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I. INTRODUCTION

As we all know, optimization is a problem we
have been trying to solve. Convexity plays a very
important role in optimization problems. If an
optimization problem is convex, it means that the
problem has been largely solved. In real life, the
optimization problem we often face is not a perfect
convex optimization, but we try to find some common
methods to solve these optimization problems. And we
know that these imperfect convex optimization
problems may be caused by many factors, such as weak
convexity, differentiability, fuzziness of objective
function, weak convexity of constraint conditions and
S0 on.

In recent years, in order to solve these
problems caused by different influencing factors, many
scholars have explored the weak convex function and
studied its application in optimality conditions. For
example, O.L. Mangasarian [1] described the properties
and applications of pseudoconvex functions in 1965,
and obtained sufficient conditions for Kuhn-Tucker
differential conditions to be optimality when the
objective function is pseudoconvex and the constraint
condition is quasiconvex. Jean-Philippe Vial [2]
proposed a class of convex functions in 1983, namely,
convex functions. According to the sign of constants,

this function is called weakly convex or strongly
convex. More importantly, he obtained sufficient
conditions for the global optimization of non-convex
programming problems for such functions. Chanchal,
Singh [3] discussed sufficient optimality criteria for
quasiconvex  functions  in  continuous  time
programming. Westerlund, T., and Pdérn, R [4]
introduced a cutting plane technique to solve the
pseudoconvex mixed integer optimization problem. In
2012, Ivanov, V. I. [5] derived the optimality conditions
that the objective function is a pseudoconvex function.
Mishra, S. K. [6] et al., derived some conditions for the
minimization of nonsmooth pseudolinear functions, and
obtained that the effective solution can be an
appropriate effective solution under these conditions.
With the deepening of research, scholars have also
found that the differentiability of the objective function
plays an extremely important role in the optimization
problem. However, in real life, the functions we need to
solve are often non- differentiable or subdifferentiable.
In order to solve this problem, Craven, B. D. and B.
Mond [7] find the minimum value of the function
extended to the partial ordered space, and the objective
function and constraint function are not always
differentiable, and some results are obtained. P.,
Kanniappan [8] et al., obtained KKT necessary and
sufficient conditions and its duality for convex
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programming problems with sub-differential operator
constraints. More importantly, we want to explore a
method or a generalized differentiability to solve the
non-differentiability of functions. In 2013, Megahed [9]
proposed the concept of E-differentiable convex
function, which converts the non-differentiable convex
function into a differentiable function under the
operation symbol, and derives Kuhn-Tucker and Fritz-
John conditions to obtain the optimal solution of the
optimization problem.

In fuzzy mathematics, since Chang and Zadeh
[10] proposed fuzzy mappings, more and more scholars
have studied some generalized convex fuzzy mappings.
Sudarsan Nanda and Kadambini Kar [11] made
pioneering research on mappings and proved that a
fuzzy mapping is convex if and only if the above graph
is convex set. Yu-Ru Syau [12] derived the relations
among convex fuzzy mappings, pre-invariant convex
fuzzy mappings and fuzzy mapping classes in 2000.
Then Yu-Ru Syau [13] proved in 2001 that the classes
of B-vex fuzzy mappings form a subset of quasiconvex
fuzzy mappings. In 1983, Puri [14] defined the
derivative and H-derivative of fuzzy mapping. Osmo
Kaleva [15] studied H-derivative and obtained a
necessary and sufficient condition for H-derivative of
fuzzy mappings. In 2003, Wang and Wu [16] proposed
the concepts of directional derivative, differential and

subdifferential of fuzzy mappings from R" into E'.
With the in-depth study of H-derivative, scholars have
found that often the objective function is non-
differentiable under the definition of H-differentiability.
To solve this problem, B.Bede [17, 18] et al., proposed
a generalized Hukuhara differentiable concept to solve
the problem of nondifferentiable functions.

With the in-depth study of fuzzy function and
the wider application of fuzzy function in real life,
fuzzy optimization problem has become an important
topic for scholars. Panigrahi [19] extended the concepts
of differentiability, convexity and generalized
convexity, and derived KKT conditions for constrained
fuzzy optimization minimization problems. Wu [20]
derived the Karush-Kuhn-Tucker condition of the
fuzzy-valued objective function optimization problem
and proposed the concept of the solution of the
optimization problem. All our academic research is to
solve practical problems. Therefore, the objective
function of the fuzzy optimization problem we face

Il. SYSTEM COORDINATES

becomes complicated, such as interval function. In
2012, Zhang [21] extended the concepts of preinvexity
and invexity to interval- valued functions, and obtained
KKT optimality conditions for Lu-preinvex and invex
optimization problems with interval-valued objective
functions. Chalco-Cano [22] et al., used the concept of
generalized Hukuhara derivative to obtain KKT
conditions for interval-valued functions. Finally, the
purpose of our study is to solve the optimization
problems brought by practical problems. In order to
obtain some complex problems, we propose to find the
dual problem of the problem. Wanka [23] et al., gave
conditions to characterize strong and complete
Lagrangian duality for convex optimization problems in
separated locally convex spaces. Craven [24]
constructed a Wolfe dual problem to solve the
continuous weak minimization of the vector objective
function.

Inspired by the research in these fields, and so
far, few people have studied the weak convexity of
optimization problems. Therefore, it is necessary to
study the concept of generalized convex fuzzy mapping
and related fuzzy optimization problems. Based on the
study of a-—convex fuzzy mapping in [26], the basic
concepts and properties of a— quasiconvex, strictly
a—quasiconvex, «a-—pseudoconvex and strictly a-
pseudoconvex are given. The optimization problem of
fuzzy interval function is studied, and the KKT
condition of mixed constraint programming is obtained.
Its weak duality, strong duality and inverse duality
theorem is given.

This paper is structured as follows. The second
part mainly introduces some basic knowledge of fuzzy
numbers and fuzzy intervals, and a partial order of
fuzzy intervals. The third part discusses the
differentiability of fuzzy interval function, gives the
definition of a— quasiconvex, strictly a— quasiconvex,
a— pseudoconvex, strictly - pseudoconvex, and gives
the corresponding examples. We also discuss the
relationship between the above fuzzy functions. The
fourth part obtains the KKT conditions of the fuzzy
optimization problem based on mixed constraints. The
fifth part studies its weak duality, strong duality and
inverse duality theorems. The sixth part is the
conclusion.

We denote by K. the family of all bounded closed intervalsin R ,i.e.,

K. ={[c.C]jc.c eRand c<C}.

Afuzzy seton R" isamapping v: R" —[0,1]. We call [v]” ={Xe R" ZU(X)Za},

a—cutforany o (0,1], and

supp(v) = {x eR":v(x)> 0}
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is called the support of v . We defined [U]O is the closure of supp(v) . Triangular fuzzy numbers are a special type of
fuzzy numbers which are well determined by three real numbers a <b <c, denoted by v =(a,b,c),With & —levels

[v]" =[a+(b-a)a,c—(c-b)a],
forall « (0,1].

