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Abstract  Review Article 
 

This paper mainly studies the mixed constraint interval programming problem under the generalized    convex fuzzy 

mapping. Firstly, this paper give the concepts of fuzzy mappings, such as   quasiconvex, strictly    quasiconvex, 

  pseudoconvex and strictly   pseudoconvex. Then, the relation of generalized   convex fuzzy mapping is 

studied and some properties are obtained. Finally, the necessary and sufficient KKT conditions are given, and the 

duality problem is established. The weak duality, strong duality and inverse duality theorem of fuzzy interval 

programming are proved. 

Keywords: Fuzzy interval programming, strictly α- quasiconvex, directional LgH-differentiablity, KKT conditions, 

dual problem. 
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I. INTRODUCTION 
As we all know, optimization is a problem we 

have been trying to solve. Convexity plays a very 

important role in optimization problems. If an 

optimization problem is convex, it means that the 

problem has been largely solved. In real life, the 

optimization problem we often face is not a perfect 

convex optimization, but we try to find some common 

methods to solve these optimization problems. And we 

know that these imperfect convex optimization 

problems may be caused by many factors, such as weak 

convexity, differentiability, fuzziness of objective 

function, weak convexity of constraint conditions and 

so on. 

 

In recent years, in order to solve these 

problems caused by different influencing factors, many 

scholars have explored the weak convex function and 

studied its application in optimality conditions. For 

example, O.L. Mangasarian [1] described the properties 

and applications of pseudoconvex functions in 1965, 

and obtained sufficient conditions for Kuhn-Tucker 

differential conditions to be optimality when the 

objective function is pseudoconvex and the constraint 

condition is quasiconvex. Jean-Philippe Vial [2] 

proposed a class of convex functions in 1983, namely, 

convex functions. According to the sign of constants, 

this function is called weakly convex or strongly 

convex. More importantly, he obtained sufficient 

conditions for the global optimization of non-convex 

programming problems for such functions. Chanchal, 

Singh [3] discussed sufficient optimality criteria for 

quasiconvex functions in continuous time 

programming. Westerlund, T., and Pörn, R [4] 

introduced a cutting plane technique to solve the 

pseudoconvex mixed integer optimization problem. In 

2012, Ivanov, V. I. [5] derived the optimality conditions 

that the objective function is a pseudoconvex function. 

Mishra, S. K. [6] et al., derived some conditions for the 

minimization of nonsmooth pseudolinear functions, and 

obtained that the effective solution can be an 

appropriate effective solution under these conditions. 

With the deepening of research, scholars have also 

found that the differentiability of the objective function 

plays an extremely important role in the optimization 

problem. However, in real life, the functions we need to 

solve are often non- differentiable or subdifferentiable. 

In order to solve this problem, Craven, B. D. and B. 

Mond [7] find the minimum value of the function 

extended to the partial ordered space, and the objective 

function and constraint function are not always 

differentiable, and some results are obtained. P., 

Kanniappan [8] et al., obtained KKT necessary and 

sufficient conditions and its duality for convex 
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programming problems with sub-differential operator 

constraints. More importantly, we want to explore a 

method or a generalized differentiability to solve the 

non-differentiability of functions. In 2013, Megahed [9] 

proposed the concept of E-differentiable convex 

function, which converts the non-differentiable convex 

function into a differentiable function under the 

operation symbol, and derives Kuhn-Tucker and Fritz-

John conditions to obtain the optimal solution of the 

optimization problem. 

 

In fuzzy mathematics, since Chang and Zadeh 

[10] proposed fuzzy mappings, more and more scholars 

have studied some generalized convex fuzzy mappings. 

Sudarsan Nanda and Kadambini Kar [11] made 

pioneering research on mappings and proved that a 

fuzzy mapping is convex if and only if the above graph 

is convex set. Yu-Ru Syau [12] derived the relations 

among convex fuzzy mappings, pre-invariant convex 

fuzzy mappings and fuzzy mapping classes in 2000. 

Then Yu-Ru Syau [13] proved in 2001 that the classes 

of B-vex fuzzy mappings form a subset of quasiconvex 

fuzzy mappings. In 1983, Puri [14] defined the 

derivative and H-derivative of fuzzy mapping. Osmo 

Kaleva [15] studied H-derivative and obtained a 

necessary and sufficient condition for H-derivative of 

fuzzy mappings. In 2003, Wang and Wu [16] proposed 

the concepts of directional derivative, differential and 

subdifferential of fuzzy mappings from 
nR  into 

1E . 

