability analysis for derived COVID-19 model 

Clearly, the analytical prediction for the steady 

state of system (1) and their local stability derivation is 

challenging due to the form and number of 

nonlinearities. None-the less, our interest is to 

investigate the model multiple locally asymptomatic 

stability as well as the global conditions. 

 

 

4.1 Existence of steady states for COVID-19 model 

Let the vectorial capacity of the model state-space 

be denoted by p , such that  

( , , , , , , , , , )p p u a s s i p i vp S X A I I S H R E C . 

 

Then, system (1) may be represented by  

( )
( , ; )

dp t
f t p z

dt
 ………………… (13) 

 

where ( , ; )f t p z is the right-side of the ODEs of system 

(1) and z is the vector parameters as specified in Table 

2; and the following is computed. 

 

4.1. 1. COVID-19 free-equilibrium (C-19FE) states 

At C-19FE, it is assumed that there exists no 

infection in the population and so no virus in the 

environment. This implies that  

0p p u a s s i p i vS X A I I S H R E C          . 

 

Thus, the C-19FE for model (1) is given by  
0 0 0 0 0 0 0 0 0 0 0( , , , , , , , , , )p p u a s s i p i vE S X A I I S H R E C  

or 
0 ( ,0,0,0,0,0,0,0,0,0)pE S ……………………. (14) 

 

with 
p

p

b
S


 . Eq. (14) depicts a COVID-19 model 

under zero disease steady state. 

 

4.1.2. COVID-19 endemic equilibrium (C-19EE) states 

Let any arbitrary endemic equilibrium of system 

(1) be represented by  
* * * * * * * * * * *( , , , , , , , , , )p p u a s s i v p iE S X A I I S H C R E ……… (15) 

 

Such that 
* * * * * * * * * *

p p u a s s i p iN S X A I I S H R E         . Then, 

by solving system (1) using Eq. (13) and equating the 

right side of each of the equations to zeros, i.e., for the 

first equation, we have 

1
ˆ0 ( ) ( )p i p pb N S v S      

or 

*

*

1( )

p

p

i

b
S

v 


 
. 

 

Taking on the second equation, we have 
* * * * * *

2 3 1 1
ˆ0 ( ) (1 )i p i u p pN S m E A u X q X        

or  
* * *

1
ˆ0 ( ) ( )i p pN S q X     

 

This implies that  
* * *

*

*

1 1 1

ˆ( )

( ) ( )

pi P i

p

i

bN S
X

q q v

 

   

 
   

    
, 

Where 1 1 1q m   . 



 

    
Bassey Echeng Bassey & Igwe O. Ewona., Sch J Phys Math Stat, Jan, 2023; 10(1): 12-42 

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          22 

 

 

 

Thus, solving for the rest of the state variables gives the required results for *E as: 

1 1

1 1

*

*

1

*

*

*

1 1

*

*

*

1 2 1 1

*

*

*

2 1 2 1 1

*

2 1 2*

3 1 2 1 2 1 2

( )

( )

( )( ) ( )

( )( ) ( )

0

( (1 ) )

[( )( )][ ( )(

p

p

i

p i

p

i

p i

u

i

p i

a

i

s

p

s

b
S

v

b
X

q v

b
A

q q v

k e b
I

q q v

I

k e b
S

q q q q
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Where 
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 ……………… (17) 

 

With   

1 1 1 2 2 3

3 4 2 2 4 5 3

5 3 1 6 2

, ,

, ,

,

i iq m E q m E

q v q

q q

   

   

   

   


   
    

………………. (18) 

 

Now, substituting Eq. (16) into Eq. (13) at 
* 0i  define the point at which C-19FE exists and 

which satisfies Eq. (14). Therefore, for * 0i  , the 

endemic state for system (1) denoted by *E is 

completely defined by Eq. (16) and which agree with 

Eq. (15). 

 

4.2. System reproduction number 0 , for a hypo-

hyper infectious COVID-19 model 

Biologically, the intuitive understanding of the 

dynamics of infectious diseases lies in the ability to 

define and compute the disease transmission rate, 

known as the system basic reproduction number 

denoted by 0 . From [27] view point, reproduction 

number 0 represents the number of secondary 

infections produced in a completely susceptible 

population by a typically infectious individual in its 

infective duration. Then, advancing the course of 

deriving and computing 0 , we invoke the formidable 

next generation matrix method by [28] to derive as 

follows our COVID-19 reproduction number.  
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, 

 

Where f is the rate of appearance of new infection and 

V V V   such that V 
and V 

are the rates of 

transfer of the infected individuals into the class by any 

other means and out of the compartments. That is, using 

Eqs (17) and (18), the transfer rates of infected in and 

out of compartments are given by 
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Computing the derivatives of f and v with respect to ( , , , , , , )p u a s s i vx X A I I S H C at C-19FE 0E and using Eq. (14), we 

obtain the linearized form for F as: 
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Where 1 2(1 )u u    and v

v

C
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 . 

 

Similarly, the linearization for V is given by  
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Where 1 2 2 3( )sa     . Thus, using the computed 

approach by [2, 23], the spectral radius of the present 

system reproduction number denoted by 1

0 ( )FV  

is computed as: 
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or 
5

0

1

j

i

R


 
   

 
 …………………….. (19) 

 

where 1,...,5j  represent the contributive reproduction 

number of each of the system infectious state variables 

with 
1 2(1 )u u    and v

v

C

Q C




 . 

 

For a completely untreated COVID-19 

scenario, the reproduction number is in Eq. (19) with 

control function ( , , , , ) 0i i i iu a v m  , 1, 2i  is 

transformed to the form: 
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…………….. (20) 

 

Eq. (20) represent the exponential rate of 

highly infectious aerosol viral load under zero control 

function with computed value 0(1) 10.159 1    in 

reality, under cogent dynamic control function, the 

system reproduction number is bound to varies. That is, 

for control functions ( , , , , ) 0i i i iu a v m  , 1, 2i  , Eq. (19) 

is expanded to become  
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………………. (21) 

 

Eq. (21) represent the rate of dynamic 

infection under systemic control functions with 

computed value 0(2) 3.01 1    . Here, we note that 

unlike the study by [2], where the scope of the study 

was limited to human-to-human transmission mode, the 

present study, which is characterized by environment-

to-human (hypo-infectious) and human-to-human 

(hyper-infectious) is clearly depicted by the 

environmental index 
v

among other parameters of Eq. 

(19). 

Next, we discuss the system local stability analysis in 

terms of system reproduction number
0 . 