Definition 2.1. [25] We called a fuzzy set v on R is a fuzzy interval if:
1. v is normal, i.e. there exists Xx° e R such that u(x(O))zl;

2. v is an upper semi-continuous function;
3. v(Ax+(1-2)y) 2 min{v(x),v(y)},
x,yeR", 21€[0,1];
0.
4. [v] is compact.
Let F. denote the family of all fuzzy intervals. Therefore, for any v e F. we have that [U]a ek, forall & <[01].

The o — levels of a fuzzy interval are given by [U]a = [Qa,z?a] v, U, €R forall «<[0,1].

1 !

Theorem 2.2.[27] Assume that | =[0,1] and v € F, then the endpoint functions v:1 >R and 5:1 — R satisty the

following conditions:
(1) o isabounded, decreasing, left-continuous function in (0,1] and it is right-continuous at 0.

(2) o isabounded, increasing, left-continuous function in (0,1] and it is right-continuous at 0.
) v(1)<5(1).

In the following, we consider the fuzzy intervals y,voeF., 1R ,for xeR,
(+0)(x) = sup min{x(y),v(z)},
y+z=X

y(ﬂ‘lx), A#0
0 , 1=0

wo(x):{

Also, we know that for any two fuzzy intervals ., o represented by [;_ta,ﬁa] and [u,,0, ], for a €[0,1]. For any real
number A, we have

o] =[(e+o), (7+D), ],

(0] =[(20),.(20),]

=[min{Av, 20, },max{iv,, 20, }]

Definition 2.3.[26] A function F:K — F. is said to be a fuzzy function. For each « <[0,1], we associate with F the
family of interval-valued functions F, : K — K_ given by

F,00=[F(X)]".

Forany « <[0,1], we denote

F,()=[E, (0, Fa(x)].

Remark 2.4.Let F is a fuzzy interval represented by
[E.(0.Fa(0],
forall o €[0,1]. For any real number 4, we have

F+l=[£a(x)+ﬂ,Ea(x)+l].
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Definition 2.5. [28] (H-difference)We denote the set of all fuzzy number of E . For m,n < E, there exsits we E such
that m=n+w, then it is said that the Hukuhara difference between m and n exists. So w is called H-difference
between m and n, and is denoted by m—, n.

Definition 2.6.[29] (gH-difference)For A=[a,a], B= [Q,E], and A BeK., we have
(i) A=B+C

(i) B=A+(-)C"

And here gH-difference C exists, C is equal to

C =[min{g—g,a—ﬁ},max{g—g,é—ﬁ}].

Al B:C<:>{

Definition 2.7. [32, 33] Given two fuzzy interval ., v, the generalized Hukuhara difference (gH-difference for short) is
the fuzzy interval @ , if it exists, such that
i e {(i) U=U+T

o (i) v=pu+(-Da’

It is easy to show that (i) and (ii) are both valid if and only if @ is a crisp number.

Definition 2.8. [34, 35] Given two fuzzy interval 4, o, we define the distance between , and v by
D(u,0) = sup H ([u]" [o])

a<[0]

sup max{;_za,l)_a|,|ﬁav‘7a|}l

ae[D,l]
where H is the Pompeiu-Hausdorff distance defined by

H(AB)= max[n;g(d(a, B),nggg(d (b,A)J

with d(a,B)=min|fa-b].

It is known that (see [35])
H(AB)=|Al , B|where,

for C K., [C| =max{|c/;ceC}; then

D(u,v) :Sup{H[,u]a D g [U]a “;a € [0,1]} )

It is well known that (FC, D) is a complete metric space.

Definition 2.9.[26] For A=[a,a], B=[b,b |, and A,B e K, , we say that
(i) A<, Bifandonlyif a<band a<b,

(i) A;LU Bifand only if A<, Band A= B,

(iii) A<, Bifandonlyif a<b and a<b .

We have that, using gH-difference,

A=, B (Al B)<,, 0

A<, Bo (Al B)<,, 0

A=, Bo (Al B)<,, 0

A=B (Al B)=0.

Definition 2.10.[26, 36, 37] For u,v e F. and given « €[0,1], we say that

(i) u=,.pvifandonlyif u, <., v,, thatis, x4, <v, and g, <o,,

a

(i) If p=, ., vifandonlyif x <., v,,

a
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(iii) If w=<,_ , v ifandonlyif z, <, v,.

a

Correspondingly, the analogous LU-fuzzy orders can be obtained by
(i) =z o, if p=, o forall aef01].

(i) p= v, if p=, o forall o <[0,1].

(i) =<, v, if u=<_ v forall aE[O,l].

Remark 2.11. Obviously, we can conclude from the similar literature of a — LU partial order that not all of them satisfy
the order relation (maybe some values or close to 0 ). In the comparison of fuzzy numbers, the comparative relationship
cannot be fully reflected. In practical applications, if the value does not satisfy the «— LU partial order, some examples

may lead to wrong conclusions. On the other hand, if the LU order relation cannot be compared, but for « e[&,l] , the
a—LU order relation can be compared, then this can help us analyze the problem.

In order to avoid above problem, we give the following concept
Definition 2.12. For v eF..Forall 2 €[0,1],

(i) if either M2,y OTv=Z, 1y M

(i) if either <, 0 Or L=< | K ;

(iii) if either <, v Orv=<_ , 4,

Then we say that x and v are comparable, otherwise they are non-comparable.

In the following, we discuss the problem that « — LU order relation is comparable and LU and « — LU order
relation are equivalent.

I1I.GENERALIZED a-CONVEX FUZZY MAPPINGS AND PROPERTIES

Differentiability and gradient are two important concepts in generalized convexity study. In recent years, many
scholars have conducted extensive research on it. Different differentiability will bring different research results; this
paper mainly studies according to gH-differentiable.

Definition 3.1.[17] Let K < R wtih F:K —F_ be a fuzzy functionand x” e K and he R be such that x© +he K

. Then generalized Hukuhara derivative (gH- derivative, for short) of F at x© is defined as

F(xX?+hyt , F(x©
(x +)hg (X), O

If F’(x(°)) e F. satisfying (1) exists, we say that F is generalized Hukuhara differentiable (gH-differentiable, for short)

AT
)=ty

at x9.