With the in-depth study of H-derivative, scholars have 

found that often the objective function is non-

differentiable under the definition of H-differentiability. 

To solve this problem, B.Bede [17, 18] et al., proposed 

a generalized Hukuhara differentiable concept to solve 

the problem of nondifferentiable functions. 

 

With the in-depth study of fuzzy function and 

the wider application of fuzzy function in real life, 

fuzzy optimization problem has become an important 

topic for scholars. Panigrahi [19] extended the concepts 

of differentiability, convexity and generalized 

convexity, and derived KKT conditions for constrained 

fuzzy optimization minimization problems. Wu [20] 

derived the Karush-Kuhn-Tucker condition of the 

fuzzy-valued objective function optimization problem 

and proposed the concept of the solution of the 

optimization problem. All our academic research is to 

solve practical problems. Therefore, the objective 

function of the fuzzy optimization problem we face 

becomes complicated, such as interval function. In 

2012, Zhang [21] extended the concepts of preinvexity 

and invexity to interval- valued functions, and obtained 

KKT optimality conditions for Lu-preinvex and invex 

optimization problems with interval-valued objective 

functions. Chalco-Cano [22] et al., used the concept of 

generalized Hukuhara derivative to obtain KKT 

conditions for interval-valued functions. Finally, the 

purpose of our study is to solve the optimization 

problems brought by practical problems. In order to 

obtain some complex problems, we propose to find the 

dual problem of the problem. Wanka [23] et al., gave 

conditions to characterize strong and complete 

Lagrangian duality for convex optimization problems in 

separated locally convex spaces. Craven [24] 

constructed a Wolfe dual problem to solve the 

continuous weak minimization of the vector objective 

function. 

 

Inspired by the research in these fields, and so 

far, few people have studied the weak convexity of 

optimization problems. Therefore, it is necessary to 

study the concept of generalized convex fuzzy mapping 

and related fuzzy optimization problems. Based on the 

study of   convex fuzzy mapping in [26], the basic 

concepts and properties of    quasiconvex, strictly 

  quasiconvex,   pseudoconvex and strictly  

pseudoconvex are given. The optimization problem of 

fuzzy interval function is studied, and the KKT 

condition of mixed constraint programming is obtained. 

Its weak duality, strong duality and inverse duality 

theorem is given. 

 

This paper is structured as follows. The second 

part mainly introduces some basic knowledge of fuzzy 

numbers and fuzzy intervals, and a partial order of 

fuzzy intervals. The third part discusses the 

differentiability of fuzzy interval function, gives the 

definition of   quasiconvex, strictly   quasiconvex, 

  pseudoconvex, strictly   pseudoconvex, and gives 

the corresponding examples. We also discuss the 

relationship between the above fuzzy functions. The 

fourth part obtains the KKT conditions of the fuzzy 

optimization problem based on mixed constraints. The 

fifth part studies its weak duality, strong duality and 

inverse duality theorems. The sixth part is the 

conclusion. 

 

II. SYSTEM COORDINATES 
We denote by CK  the family of all bounded closed intervals in R  , i.e., 

  , ,   C c c c c R and c c  K . 

A fuzzy set on nR  is a mapping  :  0,1nR  . We call     :nx R x


     ,  

  cut for any  0,1  , and  

    : 0nsupp x R x     
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is called the support of  . We defined  
0

  is the closure of  supp  . Triangular fuzzy numbers are a special type of 

fuzzy numbers which are well determined by three real numbers a b c  , denoted by , ,a b c  ，with levels    

     ,a b a c c b


         , 

for all  0,1  . 

 

Definition 2.1. [25] We called a fuzzy set   on R  is a fuzzy interval if: 

1.   is normal, i.e. there exists 
 0

x R  such that   0
1x  ; 

2.   is an upper semi-continuous function; 

3.        1 min , ,x y x y         

, ,nx y R  0,1 ; 

4.  
0

  is compact. 

Let CF  denote the family of all fuzzy intervals. Therefore, for any CF  we have that   C


 K  for all  0,1  . 

The   levels of a fuzzy interval are given by    ,


    , ,  R     for all  0,1  . 

 

Theorem 2.2.[27] Assume that  0,1I   and CF , then the endpoint functions : I R   and : I R   satisty the 

following conditions: 

(1)   is a bounded, decreasing, left-continuous function in  0,1  and it is right-continuous at 0. 

(2)   is a bounded, increasing, left-continuous function in  0,1  and it is right-continuous at 0. 