 

4.3 Local stability analysis in terms of 
0  

We determine the local stability analysis of 

system (1) by invoking the eigenvalues of the linearized 

Jacobian matrix as done in [29]. The following theorem 

satisfies the local stability of COVID-19 under hypo-

hyper infectious scenario with determined 0 . 

 

Theorem 4 

The existence of C-19FE ( 0E ) for model (1) is 

completely characterized by locally asymptotic stability 

if 0 1   and locally asymptotically unstable if 0 1  . 

 

Proof 

Invoking the existence results from [2, 22, 23], then 

letting J represent the Jacobian matrix of system (1), 

we have the C-19FE ( 0E ) derived as: 
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Now, taking the eigenvalues of 0( )E
J , we see 

that all the diagonal entries are all negative i.e.,
1 ,

2 ,
3 , 

2 , 
4( )h   , 

4 , 
5 , ˆ( )v s  , 

6q and 10,10A . Therefore, the infection is locally 

asymptomatically stable for all
0 1  , which satisfies 

Eq. (19), implying that
5

0

1

( ) 1j

i

R


   , 1,..,5j  . 

This completes the proof. 

 

Next, we consider cases where infections 

persist in the population. In this case, an endemic 

equilibrium is bound to exist. Then, we must verify the 

existence of the system endemic equilibrium point for 

our model (1). 

 

4.4. COVID-19 endemic equilibrium (C-19EE) in 

terms of 0  

The following theorem completely satisfies the 

existence of an endemic equilibrium for system (1). 

 

Theorem 5 

The existence of an endemic equilibrium in an 

infectious COVID-19 of the model (1) is feasible 

provided only 0 1  . 

 

Proof 

Let 
* * * * * * * * * * *( , , , , , , , , , )p p u a s s i v p iE S X A I I S H C R E define 

the C-19EE of system (1). Suppose we equate each of 

the equations of system (1) to zero and then use the 

results of Eq. (16), we see that the differential sum of 

system (1) at C-19EE as derived in the models [30, 31] 

is given by 

ˆˆ 0p E E ib N N E         

 

or 
* *ˆˆ

p E E iN b N E        

 

Differentiating with respect to 
*N for all ˆ 0  , we 

obtain 

*
( )p Eb

N





 …………… (22) 

 

which corresponds to the fact that at C-19FE, * 0i  . 

At endemic equilibrium, incidence rate * 0i  , which 

implies system (1) exhibits endemic properties. 

Relating Eq. (22) with Eq. (19), we have 
* *

0
ˆ(1 ) 0i i Q    , 

 

from which we obtain  

* 0 1

ˆi
Q


 

 ……………… (23) 

 

for all 
0 0  and having Q̂ as disease constant derived 

from Eqs (17) and (18). This completes the proof. 

 

4.5. Global stability analysis for COVID-19 model 

The authors [2] have answered some basic 

questions of stability of C-19FE and C-19EE both at 

local and global cases for what is considered a 

motivating model for the present study. Notably, the 

global stability of the endemic equilibrium for the 

present model is, however, much more difficult to 

analyze. None-the-less, we will approach this 

demanding task using the method of Lyapunov 

functions in conjunction with Volterra-Lyapunov stable 

matrices to systematically address this uphill challenge, 

noting the following notations. 

 

Notations and preliminaries 1 

The following fundamental results (notations, 

definitions, lemmas, and theorems) are used to 

determine all square matrices of Volterra-Lyapunov 

stable matrices [32]. 

Notation 1. We write a matrix 0( 0)M   , if M is 

symmetric positive (negative) definite. 

Definition 1. A nonsingular n n matrix M is 

diagonally stable (or positive stable) if there exists a 

positive diagonal n n matrix Q such that

0T TQM M Q  .  

Definition 2. A nonsingular n n matrix M is 

diagonally stable (or positive stable) if there exists a 

positive diagonal n n matrix Q such that

0T TQM M Q  .  

 

From Definitions 1 and 2, it become obvious 

that a matrix M is Volterra-Lyapunov stable if and only 

if its negative matrix M , is diagonally stable. 

Lemma 1. Let M be an n n real matrix. Then, all 

the eigenvalues of M have negative (positive) real parts 

if and only if there exists a matrix 0K  such that

0( 0)T TKM M K   .  

Lemma 2. Let
11 12

21 22

p p
P

p p

 
  
 

be a 2 2 matrix. 

Then, P is Volterra-Lyapunov stable if and only if

11 220, 0p p  and 11 22 12 21det( ) 0P p p p p   . 

Notation 2. Given any n n  matrix M , let M denote 

the ( 1) ( 1)n n    matrix derived from M by deleting 

its last row and last column. 

Lemma 3. Let [ ]ijP p be a nonsingular n n  matrix

( 2)n  and 1( ,...., )nQ diag q q be a positive diagonal

n n  matrix. Let 1B P  matrix. Suppose if 0nnp  ,

( ) 0TQB MB  ( ) 0TQB MB  and ( ) 0TQP QP  . 

Then, it is possible to choose 0np  such that

( ) 0TQP QP  . 
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Lemma 4. Consider a COVID-19 model of the form 

1

1 2

2

1 2

( , )

( , )

dX
F X X

dt

dX
G X X

dt





 


………………. (24) 

 

with
1 2( , ) 0G X X  , where 

1

mX  denotes the 

uninfected population and 
2

nX  denotes the 

infection population;
0 1( ,0)EX X denotes the C-19FE 

of the system. Furthermore, assume that the following 

condition holds: 

(C1) For 
1

1( ,0)
dX

F X
dt

 ,
1

EX is globally 

asymptomatically stable. 

(C2) 1 2 2 1 2
ˆ( , ) ( , )G X X MX G X X  , with 

1 2
ˆ ( , ) 0G X X  for all

1 2( , )X X  , where the Jacobian 

matrix  

1

2

( ,0)EG
M X

x





, 

has all nonnegative off-diagonal elements and X is the 

region where the model makes biological meaning. 

Then, the C-19EE, 
0 1( ,0)EX X is globally 

asymptomatically stable provided that
0 1  . 

 

4.5.1. Global stability of C-19FE (untreated) 

Here, the system global stability for C-19FE is 

discussed using the existing results from theorem [33]. 

 

Theorem 6 

Let the fixed point 
0 ( ,0,0,0,0,0,0,0,0, )pb E

E

E







is globally asymptotically stable equilibrium for the 

system (1) for all
0 1  . Then, the conditions in Eq. 

(24) of lemma 4 are satisfied.  