Definition 3.2.[18] Let K =R wtih F:K —F. a fuzzy function, xX” eK and heR be such that xX?+heK.
Given «a €[0,1], the level-wise gH-derivative (LgH- derivative, for short) of the corresponding interval-valued function
F :K K. at x° is defined as

, FE,(x@+h)r (X
Pl (") = lim - . @
if it exists. If FL'gH,a(X(O))eKC for all a€[0,1], we say that F is level-wise generalized differentiable (LgH-

differentiable, for short) at x'” of the family of intervals {ngH,a X" :a e [0,1]} is the LgH-derivative of F at x*

denoted as F, , (x9).

As a consequence of the previous definitions, it is derived that LgH-differentiability, and consequently level-
wise continuity, is a necessary condition for gH-differentiability, but it is not sufficient (see [18, 38]).
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Theorem 3.3.[26] Let F:K — F. be a fuzzy function. If F is gH-differentiable in the form (1), then F, is LgH-
differentiable in the form (2) for each « €[0,1]. Moreover,

Pl 00 = F' (0] ©
Proof. Verified by the definition of gH-differentiability.

a

On the other hand, the existence of the gH-derivative for a fuzzy function does not necessarily imply that the
corresponding endpoint functions are differentiable, such as the following example shows.

Example 3.4. Let us consider the fuzzy mapping F:R — F. defined by F(x)=C-x, where C is a fuzzy interval
defined via its o — level sets by [C]" =[a,3+a]. Then

F :{[axy(%a)X] if x>0

[(B+a)x.ax] .if x<0 '

So, we have

F. ~F. _ (3+a)h-0
lim Fa(O+h)-F (O)zllm(JrL:3+a,
h—0* h h—0" h
||m Fa(o+h)_Fa(O):“m ah—OZa’
h—0" h h—-0- h
lim E(z(0+h)_E(1(O)=IIm ah_oz 1
h—>0* h-0" h

- 3 h-0

jim E«Q*M-E, @ _, G+a)h=0_,
h—0" h h—0" h

If let =0, now

limF.(0)=3+a = limF.(0)=«a,

h—0* h—0~

and

IimE (0 =a#IlmE_(0)=3+c.
h—0"

h—0"

We can see that the endpoint functions F , (x), Ea(x) are not differentabile at x =0.

However F is gH-differentiable and F'(x)=C for all xeR. Then it follows relatively easily that gH-

derivative exists and it is F'(x) =C but the endpoint functions F_(x) and F.(x) are not necessarily differentiable.

Theorem 3.5. Let F:K — F_. be a fuzzy function. F is LgH-differentiable at x" if and only if , for each « e[O,l],
following case hold:

(), (X(l))y (lfa)'+ (x(l)), (Ea)'f(x(l)) and (F,) (x(l)) exsit, and

[P )] = minf( (7)) (¢ mar{ ) x) () ()

[F’(x(” )T = {min{(ﬁl ). (x(l)),(lfa ). (x(” )}max{(lfa ). (x(”),( F ). (x(“ )H :

Obviously, the generalized Hukuhara differentiability of interval-valued function is not fully equivalent to the
one-sided differentiability of its endpoint functions.(see [39])

Definition 3.6.[26] Consider an interval-valued function F:K — K., where K is any open subset of R". If d eR" is

any admissible direction at X% eK , we say that F has the one-sided directional gH-derivative at x® in direction d , if
the following right limit exists and is an interval:
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F(xX* +td)! ,, F(x*)

' (0). — i
Fau (X75d) tILrp "

(4)
If the left limit for t — 0~ of the function above exists and the two are equal, we say that F has the two-sided
directional gH-derivable in direction d at X(O).

Definition 3.7.[26] Consider an interval-valued function F:K — F., where K is any open subset of R". If d eR" is
any admissible direction at x® e K , then given « € [0,1], the directional level-wise deneralized derivative (directional

LgH-derivative, for short) of the corresponding interval-valued function F, :K — K. at x® in the direction d is
defined as

Flon o (X d) = lim

If it exists.
1) If FL'gHya(x(O);d) e K. exists for all a€[0,1], then F is said to have the directional LgH-derivative at x'° in

direction d .
(2) We say that F is directionally (or weak) level-wise generalized differentiable (directionally or weak LgH-

differentiable) at x'° if F admits directional LgH-derivatives at x° in any direction d e R" and for all a<[0,1]; the
family of intervals

{Fip . (%) e e[0,1])

Is the directional LgH-derivative of F at x'” in direction d , denoted as Flan. a(x d).

F,(xX%+hd)! , F,(x?)
h

(4)

(3) We say that F is directionally (weak) gH-differentiable at X if it is directionally (weak) LgH-differentiable at

x® in any direction d and the directional LgH-derivative Flon (X ,d) defines a fuzzy interval (i.e., the intervals
Flo o (x9:d) define the level-cuts of a fuzzy interval);

(4) F is said directionally (weak) LgH-differentiable on K if it is directionally LgH-differentiable at each point
© e K and is said directionally (weak) gH-differentiable on K if it is directionally gH-differentiable at each point
@ ek,

Definition 3.7.Let f :W — R" be defined on a nonempty open convex set W < R". We define the i th partial derivative
of f at x© as the family, if it exists,

of (X(O)) of (X(O))

OX.

i Xi

11=12,3--

And we define the directional derivative of f at x© as follows.

©) _ ©
f’(x(o’;d):limf(x +¢9d) f(x )

00" 2]

n 0
For any deR" vt (x(o);d) denotes the directional gradient of f at X in the direction 9 .

Definition 3.8.[26]We define the i th partial LgH-derivative of F at x® as the family, if it exists,

o F(x”) _Jown.F(x?).
OX: a OX:

€ [0,1]

And we define the LgH-gradient of F at x° as follows.

o)) el

LgH 1 )

24 X,
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In the one-dimensional case, we can state a rule to calculate the directional LgH-derivative via the the
LgH-derivative as follows.

Theorem 3.9.[26] Let K be a non-empty open subset of R and F:K —F_. be an fuzzy function. If F is LgH-
differentiable, then F is directionally LgH-differentiable on K , and

LgHa(t07d ) LgHa(to)'do’
forall t,eK, d, eR and a €[0,1].

Definition 3.10.[26]Let F be LgH-directional differentiable and ae[O,l] \We say thatF is a—convex at xeR" on
W cR" if

Rl e (6X=%) =, 1y F, (X)! g F, (%)

for all X eW . We say that F is —convex on W if it is «—convex at every x e R" on W .We say that F is o —

convex at xeR" if it is a—convex on R". And we say that F is «—convex on R" if it is o — convex at every
xeR".

Definition 3.11. Let W be a nonempty open convex set in R", let F be LgH-directional differentiable on W . For all
ae [0,1] , We say that F is « — quasiconvex if and only if either one of the following equivalent statements holds true:

(i 1f x¥ x?ew, Fa(x(”)éa_LU Fa(x(z)) we have F/, a(x(z);x(” —x(z)) .0 [0,0].
i) 1f x¥, x? ew and FL'gHa( @, x(l)—x(z)) -1 [0,0] we have F, ( ) W Fa(x(z)).

forall x¥and x? ew .