(3)    1 1  . 

In the following, we consider the fuzzy intervals , C F , R ,for x R , 

       sup min ,
y z x

x y z   
 

  , 

  
 1 ,   0

      0     ,   0

x
x

  




 
 



. 

Also, we know that for any two fuzzy intervals ,     represented by ,   
   and  ,   , for  0,1  . For any real 

number  , we have 

     ,



         

 
, 

     

   

,

min , ,max ,



 

   

  

   

   

   

. 

 

Definition 2.3.[26] A function : CF K  F  is said to be a fuzzy function. For each  0,1  ， we associate with F  the 

family of interval-valued functions : CF K K given by 

 ( ) ( )F x F x


  . 

For any  0,1  , we denote 

( ) ( ), ( )F x F x F x
 
  . 

 

Remark 2.4.Let F  is a fuzzy interval represented by  

( ), ( )F x F x
 
  , 

for all  0,1  . For any real number  , we have 

( ) , ( )F F x F x      
  . 
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Definition 2.5. [28] (H-difference)We denote the set of all fuzzy number of E . For ,m n E , there exsits w E  such 

that m n w  , then it is said that the Hukuhara difference between m  and n  exists. So w  is called H-difference 

between m  and n , and is denoted by 
Hm n . 

 

Definition 2.6.[29] (gH-difference)For  ,A a a , ,B b b    , and , CA BK , we have 

( )   

( )  ( 1)
gH

i A B C
A B C

ii B A C

 
  

  
! . 

And here gH-difference C  exists, C  is equal to  

   min , ,max ,C a b a b a b a b     
 

. 

 

Definition 2.7. [32，33] Given two fuzzy interval ,    , the generalized Hukuhara difference (gH-difference for short) is 

the fuzzy interval  , if it exists, such that  

( )   
 

( )  ( 1)
gH

i

ii

  
  

  

 
  

  
! . 

It is easy to show that ( )i  and ( )ii  are both valid if and only if   is a crisp number.  

 

Definition 2.8. [34, 35] Given two fuzzy interval ,    , we define the distance between   and   by  

 
 

    

 
 

0,1

0,1

, sup ,

sup max , , ,

D H
 



   


   

   








, 

where H  is the Pompeiu-Hausdorff distance defined by  

     , max max , ,max ,
a A b B

H A B d a B d b A
 

 
 

 

with  , min
b B

d a B a b


  . 

It is known that (see [35]) 

 , gHH A B A B ! where, 

for CCK ,  max ;C c c C  ; then  

        , sup ; 0,1gHD
 

     ! . 

It is well known that  ,C DF  is a complete metric space. 

 

Definition 2.9.[26] For  ,A a a , ,B b b    , and , CA BK , we say that 

( )i LUA B  if and only if a b and a b , 

( )ii
LUA B if and only if LUA B and A B , 

( )iii
LUA B if and only if a b  and a b . 

 

We have that, using gH-difference, 

  0LU gH LUA B A B !  

  0LU gH LUA B A B !  

  0LU gH LUA B A B !  

  0gHA B A B  ! . 

 

Definition 2.10.[26, 36, 37] For , C F and given  0,1  , we say that 

( )i LU   if and only if LU   ，that is,     and    , 

( )ii If  LU   if and only if  LU   , 
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( )iii If 
LU 

 if and only if 
LU   . 

 

Correspondingly, the analogous LU-fuzzy orders can be obtained by 

( )i LU  , if LU   for all  0,1  . 

( )ii
LU  , if LU   for all  0,1  .  

( )iii
LU  , if 

LU 
 for all  0,1  . 

 

Remark 2.11. Obviously, we can conclude from the similar literature of LU   partial order that not all of them satisfy 

the order relation (maybe some values or close to 0 ). In the comparison of fuzzy numbers, the comparative relationship 

cannot be fully reflected. In practical applications, if the value does not satisfy the LU   partial order, some examples 

may lead to wrong conclusions. On the other hand, if the LU order relation cannot be compared, but for  ,1  , the 

LU   order relation can be compared, then this can help us analyze the problem. 

 

In order to avoid above problem, we give the following concept 

Definition 2.12. For , C F . For all  0,1  ,  

( )i if either LU   or LU  ; 

( )ii if either LU   or LU  ; 

( )iii if either LU   or LU  , 

Then we say that   and   are comparable, otherwise they are non-comparable. 

 

In the following, we discuss the problem that LU  order relation is comparable and LU and LU  order 

relation are equivalent. 