 

Proof  

Using the result of model [2] and invoking Lemma 

2 for system (1), then we have  

1

p

s

p

i

S

I
X

R

E

 
 
 
 
 
 

,  2

p

u

a

s

i

v

X

A

I
X

S

H

C

 
 
 
 

  
 
 
 
  

. 

 

If 0p u a s i vX A I S H C      , then the 

uninfected sub-systems (i.e., , , ,p s p iS I R E ) becomes 

0

0

p

p p

s

p

i

E E i

dS
b S

dt

dI

dt

dR

dt

dE
E

dt



 


 






 


  


 

 

or 

1

p

p p

i

E E i

dS
b S

dt
X

dE
E

dt



 


 

 
  


, 

 

which has the following solutions  

( ) (0)
tp p

p p

b b
S t S e



 

 
   

 
………………. (25) 

 

and  

( ) (0) E tE E

i i

E E

E t E e
 

 

 
   

 
……………… (26) 

 

Clearly, from Eq. (25), ( )
p

p

b
S t


 as t  

irrespective of the value of (0)pS . Moreover, the same 

can be said of Eq. (26). Therefore, we have shown that 

condition (C1) of lemma 2 holds for system (1). Next, 

we consider the right-hand side of the infectious system 

for 2X i.e.,  

1 1

1 1

1 1

5

1

1

1 2

2
2 21 2

2 1 2 3

1 2 4

1 2

ˆ

( )

( )( , )

(1 )

ˆ ˆˆ

p i i

i

p u

u a

u a s

u a i

v s i v v

q X c

X q A
dX

k e A IG X X
dt

e A I S

e A I H

sC S H C

 

 

 

 



 

  

 











 
 

 
   
 

     
    
 

  
 

   



. 
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Applying condition (C2) of lemma 2, then we have 

1 1

1 1

1 1

1 1 2 3 4 5

1 2

2 22

1 2
2 1 2 3

1 2 4

1 2

ˆ 0

( ) 0 0 0 0 0

0 ( ) 0 0 0 0
( , )

0 (1 ) 0 0 0

0 0 0 0
ˆ ˆ ˆ0 0 0 ( ) 0

pb

p i i p

u

a

s

i

vv

q m m m m m X S

q A

k e IdX
G X X

e Sdt

e H

Cs



 

 

 

 



 

  

 









     
       
    
    

     
  
  

           










……. (27) 

 

Where  

1 1
ˆ ( ),q q  1 1 1

pb
m c

N
 


 , 2 2 2

pb
m c

N
 


 ,

3 3 3

pb
m c

N
 


 , 4 4 4

pb
m c

N
 


 and

5 5 5

pb
m c

N
 


 , noting that other parameters have 

been earlier defined in Eq. (17). By condition (C2) of 

lemma 2, we see that Eq. (27) becomes 

2
2 1 2

ˆ ( , )
dX

MX G X X
dt

  , 

 

Which implies that M equal to the first term of the 

right-hand side of Eq. (27) and 
1 2

ˆ ( , )G X X is equal to 

the last term. Then, it is obvious that
p

p

b
S


 , which 

implies that ( , ) 0G X Y  for all 6( , )X Y  . Notably, 

the matrix M is an Q -matrix since all its off-diagonal 

elements are nonnegative. Hence, this proves that 

global stability for C-19FE 0( )E . 

 

4.5.2. Global stability of C-19EE model for ˆ 0i   

Our aim here is to show that the endemic 

equilibrium of COVID-19 model for ˆ 0i  is globally 

asymptotically stable. We achieve this goal by adopting 

the classical method of Lyapunov functions in 

combination with the Volterra-Lyapunov matrix as has 

been explored [30]. The following definitions and 

theorems provide the enabling environment for our 

investigation. 

 

Definition 3 (Lyapunov function) 

Let the function ( )V x be a region of state-space
D and 

containing an equilibrium point *X . Then, this point *X

is called a Lyapunov function if the following 

conditions are satisfied [26, 34]: 

i. ( )V x  is continuous and has continuous 

first-order partial derivatives. 

ii. ( )V x has a unique minimum point at *X

with respect to all other points in the 

region D . 

iii. The function ( ( )) ( ) ( )V x t VV x f x 

satisfies ( ( )) 0V x t  for all ( ) Dx t  . 

 

Theorem 7  

                If there exists a Lyapunov function for an 

equilibrium point *X , then *X is a stable equilibrium 

point. Moreso, if the function ( ( )) 0V x t  for all

( ) Dx t   for all ( ) Dx t  , then the stability is 

asymptotic. 

 

Theorem 8  

                 LetV be the Lyapunov function defined for 

system (1). Then, the global stability of the system 

endemic equilibrium for COVID-19 (C-19EE) exists 

provided the time derivative 0
dL

dt
 . 

 

Proof  

We invoke results from existing Lyapunov proves [2, 

30, 35]. Then, let the biological feasible domain for 

system (1) be given by  

10( , , , , , , , , , ) : : ...... ( )
p E p E

D p p u a s s i v p i p p i

b b
R S X A I I S H C R E N S X E t

 

 


  
       
 

, 

 

which is positively invariant set in 
10 . Visibly, is the 

fact that 
* p Eb

N N





  as t   . We then prove 

the system global stability by constructing the following 

Lyapunov function. Suppose  
10

* 2

1

( )i i i

i

V z N N


  ……………………… (28) 

 

Where 0iz  is positive Lyapunov constants, iN  is the 

population of 
thi compartment, *

iN is the equilibrium 

value of iN andV , a continuous and differentiable 

Lyapunov function. Then, computing the time 

derivative ofV , along the trajectories of system (1), we 

have  
10

*

1

2 ( ) i

i i i

i

dN
V z N N

dt

  , 1,...,10i  ……….. (29) 



 

    
Bassey Echeng Bassey & Igwe O. Ewona., Sch J Phys Math Stat, Jan, 2023; 10(1): 12-42 

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          28 

 

 

 

That is, using system (1) in Eq. (29) and accounting for Eq. (18), we have 

V 

1 2

*

* * * *

1 1 2 2

(1 )* * * * * * *

1 1 2 3 3 4 4*

1 * *

5 5

*

( ) ( )

( ) ( ) ( ) ( )
2 ( )

( )

( )( )

p p p p u p p p

u u

i p i p p p a p a p s p s pN

p p

i p i p

i p p

c X S X S c A S A S

m E X E X R R c I S I S c S S S S
z S S

c H S H S

v S S

 

   





 

    
  
          

   
    

 
    

 