Example 3.12.Let W be a nonempty open convex set in R" and W =(0,+). Let us consider the fuzzy mapping

F:R—F. defined by F(x)=C-x* where C is a fuzzy interval defined via its o — level sets by [C]" =[a,3c].
Then,

F,(x)= [ax2,3ax2] :
Obviously, F is gH-differentiable. According to Theorem 3.3, F is LgH-differentiable. Moreover, F is a a—
quasiconvex function. Such as, for xY =1, x? =2, we have

F, (1)=[a 3],

F,(2)=[4a.12a],

Flin o (2-1) =[4a,-12a].
Obwously,

F0) 2w F(2)

and [-4a,-12a] <, ,, [0,0], for any «€[0,1], satisfies the Definition 3.11. Therefore, F is a «— quasiconvex
function.

Definition 3.13. Let W be a nonempty open convex set in R", let F be LgH-directional differentiable . For all
ae[O,l], the F is said to be strictly o — quasiconvex if for each X x? eW with Fa( );t F, ( ) we have

F (X" +(1-0)x? )<, 1y max{Fa (x¥),F, (x? )}
foreach 6(0,1).
The function F is called strictly o — quasiconvex.

Example 3.14. Let W be a nonempty open convex set in R" and W =(0,+o0). Let us consider the fuzzy mapping
F:R — F. defined by F(x)=C-x*, where C is a fuzzy interval defined via its o — level sets by

[C]a = [a,l+ a] .
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Then,

F,(0=[aX,(1+a)X ].

Obviously, F is gH-differentiable. According to Theorem 3.3., F is LgH-differentiable. For any xY, x? eW and
W =(0,+x), we have

XY +(1-0)x? eW .

Moreover, F is astrictly «—quasiconvex function. Such as, for x® =1, x® =2, we have

F,(1)=[al+«a],

F,(2)=[4a.4(1+2)].

F,(2-0)=|2(2-0)",(1+a)(2-0)’ |

Obviously, F,(1)=F,(2), forany a<[0,1],

[a(2-0) (1+a)(2-0) | <, 1 F.(2)

Satisfies the Definition 3.12 for o [0,1] . Therefore, F isastrictly «— quasiconvex function.

Definition 3.15. Let W be a nonempty open convex set in R" , let F be LgH-directional differentiable on W . For all
a [0,1], the F is said to be o — pseudoconvex if for each x” and x® eW with

Floa (X(z>; 0 _ x(z)) =0 [0,0],

we have FQ(X(l))< F (x(z)),for all xYand x? ew .

—a-LU "«

Example 3.16.Consider the following fuzzy mapping

Ix, xe[-2,0)
X = ~ L
Ix+1,x€(0,2]
where 1 is triangular fuzzy number, namely 1=(0,1,0) . Then,
,ax|, -2,0
E (x)= [ax,ax], xe[-2,0) |
[ax+1ax+1],xe(0,2]
Obviously, F is gH-differentiable. According to Theorem 3.3, F is LgH-differentiable. Therefore,
[a,a], xe[-2,0)
(X)= [ '
a,al, xe(0,2]
Such as, for x¥ =2, x® =1, we have
Flgn. (51) =[@.@] 2[0,0].
Moreover,
Foz (1) = [a’ a] !
F,(2)=[2a+12a+1],
and
F, ()= F.(2),@€[01].

F!

LgH &

Definition 3.17. Let w be a nonempty open convex set in R", let F be LgH-directional differentiable . For all
a e[O,l], we say that F is strictly « — pseudoconvex if for each x® and x? eW satisfies

o (X(Z); x® _ X(Z)) =L [0,0] ’

we have Fa(X(l))-<a7LU F (x(z)),for all x” and x? ew .

a
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Example 3.18.Consider the following fuzzy mapping

(%)= {ix, x€(0,2]

~Ix, xe[-2,0) ,
where 1 is triangular fuzzy number, namely 1=(0,1,0) . Then,
[ax,ax], Xe (0, 2]
(Xyzﬁ—am—axLXG[—Zoy
Obviously, F is gH-differentiable. According to Theorem 3.3, F is LgH-differentiable. Therefore,
(x)= {[a,a], xe(0,2]

g [-a,-a],xe[-2,0)

LgH
Such as, for x¥ =2, x® =1, we have
Flgia (31) =[a,a]=[0,0].
Moreover,

F, (1) =[aa],

a

F,(2)=[2a,2c],

Obviously,
F,(1)<F,(2), ae[0].

Theorem 3.19. Let W be a nonempty open convex setin R", let F be LgH-directional differentiable . For all o [0,1],
if F is a—convexon W, We have F is o — pseudoconvex on W .

Proof. Let F be o —convex, let x¥, x® ew . And w is convex aggregation, we have
Flno (XX® =x) <,y F (X )1 B (x),

If Fl (x(l);x(z) —x(l)) ~,1u [0.0], we have

F (X)) g F (X)) mw [0,0],
that is,

i 3°)- ) 17)- .0

max[E ()£, (x"). . (") F.

what is equivalentto F, (x(z)) > F (x(l)) ;

—a-LU "«

And F be a— pseudoconvex.

Theorem 3.20. Let W be a nonempty open convex setin R", let F be LgH-directional differentiable . For all « [0,1],
if F is a— pseudoconvex, we have F both strictly o — quasiconvex.

Proof. We first show that F is strictly « — quasiconvex. By contradiction, suppose that there exist xY and x® ew ,
such that

F, (x(l));t F, (x(z))

and
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where X' =0x" +(1-60)x?, for some &< (0,1). Without loss of generality, assume that F, (x(z))éa_w F, (x(l)), S0
that
Foz (X(Z) ) <af—LU Foz (X(l)) éa—LU th (X,) (5)

Next, we consider F_(x) = [Ea (x),Ea(x)] . Since W is a convex subset, F is differentiable on the closed segment | of

x®and x?. Then F(x),F«(X) mustbe continuouson | cW .

From the property of continuous function on closed region, we can see that Ea(x) has the maximum value on
I, which must be obtained on | .
Sothereis X el and 6 <(0,1),we have
F, (%)= F, (x+0(x" -x)),
F(X)=F,(x+0(x"-x)).  ©
f

From the differentiability of F :
F, (x+6(x %)) -F, ()

im 7 = Rl (%09 =),
E (x+0(x? %)\ -F (x

Ligg Fa(X+9(X ; X)) Fa(X)=FL'gH,a(Y;X(2)_X)

From (5):

Floia (Y; xY —Y) <, [0.0],

Pl (i; X — Y) <. [0,0]. (D)

x—x? +ox?