 

III. GENERALIZED  CONVEX FUZZY MAPPINGS AND PROPERTIES 
Differentiability and gradient are two important concepts in generalized convexity study. In recent years, many 

scholars have conducted extensive research on it. Different differentiability will bring different research results; this 

paper mainly studies according to gH-differentiable. 

 

Definition 3.1.[17] Let K R  wtih : CF K  F  be a fuzzy function and 
 0

x K  and h R  be such that 
 0

x h K 

. Then generalized Hukuhara derivative (gH- derivative, for short) of F  at 
 0

x  is defined as 

 
   0 0

0

0

( ) ( )
( ) lim

gH

h

F x h F x
F x

h


 

!
,   (1)  

If 
 0

( ) CF x F  satisfying (1) exists, we say that F  is generalized Hukuhara differentiable (gH-differentiable, for short) 

at 
 0

x . 

 

Definition 3.2.[18] Let K R  wtih : CF K  F  a fuzzy function, 
 0

x K  and h R  be such that 
 0

x h K  . 

Given  0,1  , the level-wise gH-derivative (LgH- derivative, for short) of the corresponding interval-valued function 

: CF K K  at 
 0

x  is defined as 

 
   0 0

0

,
0

( ) ( )
( ) lim ,

gH

LgH
h

F x h F x
F x

h

 





 

!
   (2) 

if it exists. If 
 0

, ( )LgH CF x
 K  for all  0,1  , we say that F  is level-wise generalized differentiable (LgH- 

differentiable, for short) at 
 0

x  of the family of intervals 
    0

, ( ) : 0,1LgHF x    is the LgH-derivative of F  at 
 0

x , 

denoted as 
 0

, ( )LgHF x
 . 

 

As a consequence of the previous definitions, it is derived that LgH-differentiability, and consequently level-

wise continuity, is a necessary condition for gH-differentiability, but it is not sufficient (see [18, 38]). 
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Theorem 3.3.[26] Let : CF K  F  be a fuzzy function. If F  is gH-differentiable in the form (1), then F  is LgH-

differentiable in the form (2) for each  0,1  . Moreover,  

, ( ) ( )LgHF x F x



  
 

.     (3) 

Proof. Verified by the definition of gH-differentiability. 

 

On the other hand, the existence of the gH-derivative for a fuzzy function does not necessarily imply that the 

corresponding endpoint functions are differentiable, such as the following example shows. 

 

Example 3.4. Let us consider the fuzzy mapping : CF R  F  defined by ( )F x C x  , where C  is a fuzzy interval 

defined via its   level sets by    ,3C


   . Then  

 

 

, 3    ,  0

3 ,    ,  0

x x if x
F

x x if x


 

 

    
 

   

. 

So, we have  

 
0 0

3 0(0 ) (0)
lim lim 3
h h

hF h F

h h

  


  

  
   ， 

0 0

(0 ) (0) 0
lim lim
h h

F h F h

h h

  


  

  
  , 

 

0 0

(0 ) (0) 0
lim lim
h h

F h F h

h h

  


  

  
  , 

 
0 0

3 0(0 ) (0)
lim lim 3 .
h h

hF h F

h h

 



  

  
    

If let 0  , now  

0 0
lim (0) 3 lim (0)
h h

F F  
  

    , 

and 

0 0
lim (0) lim (0) 3
h h

F F  
  

    . 

We can see that the endpoint functions ( ),  ( )F x F x  are not differentabile at 0x  .  

 

However F  is gH-differentiable and ( )F x C   for all x R . Then it follows relatively easily that gH-

derivative exists and it is ( )F x C   but the endpoint functions ( )F x  and ( )F x  are not necessarily differentiable. 

 

Theorem 3.5. Let : CF K  F  be a fuzzy function. F  is LgH-differentiable at 
 1

x  if and only if , for each  0,1  , 

following case hold: 

    1
F x 

 ,     1
F x 

 ,     1
F x 

  and     1
F x 

  exsit, and  

                      1 1 1 1 1
min , , max ,F x F x F x F x F x



     

                   
 

or 

                      1 1 1 1 1
min , max ,F x F x F x F x F x



     

                   
， . 