1 2

*

* * * *

1 1 2 2

(1 ) * * * *

3 3 4 4*

2 * *

5 5

* * * *

2 3 1 1

( ) ( )

( ) ( )
2 ( )

( )

( ) (1 ) ( ) ( )

p p p p u p p p

u u

a p a p s p s pN

p p

i p i p

i u i u p p p p

c X S X S c A S A S

c I S I S c S S S S
z X X

c H S H S

m E A E A u X X q X X

 

 



 

 

    
  
      

    
    

 
        

 

* * * * *

3 1 1 2 2 12 ( ) (1 ) ( ) ( ) ( ) ( )u u p p u u u u u uz A A u X X A A q A A m A A              

1 1* * *

4 2 2 22 ( ) (1 ) ( ) [ ]( )a a u u a az I I u k e A A I I            

* * * * *

5 1 1 1 1 2 1 2 32 ( ) ( ) ( ) (1 )(1 ) ( ) ( )s s a a s s s h s s s sz I I a I I a S S a a I I q I I                  

* * * * *

6 1 1 2 1 2 32 ( ) (1 )( ) ( ) ( ) ( )s s a a u u s s s s sz S S I I A A a S S S S                  

1 1 * *

1 2 1 1 2 2*

7 * *

4

(1 )(1 ) ( ) (1 )(1 )[ ( )
2 ( )

( )] ( )

u u a a

i i

h s s i i

a a e A A a a I I
z H H

I I H H

  



       
   

     
 

* * * * *

8 1 1
ˆ ˆˆ2 ( ) ( ) ( ) ( ) ( )v v v v s s i i v v vz C C s C C S S H H C C            

* * * * *

9 1 2 2 3 62 ( ) ( ) ( ) ( ) ( )p p i i s s s s p pz R R H H v I I S S q R R              

* * * *

10
ˆ ˆ2 ( ) ( ) ( ) ( )i i E i i E i i v i iz E E b E E d E E E E       

   …………… (30) 

 

where  
* *

* *

[( ) ( )]ˆ
[( ) ( )]

E s s i i

E

s s i i b

b S S H H
b

S S H H C

  


   
and 

* *

* *

[( ) ( )]ˆ
[( ) ( )]

E s s i i

E

s s i i d

d S S H H
d

S S H H C

  


   
. 

 

Then, by adding the expression 
*ˆ

i i pc NS for all 
ˆ ( , , , , )p u a s iN X A I S H into the first and second square brackets, the 

following results are obtain: 

V 

1 2

*

* * * *

1 1 1 1 1 1

* * * *

2 2 2 2 2 2

(1 )* * * * * * *

1 1 2 3 3 3 3 3 3*

1 * * *

4 4 4 4 4 4

( )

( )

( ) ( ) ( )
2 ( )

( )

p p p p p p p p

u p p p u p u p

u u

i p i p p p a p a p a p a pN

p p

s p s p s p

c X S X S c X S c X S

c A S A S c A S c A S

m E X E X R R c I S I S c I S c I S
z S S

c S S S S c S S c S

  

  

    

  

 

   

   

       


    *

* * * *

5 5 5 5 5 5

*

( )

( )( )

s p

i p i p i p i p

i p p

S

c H S H S c H S c H S

v S S

  



  
  
  
  
  
  
  
  

     
 
   

 

1 2

*

* * * *

1 1 1 1 1 1

* * * *

2 2 2 2 2 2

(1 ) * * * *

3 3 3 3 3 3*

2 * * * *

4 4 4 4 4 4

* *

5 5 5 5

( )

( )

( )
2 ( )

( )

( )

p p p p p p p p

u p p p u p u p

u u

a p a p a p a pN

p p

s p s p s p s p

i p i p

c X S X S c X S c X S

c A S A S c A S c A S

c I S I S c I S c I S
z X X

c S S S S c S S c S S

c H S H S c H

  

  

  

  

 

 

   

   

   
 

   

   * *

5 5

* * * *

2 3 1 1( ) (1 ) ( ) ( )

i p i p

i u i u p p p p

S c H S

m E A E A u X X q X X



 

  
  
  
  
  
  
  
  

  
 
       

 

* * * * *

3 1 1 2 2 12 ( ) (1 ) ( ) ( ) ( ) ( )u u p p u u u u u uz A A u X X A A q A A m A A              
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1 1* * *

4 2 2 22 ( ) (1 ) ( ) [ ]( )a a u u a az I I u k e A A I I            

* * * * *

5 1 1 1 1 2 1 2 32 ( ) ( ) ( ) (1 )(1 ) ( ) ( )s s a a s s s h s s s sz I I a I I a S S a a I I q I I                  

* * * * *

6 1 1 2 1 2 32 ( ) (1 )( ) ( ) ( ) ( )s s a a u u s s s s sz S S I I A A a S S S S                  

1 1 * *

1 2 1 1 2 2*

7 * *

4

(1 )(1 ) ( ) (1 )(1 )[ ( )
2 ( )

( )] ( )

u u a a

i i

h s s i i

a a e A A a a I I
z H H

I I H H

  



       
   

     
 

* * * * *

8 1 1
ˆ ˆˆ2 ( ) ( ) ( ) ( ) ( )v v v v s s i i v v vz C C s C C S S H H C C            

* * * * *

9 1 2 2 3 62 ( ) ( ) ( ) ( ) ( )p p i i s s s s p pz R R H H v I I S S q R R              

* * * *

10
ˆ ˆ2 ( ) ( ) ( ) ( )i i E i i E i i v i iz E E b E E d E E E E       

  ……………. (31) 

 

The compact form of Eq. (31) is written as: 

 T T TL TX X T LV   ……………….. (32) 

 

Where   
* * * *( , , ,..............., )p p p p u u i iL S S X X A A E E     , 1 2 10( , ,........., )X diag z z z and 

 

1 3 5 8 12 15

2 4 6 9 13 16

7

10

11

14

17

18

19

20

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

T

     

     

















     
 

 
 
 

 
 
 

 
 
 
 
 

 
 
 

, ………………… (33) 

 

With  

 1 2

*

(1 )

1 1 1 2 2 3 3 4 4 5 5 1 1 2( )
u u

p u a s i iN
c X c A c I c S c H v m        

 
          ,  

 1 2

*

(1 )

2 1 1 2 2 3 3 4 4 5 5

u u

p u a s iN
c X c A c I c S c H     

 
     , 1 2

*

(1 ) *

3 1 1

u u

pN
c S 

 
  

 1 2

*

(1 ) *

4 1 1 1 1 2 3(1 )
u u

p iN
c S u q m E   

 
     , 1 2

*

(1 ) *

5,6 2 2

u u

pN
c S 

 
 ,  

 7 1 2 1(1 )q u      , 1 2

*

(1 ) *

8,9 3 3

u u

pN
c S 

 
 ,   1 1

10 2 2 1(1 )u k e
   

     , 

 11 1 2 3 1 1 1 2 2(1 )(1 ) h sq q q a a             , 1 2

*

(1 ) *

12,13 4 4

u u

pN
c S 

 
 , 

1 1

14 2 2 2 1 2(1sa e             , 1 2

*

(1 ) *

15,16 5 5

u u

pN
c S 

 
 ,  

 1 1

17 4 1 2 1 1 2 2(1 )(1 ) (1 )(1 ) ha a e a a            ,  18 1 2
ˆ ˆˆ( )vs     , 

 19 6 1 2 2 3q        and 20
ˆ ˆ( )E E Eb d    . 