And X e, suppose X =60x" +(1-0)x?, 6 €(0,1), we have x" = >

Substitute (7):

IEI_’gH,o.r (Yl X(Z) - 7) >=_a—LU [0’ 0]
Floa (K; x? — Y) <40 [0.0].

Therefore,

Flgne (KX =X) =, 1 [0,0].

Also known that F is & — pseudoconvex function on W , so F. (x) isa o — pseudoconvex function , then
F(x?)= u F.(%).

Similarly,

E, (X(Z) ) =,w Fu (Y) :

Overall, we have Fa(x(z)):a_LU F,(X).

a

a

F (x(l)).

a-LU a

Since Fa(x(z))ﬁﬂu F (x(l)),

So F,(X)<

IV. SUFFICIENT AND NECESSARY OPTIMALITY CONDITIONS OF THE MIXED CONSTRAINED
OPTIMIZATION PROBLEM

In this section, we establish some sufficient and necessary Karush-Kuhn-Tucker conditions for a xY eW to be
a feasible solution of constrained optimization problem (MFP). In the following, we consider the problem (MFP):

Min F(x)=[F(x),F(x)]

st. 0;(x)<0, j=1--m;
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h(x)=0, k=1---,p;

xeW

where F:W —F. , g;(x) and h (x) is a differentiable real-valued function. W — R" is an open convex set. We
denote the feasible solution set for (MFP) as D :

D={xeW:g;(x)<0,h (x)=0}

we define

1) ={jefL--m}:g,(0=0},

[ ={je{L-m}:g;(x) =0},

() ={ke{l-+, p}:h (x)=0}.

Definition 4.1.[26] Given XY eW and « e[O,l], we say that xY is a weak & -LU-minimum point of F if there exists
no x eW such that F(X(z))-ﬂ“_u F(x(l)). Correspondingly, we say that x® is a weak LU-minimum of F if there

exists no x? eW such that F(x(z))<LU F(x(l)) and x? is a weak global LU-minimum of F if x" is a weak « -

LU-minimum of F , forall « .

Definition 4.2.[26] Given xYeW and « e[O,l], we say that x” is a a -LU-minimum point of F if there exists no
x? €W such that

F(x(z))jmLU F(x“)).

Correspondingly, we say that x® is a LU- minimum of F if there exists no x® eW such that F (X(z))jl_u F (x(l)) :

and x is a global LU-minimum of F if x isa a -LU-minimum of F ,forall .

Theorem 4.3. (Sufficient « —optimality condition) Let F be a directional LgH- differentiable fuzzy function. Let
xY eW and forall a e [0,1], if there does not exist d e R" such that
FL’gH a (X(l)’d) %afLU [0'0] (8)

and F is strictly «— quasiconvex. Then xY is a weak o -LU-solution of F .

Proof. Suppose there exists x eW such that F, (x®')<, ., F, (x). By the convexity of W, ox? +(1-6)x" ew

foreach 6<(0,1).

But because F is strictly « — quasiconvex, we have

F, (Hx(z) +(1-0) x(l)) <y max{Fa (x(l)), F, (x(z) )}

where max{Fa (x(l)), F, (x(z))} =F, (x(l) )

It follows that,

F, (0x® +(1-0)x" )1 5, F, (x¥)=<,0 [0,0].

According definition 3.6, we have

F (x"+o(x? —x))1 , F, (x¥
(-0 ) 7 ()

(i)FL'gHva(x“);d):glLrg 5 w0 [0,0] or
® @ _ ®

(ii)FL,gHﬁ(X(l);d):gILnOl Fa(X +¢9(x ;( ))' oH Fa(x )j{HU 0,0]or
@) (2 _ @ @

0, (£:0) = lm F, (x+0(x ex )t o F(x );aw 0,

1.e.,
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FL’gH a ( (1)’d) %afLU [0’0] "
withd =x? —x® , what is a contradiction to the hypothesis that there exists no d such that
Flgn a( de) w-wu [0,0].

Definition 4.4.Let x¥ be a feasible solution of (MFP) and « e [0,1], then
(i) x® is said to be a weak o — LU —solution of (MFP) if there no x® e D such that
Fa(x(z))ﬁﬂu F, (x(l)).

(i) X is said to be a  — LU —solution of (MFP) if there no x® e D such that
F, (x(z)) <. F, (x(l)) .

Lemma 4.5. Let F is LgH-partial differentiable. If xY is a weak « -LU-solution of (MFP), g;(x) is continuous at x
for jeT(x").Forall & [0.1]. Then the system

Fln (}Vix=x¥) <, [0,0], (9

vy, ( X — xl))<0 (10)

th(x ;x—x(l))<0, (11)

has no solution x eW , where W — R" is an open convex set.

Proof. Assume there exist X such that the inequalities (9), (10) and (11) are ture, i.e.,
Flna (X %=x) <, [0,0],

vy, ( X — xl))< 0,

vh, (x ;X—x(”)<0.

Let

ve (¢, %,0) = F, (¢ +a(®x-x")1 , F, (x7).

We observe that this function vanishes at q=0,

ie.,

we (X", %,0)=[0,0].

Given ae[O,l], by definition 3.7, the right differential of (x(l),Y(, q) with respectto q is
1) o O o

i Ve X 5 v (.%,0)

q—0' q

F, (<" +q(z—x“>»! i B

=lim
q—-0"
_FL’gH a( ' ) a-LU
Therefore, v (x", %,q) < 4Lu [0 0] if g is in some open interval (0,9;).
ie.,
F (¢ +ax=x") 1t g F, (7)<, [0,0].
That is
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E, (x¥ +q(x-x"))
max
F, (x(l) +q(X— x(l)))— F,(x"
ije., )
F, (x( ) +q(x— x(l)))— E, (x(l)) <0

It follows that

F (" +ax-x") <, ., F,(x") .0 (0.6,
Similarly, by defining

V/QI(X(l)) (X(l)' )~(v q)

- g.(xm) O+ a(x-x") - gu(m)) (). je! (X(l) )
When q=0, we have v, (x¥,%,0)=0.

(<¥)
The right differential of v, o) (x",%,q) with respect to q is

Vo %)~y @) x",%,0)
m
q—0" q
g ) (X(l) +q(X— X(l))) -9 ) (X(l))
=lim '
qLO+ q

=V, (x(l); g — x(l))< 0.
we can prove that
9, T raG—M<g ()< 0,67
By definition of | (x(”) and je I(x(l)) , We have g ( (x") =0. We obtain
i(x)
9, o +a(x—x")) <0,q€(0,5%).
&)
Since g, is continuous at x” for j e T(x"), Therefore , there exists &° such that
g,(x" +q(x-x")) <0,q€(0,5%).
Similarly, by defining
v, (x7,%,0)
=h (xY +qR=x)—h (x¥),k e (x<1>)
When q=0, we have y, (x”,%,0)=0.
The right differential of y, (x(l),Y(, q) with respectto q is

Y (X(l)v )~(’ q) —W¥h (X(l)v )N(v 0)

lim

g—0" q

= jim & 9 =x) ~h, (")
gq—0" q

=vh, (x“); X— x(l)) <0.

we can prove that
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h (X" +q(x—x®)) <h (xV),q € (0,5%).
Let 5 =min{s",6%,5°,5°}.

Then, x” +q(x—x") e N-(x"),q€(0,5),
where N (x") is a neighborhood of x?
Now

F, 07 +a(x-x") <, F,(<P)  (12)
90 (rar<g 60 @3)

9, (x +q(x-x") < g,(x") (14)
h (x¥ +q(x—x")) <h, (x) (15)
By (12-15), we get

Y1 gE—x"yeN;(x")ND, qe(0,5).

Hence (12) is contradiction to the assumption that x® is a weak « -LU-solution of (MFP). Thus, there exists
no xeW satifying the system.

Theorem 4.6. (KKT necessary condition)
Let W be a nonempty open convex set of R". Forall « [O,l], and we can find a point x? eW such that

FL’QH a( (l); X _X(l)) “a-LU [0'0] )
(i) Assume F is LgH-partial differentiable and LgH-directional differentiable at x® such that

O.uF
Pl (X ”;d)@—g “(x)-d,,

foranyd e R".
(i) Suppose x" be a weak a -LU-solution of (MFP) and assume that g, is continuous at x" for je i (x").

iii) g; and h,_ is directionally differentiable at x” such that
(iii) g; h y

Vg, (x¥;d) :ia—f(x“)
oh
v (x5a) = 3 200

3

(x)-d,.
Then, there exist A e R, = (g, -, 4,) € R™ and v =(v,,---,v,) € R" such that

[00]€ AV F, ")+ > w7, (x(l)+Zuth (x) (16)
jel ()

#,9,(x")=0, (17)

(A4, 14,0)20. (18)

Proof. Since x® be aweak o -LU-solution of (MFP). By the lemma 4.5 , there exist no X €W statisfying
FL’gHa( x®- x—x“))< v [0.0],

g, (x<1 X— xl))<0

th(x ;x—x(l))<0.

Then we take x® | there exists x'? —x® such that
Fipn (XX XY = $ % Fe oy (@ _xy 1)
LgH ,a ) - 5Xi .
And according to conditions, the opposite of
Fl (x(l); x? — x(”) <40 [0,0]
has and only has the following case :
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Flita (Xu); NG _x(1>) =0 [0,0], (20)
vy, (x(l); x? — x(l)) >0, (21)
vh, (x(l); x® —x® ) >0. (22)
We multiply inequalities (20-22) by the multipliers 4, x; and v, , respectively, obtaining
Ao (X6 =X, 2[0,0]=[0,0], (23)
ijgj(x(l);x(z)—x(l))ZO, (24)
v, Vh, (x(l); x? — x(l)) >0. (25)
According to the conditions, we have
n 9, F
Ay = (). (X —x) , y [0,0], (26)
i=1 axi -
99 (Y. (@ _ 4@
wy Y, —(x9)-(x*-x") >0, (27)
jel (x®) aXi
N WY (@ O
v, Y, —0)-(x? -x")>0. (28)

jef(x®y U4
Now, combining interval inequalities in (26-28), we get

n o F m m
lz LgH  a (X(l)) . (X(Z) _ X(l)) +u Za_g(x(l)) . (X(Z) _ X(l)) +0, Z@(X(l)) . (X(Z) _ X(l)) = [0,0]
i=1 aXi : i=1 aXi i=1 axi -
From this inequality, we have
P
[00]€ AV () + Y 4,7, (xX*)+ 0, vh (xV)
k=1

jel ()
The proof is completed.

Theorem 4.7. (KKT sufficient condition)
Let W be a nonempty open convex set of R". For all « €[0.1],

F is LgH-partial differentiable and LgH-directional differentiable at x® such that

Fl_’gH,a (X(l);d) = ial_gLX&(x(l)) -d;,

i=1 i

for anyd e R".g; and h_ is directionally differentiable at x? and there exist1eR, u=(u, -, 1,)eR™ and
v=(v,-,v,)eR" such that

- p
[00]€ 2V F, )+ Y 4,vg, () +Y 0, vh (x¥)  (29)

jel_(X(l)) k=1

#,9;(x")=0. (30)
(A, p,0)=0. (31)
If F is strictly o — quasiconvex at x”, g, is convex at x” in D, for jel(x"), h, is convex at x” in D, for

k=1---,p,then x¥ bea « -LU-solution of (MFP).

Proof. Let us suppose the contrary. So, there exists x® e D such that
F. (X(Z)) < Fa (X(l)) .

By the convexity of W , we have

Ox? +(1-0)x” eW,0 & (0,2)

By the definition of strictly « — quasiconvex of F , it follows that

F, (0x® +@-0)x) <, , max[F, (x"),F, (x?)},

where max{Fa(x(l)), F, (x(z))} =F,(x").

| © 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India [ 78 |




Juwen Li et al., Sch J Phys Math Stat, Feb, 2023; 10(2): 63-86

Then we have
F (0x? +1-0)x") <, , F,(x"y,
that is,

E, (0x? +@-0x" ) <E, (x")
F, (Hx(z) +(1-0)xY ) <F, (x(l)) ’
what implies that,
E, (Hx(z) +(1—9)x(1))—F (x(l))<0
= (Hx +(1- 9)x1)) F ( )<0
Given a €[0,1], According definition 3.6,
(559 ) = i E (x4 0 - x)) — E, (x)

I:I_'gH a ’ 050" 9 < 0 y
- E, (Y40 - Xy~ E, (x)
' x0-x(@ @) —a =
. (47X 5" )= fim - <0,
what is equivalent to
(. im Fe 07 0<% —x)) - F, (")
FLgHa( ),X(z)_x(l)):lqll_)ry 9 -=<a—LU [0,0].
Since F satifies condition
LGN
, 1)_ _ LgH " « (1) .
Pl (X0) = =50 0,
we have
! @42 _ 4@ O e
FLgH a( X=X ):Z x ( ) (X )—éa—LU [010]- (32)
i=1 i
By differentiable and convexity of g, and h,, for je f(x) and k=1,---, p, we have that
vy, (xix® —x) < g, () -g, ") = g, ") <0. (33
And
Vh, (x(l); x@) — x® ) <h, (x®)=h (x¥) =0. (34)

By hypothesis there exist 1 € Rand (4, &, v) >0 such that the conditions (29-31) are satisfied. We multiply inequalities
(32-34) by the multipliers A, x;and v, , respectively, obtaining

0 d,F

22 =2 =) (K =x) =, [0,0]. (35)
,ungj(x(l);x(z)—x(l))<0,je |~(X(1)). (36)
and

ukvhk(x(l);x(z)—x(l))so,k:1,---,p. (37)

Now, combining interval inequalities in (35-37), we get

ﬂzn:a%%(x(l))-(x(z) XY+ 1,4, (x(l x? x(l))+ukvhk(x(1);x(z) —x(l)) «w [0.0].  (38)
Th;: inter\I/aI inequality (38) implies that

[00]e AV, F, (x") + z ;v g, (" )+Zukvh (x®y,

jel(xY)
what is contradiction to (29), and proof is completed.