 

We now proceed to verify the global 

asymptotic stability of L  by showing that X  defined in 

Eq. (32) is Voltera-Lyapunov stable or X is diagonal 

stable. The following lemmas are necessary and the 

proofs of which can be sorted, [30]. 

Lemma 5. For the matrix X  defined in Eq. (32), let

D X  , then D is diagonal stable. 

Remark 1. Lemma 3 guarantee that D X  is 

diagonal stable. 

Lemma 6. For the matrix X  defined in Eq. (32), the 

matrix 1B X   , then D is diagonal stable. 

Remark 2. Lemma 3 is used again to show that 

guarantee that
1B is Volterra-Lyapunov stable. 
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Theorem 9  

The matrix X  defined in Eq. (32), is Volterra-Lyapunov 

stable. 

 

Proof 

Based on lemma 3 and lemma 5 and since 10,10 0X 

i.e. 
20 , there exists a positive diagonal matrix T such 

that ( ) ( ) 0T TT X X T    . Thus, 0T TTX X T  . 

 

Theorem 10 

The endemic equilibrium, 
* * * *( , ,.........., )p p iE S X E of 

model (1) is globally asymptotically stable. 

 

Proof 

Based on Lemma 3, Lemma 5 and lemma 9, we obtain 

0dV

dt
 when *E E and E are not the S axis (a set 

of measure zero). Therefore, by Volterra-Lyapunov 

stable, it implies that the endemic equilibrium of system 

(1) is globally asymptotically stable. 

 

5. Numerical computations  

Having gone through the analytical predictions 

of our derived basic model (1), it becomes obvious that 

we can then validate these predictions numerically, 

noting that analytical illustrations are imperative due to 

the complex nonlinearity of our model. Notably, the 

strength of our numerical simulation is emphatically a 

function of the system reproduction numbers for both 

off/on control functions ( 0(1) and 0(2) ). That is, the 

overall effect of 0 0(1) 0(2)( )    to the system state-

space will be computed. The essence is to afford us a 

clear view of the impact of the induced control 

functions. 

 

Furthermore, we shall simulate the system 

stability and endemic equilibrium, following the 

introduction of a vaccine (BNT162b2 or any other 

recommended vaccines) alongside dual bilinear control 

functions (two nonpharmaceutical: face-masking and 

social distancing; and two pharmaceuticals: 

hydroxylchloroquine – HCQ and azithromycin – AZT). 

Remarkably, the testing of the entire model shall 

explore for its simulations, in-built rkfixed Runge-Kutta 

of the order of precision 4 on a Mathcad surface in 

relation to Tables 1 and 2.  

 

5.1. Numerical computation for 0(1) , 0(2)  

In subsection 4.2, we present the derivation of 

the system reproduction numbers for both off and on-set 

treatment scenarios with corresponding analytic values 

at 0(1) 10.159  and 0(2) 3.01    respectively. These 

values are biologically the initial values at the onset of 

infection and prior to the application of control 

functions. Thus, Fig. 2(a-b), below depicts the graphic 

images for the impact of these reproduction numbers for 

model (1).  

 

 
Fig 2(a): System reproduction number for COVID -19 under off-treatment with 4ˆ( ) 1.69 10i N    

 

 
Fig 2(b): System reproduction number for COVID -19 under onset-treatment with 5ˆ( ) 3.379 10i N     

Fig 2(a-b): Graphical images of system reproduction numbers for off/onset – treatment of COVID-19, 0(1) , 0(2)  
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Fig 2(a), depicts a rapid inclined smooth curve 

indicating the dynamic spread of COVID-19 virus 

under off-treatment scenario. A value range of 

0(1)0.5 10.159R  is observed, which portrait 

population extinction if no intervention for all 30ft 

days. Fig 2(b), portrait the drastic and rapid decline in 

the spread of the virus, following the methodological 

introduction of varying control functions. Rate of 

transmission is seen reduced to 0(2)0.5 3.01R   , 

which could lead to terminal spread of the virus for all 

30ft  days.  

 

5.2. Numerical computation of derived basic system 

(1), with , , 0i i iu a v  and 0im  1,2i   

Following the dynamic contribution of the 

system force of infection ˆ( )i N , which is embedded in 

the system reproduction number 0 0(1) 0(2)( )    , 

we compute as in Appendix A1 and A2, the overall 

impact of these parameters on COVID-19 transmission 

within the state space as seen in Fig. 3(a-j), below, 

noting that , , 0i i iu a v  with immune effectors 0im 

1,2i  . 

 

From Fig. 3(a), asymptotic infection is 

observed within the first twelve days of virus contact 

with the susceptible population. Hence, a steady growth 

of the population is seen at the early stage until after the 

12th day, where infection started manifesting resulting 

in a rapid decline. This implies consumption of the 

susceptible, which is only sustained via the natural 

recruitment rate. That is asymptomatic stage 

0.5 ( ) 67.132pS t   for all 12ft  days. Thereafter, 

symptomatic stage  0.5 ( ) 10pS t  for all 

12 30ft  days. 

 

 
Fig 3(a): Susceptible popn under COVID -19 dynamics with off-treatment and 0(1) 10.159 1    

 

Fig. 3(b), depicts the exposed population with 

asymptomatic infection within the first 10ft  days. 

Thereafter, the spread of infection is seen escalating 

through 10 12ft  days, with 0.035 ( ) 36.71pX t 

3/cells ml and then decline to symptomatic stability 

with values at 36.71 ( ) 18pX t 
3/cells ml  for all 

12 30ft  days. 