Example 4.8. Consider the following fuzzy optimization problem:

min  F(x) =[E(x), If(x)]
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st. X, +X,—4<0
X, =1
X 20

X € R?
Where F is fuzzy function via its « —cut as follows:

F, (0 =[ E,(0,Fa(9]=[-Lax -1],a€[0.].
Let us verify the hypothesis of Theorem 4.6. It is easy to get that
(E), (X )(F) . (<)(E)_(x*).(F.)_(x"), doexist. Moreover,

—a

[F)T |t ()67 ()
e, ().} (")

Then, by Theorem 3.5, we have that F is LgH-partial differentiable. Furthermore, and given « e [0,1] , we find
O F, (%) _
2
O F, (%)
0oX,

[0 a].

~[0. 0].

Now, given d :(dl,dz) € R?, and by simple calculus, we get that there exists the LgH-derivative at x in the direction
d,anditis

F hd,, hd,)! .4 F, (X,
FﬁgHya(X;d):"m a(xl+ 1X2+ 2) gH a(xl XZ)

h—>0" h
:[O,adl]
o uF, (X O uF, (X
— LgH a( )'d1+ LgH a( )d2
0%, 0%,
2 aL H Fa (X)
Therefore, F/,,, , (x;d)= Zga—di :
' i=1 Xi

On the other hand, the real-valued functions defined as g, (X) =X +X, —4, g, (X)=—x, is differentiable.

If we choose a=0.5, and by calculus, we obtain that X :(0,1) is the unique feasible point such that
condition(16)-(18) are fulfilled, although there exsit several different values for the multipliers A, x;and o,
j=12 k=1.Forinstance, X=(0,1),A=0,4 =1 1, =1, v, =-1.

V. DUALITY PROBLEM FOR GENERALIZED o —CONVEX FUZZY MAPPINGS
Now, we consider the dual problem (DMFP) of (MFP)

Max F(b)= [E (b), If(b)]

s.t.

[00]e AV F.(0)+ Y. ﬁngj(b)+Zp:Uthk(b) (39)
jel (b) k=1

ﬁjgj(b)zol (40)

(A,11,0)>0. (41)

We denote the feasible set of the dual problem (DMFP) by
D={(bZ,7,5,)eR" xR"xR"xR"}.

It satifies
P

[0.0]€ AV F,(b)+ D 7,vg,(0)+ .5, Vh (b), 79,(b)=0,1=0and(1,z0)>0. According to Theorem 4.7,

jel (b) k=1
we have the following weakly duality.
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Theorem 5.1.(Weakly duality) Let x” be MFP-feasible, (b, Z, 7z;,5, ) be DMFP-feasible. Let W be a nonempty open

convex set of R". Forall & <[0,1], X" and b, we have F/,, (b;x“) —b);tHU [0,0].

(i)Assume that F is LgH partial differentiable and LgH-directional differentiable at b such that

0
Fle (0:d)= Z L;':) “(b)-d;, foranyd eR". (42)

i=1 i
(ii) Assume that g; and h, is directionally differentiable at b such that

m

=z:1: S (b)-d;, jel(b)

m

Z b) d;, k=1---,p.
(iii) If F is strlctly a—quasiconvex, g;and h, at b satisfy the following conditions
vg,; (b:x =b) < g, (x*) - g, (b) (43)
vh, (b; x® —b) <h (x")=h, (b) (44)
for all feasible solution x™ .
Then, F, (x(l)) A, F, (D).
Proof. We proceed by contradiction. The opposite of this inequality
Fa (X(l)) 7<a—LU Fa (b)
has the following three cases :
F, (x(”) <40 F, (b)),
Fa (X(l)) —_<a7LU Fa (b) 4
F,(x¥) 2w Fa(b)-
According to the above inequalities, we have
max{F, (x"), F, (b)} = F, (b) .
Since F isstrictly o — quasiconvex, by definition 3.10, we have
F (0xY +(1-6)b) <, ,, max { F (x"),F, (b)}, ox" +(1-0)beW,0¢(0,1).
It implies that
F,(0x" +@-0)b)! , F,(b) <, [0.0]
According definition 3.6,
(i) Pl o (03X =b)
F,(0+00" -b)! , F, ®) _

:eanQ 0 e [0 0]
(“)FLgH a( _b)

o _
_lim F,(b+0(x" -b))! Fa(b) S [0 0]

6—0"

According to the con%ition in the inequality :
Flyre (03X =b) =, [0,0],

we know that
Fign (0:X% =b) <,y [0,0]

do not exist.

According to (i) :

b;x¥ —b)<, ., [0,0].

LgHa(
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By assumption (i), it follows that
Fig.o (0:x = D)
- Zg—bﬁ‘(b) (¥ =b)<, , [0,0]
i-1 Ob,
Multiplying the inequality by 4 >0, we have
ARy (0 —b) =17 i%(b) (X" -b) <, , [0,0]. (45)
From (iii), i |
vg, (b;x¥ -b) < g, (x*) - g,(b),
vh, (b; x® —b) <h (x")=h,(b).
Multiplying the above two inequalities by z; >0 and o, >0, respectively, we have
7,V g, (b:x -b) < 2,9, (") - 71,9, (b) - (46)
B, vh, (b;x" ~b) < 5 (xV) -, (b) . (47)

Now, from feasility of x* for (MFP) we have 4,g;(x"”)<0 and z,g;(b)=0, respectively. Since (b, 2,5, ) for
(DMFP), 5.h (x") =0 and 5,h, (b) =0, respectively. Hence, by (46) and (47), we obtain
v, (b;x(l) —b)so,
D, h, (b; x —b) <0.
From (ii), we have

ﬁjia—g(b) ~(x(l) —b) <0. (48)

Oy Z—(b) (X(l )<0. (49)

Now, combmlng interval inequalities in (45), (48) and (49), we get

P yarilag o9 _ & 6h (1)

zz P () (x b)+uJZ (b) (x® b)+uk;a_bi(b).(x ~b)<[00]
equivalent to

ZVLQH F,(b)+ Z 4V g, (b)+zUkvh (b)<[0 0] (50)
jei (b)
The interval inequality (50) implies that

[O,O]ez/TVLgH F,(b)+ Z ;Y 9; (b)+ZUth (b),
jel (b)
which is a contradiction to the dual constraint

[O,O]EZVLQH F (b)+ z u;vag; (b)+Zuth (b) .

jel (b)

Similarly, Accordlng to (ii):

LgH a (b X b) ja—LU [0’0] [l
we have

IV F.0)+ Y BV, (b)+Zuth (b) <[0.0].

jel (b)
ie.,

[0,0]§E/TVLQH F,(b)+ Z ;Y 9; (b)+Zuth (b) .

jel(b)
The proof is completed.
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Theorem 5.2. (Strong duality) Let x be a weak « -LU-solution for (MFP) which the constraint qualification is
satisfied.