 

 
Fig 3(b): Exposed popn under COVID -19 dynamics with off-treatment and 0(1) 10.159 1    

 

From Fig. 3(c), the unaware infective exhibits 

initial asymptomatic stability at the first 12 days and 

thereafter exhibits accelerated inclination with value

0.041 ( ) 24.596uA t 
3/cells ml for all 12 16ft 

days. Unaware infections declined to symptomatic 

stability with value 24.596 ( ) 15uA t 
3/cells ml  for 

all 12 30ft  days. 
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Fig 3(c): Unaware infectives under COVID -19 dynamics with off-treatment and 0(1) 10.159 1    

 

In Fig. 3(d), the pattern of spread is seen 

sustained to reduced rate of infection under aware 

infectives. Observed is a concave asymptomatic early 

stage due to awareness for all 12ft  days. The trend of 

the unaware infective is observed but with reduced rate 

of infection i.e. 33.806 10 ( ) 1.882aI t  
3/cells ml  

for all 16 30ft  days. 

 

 
Fig 3(d): Aware infectives under COVID -19 dynamics with off-treatment and 0(1) 10.159 1    

 

The isolated population in Fig. 3(e), is seen to 

decline to near population extinction in the first ten 

days of isolation without any control measures i.e. 
90.03 ( ) 2.764 10iI t    for all 10ft  days and attain 

symptomatic stability thereafter for all10 30ft 

days. This implies that an isolated population without 

control measures leads to population termination with 

insignificant surviving population coming from natural 

recruitment rate
30.5 /pb cells ml .  

 

 
Fig 3(e): Isolated infectives under COVID -19 dynamics on off-treatment and 0(1) 10.159 1    

 

From Fig. 3(f), the super-spreader exhibited 

initial asymptomatic stability at the early period of 
infection with value of 0 ( ) 0.015sS t 

3/cells ml for 

all 12ft  days. Symptomatic manifestation of the virus 
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at 0.015 ( ) 6.208sS t 
3/cells ml and then declining 

with undulating curve terminating at ( ) 4.218sS t 

3/cells ml for all12 30ft  days.  

 

 
Fig 3(f): Super-spreaders under COVID -19 dynamics with off-treatment and 0(1) 10.159 1   

 

Hospitalized population as depicted in Fig. 

3(g), exhibited similar behavior to that of super-

spreader compartment, which also indicates the lack of 

any control measures, i.e., asymptomatic stability with 

0.0 ( ) 0.0iH t 
3/cells ml for all 12ft  days. 

Symptomatic manifestation of the virus at 

0.0 ( ) 5.193iH t 
3/cells ml and then declining with 

undulating curve terminating at ( ) 3.712iH t 

3/cells ml for all12 30ft  days. 

 

 
Fig 3(g): Hospitalized infectives under COVID -19 dynamics with off-treatment and 0(1) 10.159 1    

 

Fig. 3(h), representing the vector reservoir 

exhibits an initial smooth inclination indicating the 

mass force of infection within the first-eighteen days 

with value of 0.025 ( ) 7.275vC t   for all 0 18ft 

days. Thereafter, decline to slight stability with value at 

( ) 6.152vC t  for all 18 30ft  days. This implies that 

under off-treatment, the reservoir of aerosol viral load 

could overwhelm the entire environment. 

 

 
Fig 3(h): Aerosol infectious virions dynamics on off-treatment and 4ˆ( ) 1.69 10i N    
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Recovered compartment as in Fig. 3(i), shows 

insignificant recovery at the early stage of the spread of 

the virus with asymptomatic value of ( ) 0.0125pR t 

3/cells ml for all 10ft  days. Recovery proportions 

inclined thereafter, which could be attributed to the 

increase in adaptive immune response and the 

awareness of the presence of the virus coupled with the 

application of nonpharmaceutical. Slight decline at the 

tail of the investigation with value at 
3( ) 3.2 /pR t cells ml for all18 30ft  days. 

 

 
Fig 3(i): Recover infectives under COVID -19 dynamics with off-treatment and 0(1) 10.159 1    

 

Fig. 3(j), depicts the activity of the immune 

effector being activated by the presence of the virus 

with smooth convex inclination leading to build-up of 

the immune system i.e. 30.1 ( ) 8.87 /iE t cells ml  for 

all 30ft  days. 

 

 

Fig 3(j): Immune effectors under COVID -19 dynamics with off-treatment and 0(1) 10.159 1  
 

Fig 3 (a-j): Graphical images of computed off – treatment of COVID-19 infection dynamics with 0(1) 10.159 1   . 

 

5.3. Numerical computation for COVID-19 endemic 

infection under triple-bilinear controls
, , 0i i iu a v 

with 

0im 
 

The implementation of the theoretical 

predictions for the derived system global stability 

analysis of model (1) is numerically illustrated, 

following the introduction of designated triple-bilinear 

control functions: bilinear nonpharmaceutical (face-

masking and social distancing), bilinear 

pharmacotherapy (hydroxylchloroquine - HCQ and 

azithromycin – AZT) and bilinear immunity controls 

(adaptive immune response and BNT162b2 – vaccines) 

at specified stages of infection progressions as depicted 

in Fig. 4(a-j), below. The computation that leads to the 

following graphical images are in Appendix B1 and B2. 

 

Following the introduction of varying 

designated treatment functions, we observe from Fig. 

4(a), a smooth geometric concave-like surges of the 

susceptible compartment with value in the range of 
30.5 ( ) 91.991 /pS t cells ml  for all 0 30ft  days. 
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Fig 4(a): Susceptible popn under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

With the introduction of nonpharmaceutical 

into the exposed compartment, Fig. 4(b), shows a 

significant reduction in the rate of spread of the virus 

i.e. 0.02 ( ) 0.3pX t 
3/cells ml at the early time 

interval of 0 8ft  days. Thereafter, the exposed 

population is seen depleting to asymptotic stability with 

value of 3( ) 1.988 10pX t   
3/cells ml at 10 30ft 

days. 

 

 
Fig 4(b): Exposed popn under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

From Fig 4(c), we observe the consequential 

administration of bilinear nonpharmaceutical and 

vaccination of the susceptible compartment coupled to 

boasted immune response. This leads to a drastic 

reduction of the spread of the virus with declining tail 

value of 2.715 ( ) 0.107uA t  
3/cells ml  for all 

12 30ft  days. 

 

 
Fig 4(c): Unaware infectives under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

The aware the infective compartments of Fig 

4(d), depicting the presence of triple-bilinear control 

functions coupled to the awareness status, leading to 

rapid elimination of the virus to an insignificant level 

with decline value of 80.15 ( ) 4.598 10aI t   

3/cells ml  for all 14 30ft  days. 
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Fig 4(d): Aware infectives under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

Fig 4(e), depicts the isolated compartment, 

where patients are under intensive care. The vaccination 

of the compartments, which also boasts adaptive 

immune effectors, lead to rapid smooth concave-like 

declination and elimination of the virus with value 
60.03 ( ) 3.472 10sI t   

3/cells ml  for all 0 20ft 

days. 

 

 
Fig 4(e): Isolated infectives under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

Fig 4(f), represents super-spreader 

compartment, where under triple-bilinear control. 

Under this condition, the population of super-spreaders 

are under check declining with concave-like smooth 

curve and tailings to zero stability with value range of 
80.052 ( ) 8.547 10sS t    

3/cells ml  for all 

0 30ft  days. 

 

 
Fig 4(f): Super-spreaders under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

Under triple-bilinear control function, the 

initial influx of the infected population to the hospital in 

the first-three days with value at 0 ( ) 0.013iH t 

3/cells ml  for all 0 3ft  days, as in Fig. 4(g), is seen 

to sharply decline at 3 20ft  days and then after, 

terminate to near zero for all 20 30ft  days. 
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Fig 4(g): Hospitalized infectives under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

From Fig 4(h), we observe that the reservoir of 

aerosol viral load exhibited a docilely incline 

undulating curve at 0 20ft  days and then attaining 

near stability after 20 30ft  days, with value at

0025 ( ) 2.738vC t  .  

 

 
Fig 4(h): Aerosol infectious virions dynamics with onset-treatment and 5ˆ( ) 3.379 10i N     

 

We observe from Fig 4(i), the access to 

multiple control functions leads to massive recovery. 

That is, the compartment exhibits a concave-like 

smooth inclination with value range of 

0 ( ) 7.818pR t 
3/cells ml for all 0 30ft  days. 

 

 
Fig 4(i): Recover infectives under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

 

The manifestation of the recovery 

compartment is vindicated by the smooth concave-like 

inclination of the adaptive immune effector, which is 

attributive to induce vaccination, leading to build-up of 

the adaptive immune effectors with value at 

0.1 ( ) 7.607iE t 
3/cells ml for all 0 30ft  days as 

depicted by Fig. 4(j). 
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Fig 4(j): Immune effectors under COVID -19 dynamics with onset-treatment and 0(2) 3.01 1     

Fig 4 (a-j): Graphical images of computed onset – treatment of COVID-19 infection dynamics with

0(2) 3.01 1     

 

6. DISCUSSION OF RESULTS 
Motivated by the limitation of a foregoing 

leading paper, an 8-Dimensional mathematical model 

for COVID-19 pandemic was formulated and studied 

[2]. In that study, the following were noted: the adverse 

ingress rate of aerosol infectious virions was not 

considered; the potent of adaptive immune effectors as 

well as non-introduction of vaccination at community 

level were completely avoided. Moreover, ignored was 

the potential role of system immune delay lag. Ignited 

by these surmountable clinical overviews, the present 

study exploring global stability theory, sought and 

projected an improved deterministic COVID-19 

mathematical dynamic modeled saddle with the task of 

evolving optimal treatment strategy that maximizes not 

only the healthy susceptible community but also, 

enhanced immune effector cells. With the incorporation 

of aerosol virus dynamic flow and the biological impact 

of adaptive immune effectors, the system was analyzed 

based on 10-subpopulation and investigated following 

the introduction of vaccines in the presence of dual 

bilinear control functions. That is, on account of the 

dual role of adaptive immune effectors as both state-

space and control function, the control functions with 

the acronym ―triple-bilinear‖ control measures include: 

bilinear nonpharmaceutical (face-masking and social 

distancing), bilinear pharmacotherapy 

(hydroxylchloroquine - HCQ and azithromycin – AZT) 

and bilinear immunity controls (adaptive immune 

response and BNT162b2 – vaccines) were administered 

at varying designated stages. 

 

The predominant assumption of the study were 

the accommodation of system immunity delay lag and 

the introduction of the vaccine in susceptible and 

isolated communities. Moreso, apart from the 

application of the fundamental theory of differential 

equations for the verification of model well-posedness, 

the material and methods of the study further explored 

classical method of Lyapunov functions with the 

incorporation of the theory of Voltrra-Lyapunov stable 

matrices for the analysis of system global stability 

conditions. Furthermore, the study was investigated for 

both untreated and onset – treatment of endemic 

scenarios and numerical computations conducted using 

in-built Runge-Kutta of order of precision 4 in a 

Mathcad surrounding. Vital to the study is the potential 

role of the system basic reproduction number. Thus, the 

reproduction numbers for both off/onset treatments 

were simulated accordingly. 

 

From the computations of the system basic and 

effective reproduction number, the results as in Fig. 2(a-

b) shows that for off-treatment scenario, the basic 

reproduction number was computed as

0(1) 10.159 1   , which explicitly conformed to the 

findings ( 0(1) 10.94  ) from [2]. Notable and 

significant variation is observed from the improved 

value obtained for the onset-treatment of the present 

study ( 0(2) 3.01 1    ) as against that of our 

motivated model with 0(2) 3.224  . Of note, this great 

achievement can be attributed to the incorporation of 

third bilinear control functions (the role of adaptive 

immune response and BNT162b2 – vaccine) and the 

constructive biological inclusion of immunity delay lag, 

as was clearly noted by the study assumptions. 

 

Further simulations as in Fig. 3(a-j) indicated 

that given an off-treatment scenario, the force of 

infection depicted by
4ˆ( ) 1.69 10i N   represent dose 

of heavy droplets of aerosol viral load of COVID-19 

that will conveniently contaminate upon contact, a 

proportion of susceptible population 
3( ) 67.132 /pS t cells ml with average reproduction 

number of 0(1) 10.159 1   within the first-twelve 

days ( 12ft  days) of asymptomatic stage of infection. 

This asymptomatic period agrees with the established 

viral load incubation period of 2 14 days for COVID-

19, [4,5]. Moreso, the result under off-treatment 

scenario is in agreement with the findings [2]. 

Moreover noted here there is the significant variation of 

the computed force of infection with value at
11ˆ( ) 2.12 10i N   , [2] as against the present value of
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4ˆ( ) 1.69 10i N   . This present result could be 

attributed to the introduction of two major components: 

system immunity lag and the adaptive immune effectors 

at the onset of infection. Clearly, after the asymptotic 

stages, which signifies the incubation period, the 

susceptible population is seen to rapidly decline 

following the manifestation of the symptomatic stage of 

the infection leading to contamination of the susceptible 

population with surviving proportion of 
3( ) 0.5 /pS t cells ml , which is known to emanates 

from the existing natural recruitment rate 
30.5 /pb cells ml for all 14 30ft  days. 