(iLet F is LgH-partial differentiable and LgH-directional differentiable at x®
(ii) g; and h, isdirectionally differentiable at x® | and g; is continuous for j eT(xY).

Then there exsits 1 eR",z,0 R such that (x(l),Z,ﬁj,Uk) is feasible for (DMFP). Moreover, if weak duality

(Theorem 5.1) between (MFP) and (DMFP) holds then (x(”,I,ﬁj ,Uk) is a weak maximum for (DMFP).

Proof. Since X satisfies all the conditions of theorem 4.7, there exists 1 eR", zz,0 € R" such that

p
[00]€ 2V F, ")+ > vy, (xV)+> 5, vh (xV)

jeroy k=1
7,9, (x") =
(1, 7,0) >0.
It implies that (x“),Z,ﬁj,Ek) is feasible for (DMFP). Also, by weak duality (Theorem 5.1), it follows that

(x¥,7, 2,8, ) is optimal for (DMFP),

Theorem 5.3. (Converse duality) Let (E,Z,ﬁ, 5) be a weak « -LU-maxinmum for (DMFP). Let W be a nonempty open
convex set of R". Foralla €[0,1], b and b, we have F,, ,(b;b-b)=, , [0,0].

Moreover,
(i)Assume that F is LgH partial differentiable and LgH-directional differentiable at b such that

O F,
Flg. (D3d)= Z Lg';) (b)-d;, forany d eR". (42)

i=1

(ii) Assume that g; and h, is directionally differentiable at b such that

vy, (b:d)= Z::g—g(b) d;, jei(b)
0

b, (Bid) =3 26y, k=L, p

i=1 aa
(iiif) If F isstrictly «—quasiconvex, g; and h, at b satisfy the following conditions
vy, (5; x —5) <g;(x")-g,(d) (43)
vh, (b;x =b) <h (x*)~h, (b) (44)

for all feasible X(l).
Then, b is optimal in (MFP).

Proof. We proceed by contradiction. Suppose that b is not optimal for (MFP), that is, there exists b € D such that
F,(6)<. . F.(b),

F(0) <. F.(B).

It impies that F, (5) <, w F, (5) )

Since F is strictly « — quasiconvex, it follows the inequality
F,(6b+(1-6)b) <, max{Fa (b),F, (6)},

0b+(1-0)b eW,0¢(0,1),b,b eW
By Fa(6)<a—LU F,(b), we have

F,(6b+(1-6)b) <, ., F.(B)
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i.e.,
F, (6b+(@1-0)b)! 4, F,(B) <, ., [0.0].

Given « €[0,1], by the definition 3.6 and assumption (i),we have
(i)F'y.. (D;0-D)
F,(0b+(1-0)0)! 4 F, ()

=0 7 ww [00],
(ii) LgHa(b;B—B)
i F(0B 00D, F.(B) ol

00" 2]
According to the condition in the inequality :

Flgr (DiD=D) %,y [0,0],
we know that

iy (bsb-b) =<, 1, [0,0]
do not exist.
According to (i) :
b;b-b)=<, . [0.0].

LgHa(

Multiplying the inequality by A , we have

AF (b;B—B) =IZ”:6L2%F“ (0)-(b-b)=<, ., [0,0]. (51)

Similarly, from (iii), thI:ineqL;aIity

7, Vg, (bib-b)<z,9,(b) - z,9,(0). (52)

b, vh, (b;b-b) <,h, (0)-5,h, (b) . (53)

Now, from of feasibility of b for (MFP) and (B,Z,ﬁ, 5) for (DMFP), we have
#;9;(6)<0 and ,g;(b) =0,

a.h (6) =0 and o,h (b) =0,

respectively. Hence, by (52), (53) and assumption (ii), we get
ﬁjia—g(ﬁ)-(ﬁ—ﬁ)go_ (54)

vkz _(b) (b-b)<o0. (55)

Now, addmg (51), (54) and (55), we obtain

z; L;E), 2. (b- b)+ﬂjzl:—(b) (b- b)+ukz—(b) (b-b)<0
equivalent to

AV g F,(0)+ Z Y9, (b)+Zuth (b) <[0.,0]. (50)

i€l (b)
The interval inequality (50) |mpI|es that

[O,O]eZ@LgH Fa(5)+ Z JTAVACR (b)+Zuth (b)
jel(b)
which is a contradiction to the dual constraint

[O,O]GZVLQH F,(b)+ Z bV g, (b)+Zuth (b).

i€l (b)
Similarly, According to (ii):

e (Bsb=b) =, [0,0],

we have
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AN g F,(0) + Z ﬁngj(6)+k§p:5kvhk(E)< [0,0]
ie., e ;

[0.0]¢ A%, F, (b)+ Z ﬁngj(E)+gakvhk(6).
The proof is completedj.sl(b) 7

Example 5.4.Consider the following fuzzy optimization problem;

max F(b)=[F(b),F(b)]

1
oo e ()
(oo

(1, i, 5) 20, a<[01],

where F is fuzzy function via its a —cut as follows:

F,(b) =[ F, (b),F.(b) | =[0,ab, -1]

If we choose & =0.5, and by calculus, we obtain that (0,1,1, —1) is the unique feasible point.

V1. CONCLUSION

Convexity and generalized convexity play an
important role in optimization theory. The study of
generalized convexity is one of the important directions
in optimization problems. With the emergence of fuzzy
optimization problems, fuzzy generalized convexity has
attracted more attention. More and more scholars have
studied fuzzy optimization problems, and fuzzy
generalized convexity has also been widely studied.

In this paper, we first define quasiconvex,
strictly quasiconvex, pseudoconvex, strictly
pseudoconvex based on the concept of convexity given
in [26]. Then, some relations and properties between
them are discussed. Finally, the KKT condition of fuzzy
optimization problem and its weak duality, strong
duality theory are given, and an example is given to
illustrate. These results are useful for solving practical
problems. In addition, in life, there are various
optimization problems. In the next step, we can reduce
the convexity of the constraint conditions for research
and discussion. These studies may bring more novel
results.
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