 

Notably, under off-treatment scenario, as 

depicted by Fig. 3(a-j), it was noted that at the 

asymptomatic stage of the infection, the susceptible 

populations were seen growing (see Fig. 3(a)), while 

varying infection rates were insignificant as a portrait 

by Fig 3(a-d, f-i). These results explicitly confirm the 

exponential transmissibility of the virus at incubation 

period of 2 14 days and firmly agreed with established 

fact that sample collection for testing should be 

obtained within the first – ten days of first contact with 

the virus, [36]. Isolated population completely 

extinguished after 10ft  days (see Fig. 3(e)). The 

concentrations of aerosol viral load remain high after

10ft  days with value at 0 ( ) 6.152vC t  for all 

18 30ft  days. Fig. 3(j) buttresses the fact that the 

presence of virus causes an intensive build-up of 

adaptive immune effectors with value 
30 ( ) 8.87 /iE t cells ml  for all 30ft  days. 

 

With the introduction of triple-bilinear control 

at varying designated stages, it was observed that 

recovery and the susceptible populations exhibited 

proportionate geometric rejuvenation with respective 

values at ( 0 ( ) 7.818pR t  and 0.5 ( ) 91.991pS t  )

3/cells ml for all 0 30ft  days – see Figs 4(j) and 

(a). These results are an improvement against the 

corresponding off-treatment scenario and when 

compared to the onset-treatment scenario of the model 

[2]. Moreso, the application of early onset treatment 

saw near total eradication of infection in the aware 

infective compartment within the first-fourteen days i.e. 
80.15 ( ) 4.598 10aI t   

3/cells ml  for all 

14 30ft  days, while both exposed class unaware 

infectives and super-spreaders indicated near complete 

eradication with values at ( 3( ) 1.988 10pX t    ,

( ) 2.71uA t   and 8( ) 8.547 10sS t    )
3/cells ml  for 

all 10 30ft  days respectively. Infection of both 

isolated and hospitalization compartments depicted near 

complete eradication of the virus with persisting 

insignificant values of ( 6( ) 3.472 10sI t   and

( ) 0iH t  )
3/cells ml  for all 0 20ft  days. This 

result further agrees with system theoretical predictions 

where following introduction of designated control 

functions, the pandemic curves clearly exhibited 

intrinsically stable dynamical system. 

 

Remarkably, the concentrated aerosol viral 

load with inclined value of 0025 ( ) 2.738vC t  as 

depicted by Fig. 4(h) clearly affirmed the lack of 

complete eradication of the virus within the system. 

Rather, like most other transmittable diseases, its 

portrait the persistence of the virus within the 

environment but could be docile provided communities 

adhered to the aforementioned methodological control 

measures. Furthermore, the persistence of aerosol viral 

load and induced vaccination clearly leads to the 

biological rebuild of the adaptive immune effectors, 

potent to counter reemergence of the virus – see Fig. 

4(j). Finally, for a more in-depth appreciation of the 

current study, we present, as in appendix C, a summary 

of the comparison of the results of onset-treatments of 

the present study and that of our motivating model [2]. 

 

7. CONCLUSION 
Following the availability of vaccines for the 

inhibition of the dreaded COVID-19, and triggered by 

the non-availability of coinciding mathematical models 

for the epidemiological analyses of the treatment and 

control of COVID-19 via multi-combination of control 

measures and coupled with the lack of explicit 

derivation of COVID-19 reproduction number for both 

off-treatment 0(1)  and onset-treatment 0(2)R  scenarios, 

the present study sought and presented an expanded 10-

Dimensional deterministic COVID-19 dynamic model 

that accounted for the role of triple-bilinear control 

functions for the treatment of COVID-19 in Nigeria. 

The interactions between the vector and the 

subpopulations adopted the hypo-to-hyper transmission 

mode. 

 

The study was triggered with the problem 

statement followed by the derivation of the model 

equations and then the investigation of the 

mathematical properties following thereof. Both the 

system force of infection ˆ( )i N  and the reproduction 

number ( 0 ) for both off-treatment 0(1)  and onset-

treatment 0(2)  scenarios was for the first-time, 

determined and computed. We analyze the model local 

and endemic stability in terms of system reproduction 

number and thereafter, explored the method of 

Lyapunov functions in conjunction with Volterra-

Lyapunov stable matrix to investigate the global 

stability conditions for the derived COVID-19 model 

and studied under triple-bilinear control protocol. The 

theoretical predictions indicated that COVID-19 free 

equilibrium and its endemic equilibrium were both 

locally and globally asymptomatically stable for all
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0 1  as vindicated by computed 0(2) 3.01 1    . 

Further numerical results showed that for off-treatment 

scenario, the system exhibited asymptomatic early 

infection within the first12  days, which not only 

affirmed the exponential spread of the virus within its 

incubation period of 2 14 days but further strengthen 

the suggestion for collection of an active samples for 

testing within the first ten days of infection. Moreso, it 

was observed that rapid extinction of the susceptible 

population occurred after14 days, leading to exponential 

spread of the virus as depicted by the varying infectious 

compartments. 

 

None-less, the introduction of triple-bilinear 

control function at designated compartments saw 

enhanced rejuvenation of susceptible and recovered as 

well as a massive build-up of adaptive immune 

effectors, which signified the ingenuity and 

compatibility of the model to real-life situations. That 

is, numerical results further agree with system 

theoretical predictions with curves clearly exhibiting 

intrinsically stable dynamical system. Moreso, the rapid 

near-zero eradication of the virus within the first 

fourteen days dignified the superiority of triple-bilinear 

control approach to dual-bilinear technique, where 

infection although reduced but persisted higher [2]. 

Furthermore, the investigation also revealed that while 

the spread and infection dynamics could be curtailed to 

near zero threshold, the reservoir (environment) of 

COVID-19 viral load could persist but docile provided 

the prescribed triple-bilinear controls are coherently 

adhered by the population. Thus, in reality, this finding 

will be of immense benefit to both government and 

non-governmental agencies in decision and policy 

making towards sustaining the near-zero eradication of 

the dreaded COVID-19 pandemic in Nigeria and 

possibly beyond. Therefore, it is suggested that for a 

possible complete zero eradication of the virus, the 

application of the optimal control technique will be 

highly ascribed. 
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