 

Obviously, the generalized Hukuhara differentiability of interval-valued function is not fully equivalent to the 

one-sided differentiability of its endpoint functions.(see [39]) 

 

Definition 3.6.[26] Consider an interval-valued function : CF K K , where K  is any open subset of nR . If nd R  is 

any admissible direction at 
 0

x K , we say that F  has the one-sided directional gH-derivative at 
 0

x  in direction d , if 

the following right limit exists and is an interval: 



 

    
Juwen Li et al., Sch J Phys Math Stat, Feb, 2023; 10(2): 63-86 

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          69 

 

 

 
   0 0

0

0

( ) ( )
( ; ) lim .

gH

gH
t

F x td F x
F x d

t


 

!
   (4) 

 

If the left limit for 0t  of the function above exists and the two are equal, we say that F has the two-sided 

directional gH-derivable in direction d  at 
 0

x . 

 

Definition 3.7.[26] Consider an interval-valued function : CF K  F , where K  is any open subset of nR . If nd R  is 

any admissible direction at 
 0

x K , then given  0,1  , the directional level-wise deneralized derivative (directional 

LgH-derivative, for short) of the corresponding interval-valued function : CF K K  at 
 0

x  in the direction d  is 

defined as  

 
   0 0

0

,
0

( ) ( )
( ; ) lim

gH

LgH
t

F x hd F x
F x d

h

 

 


 

!
  (4) 

If it exists. 

(1) If 
 0

, ( ; )LgH CF x d
 K  exists for all  0,1  , then F  is said to have the directional LgH-derivative at 

 0
x  in 

direction d . 

(2) We say that F  is directionally (or weak) level-wise generalized differentiable (directionally or weak LgH-

differentiable) at
 0

x  if F  admits directional LgH-derivatives at 
 0

x  in any direction nd R  and for all  0,1  ; the 

family of intervals  
    0

, ( ; ) : 0,1LgHF x d    

Is the directional LgH-derivative of F  at 
 0

x  in direction d , denoted as 
 0

, ( ; )LgHF x d
 . 

(3) We say that F  is directionally (weak) gH-differentiable at 
 0

x  if it is directionally (weak) LgH-differentiable at 

 0
x  in any direction d  and the directional LgH-derivative 

 0
( ; )LgHF x d  defines a fuzzy interval (i.e., the intervals 

 0

, ( ; )LgHF x d
  define the level-cuts of a fuzzy interval); 

(4) F  is said directionally (weak) LgH-differentiable on K  if it is directionally LgH-differentiable at each point 
 0

x K  and is said directionally (weak) gH-differentiable on K  if it is directionally gH-differentiable at each point 
 0

x K . 

 

Definition 3.7.Let : nf W R  be defined on a nonempty open convex set 
nW R . We define the i th partial derivative 

of f  at 
 0

x  as the family, if it exists, 

     0 0

: 1, 2,3
i i

f x f x
i

x x

   
  

   

. 

And we define the directional derivative of f  at 
 0

x  as follows. 

 
   (0) (0)

(0)

0
; lim

f x d f x
f x d







 
  , 

For any 
nd R . 

  0
;f x d  denotes the directional gradient of f  at 

 0
x  in the direction d . 

 

Definition 3.8.[26]We define the i th partial LgH-derivative of F  at 
 0

x  as the family, if it exists, 

     
 

0 0

,

: 0,1
LgH LgH

i i

F x F x

x x




   

  
   

. 

And we define the LgH-gradient of F  at 
 0

x  as follows. 

  
     0 0

0

1

, ,
LgH LgH

LgH

n

F x F x
F x

x x

  
  
  
 

. 
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In the one-dimensional case, we can state a rule to calculate the directional LgH-derivative via the the 

LgH-derivative as follows. 

 

Theorem 3.9.[26] Let K  be a non-empty open subset of R  and : CF K  F  be an fuzzy function. If F  is LgH-

differentiable, then F  is directionally LgH-differentiable on K , and  

   , 0 0 , 0 0;LgH LgHF t d F t d 
   , 

for all 
0t K , 

0d R  and  0,1  . 

 

Definition 3.10.[26]Let F be LgH-directional differentiable and  0,1  .We say that F is   convex at nx R  on 

nW R  if 

     , ;LgH LU gHF x x x F x F x   
  ! . 

for all x W . We say that F  is   convex on W  if it is   convex at every nx R  on W .We say that F  is  

convex at nx R  if it is   convex on nR . And we say that F  is   convex on nR  if it is   convex at every 
nx R . 

 

Definition 3.11. Let W  be a nonempty open convex set in nR , let F  be LgH-directional differentiable on W . For all 

 0,1  , we say that F  is   quasiconvex if and only if either one of the following equivalent statements holds true: 

(i)     If    1 2
x x W， ,

     1 2

LUF x F x   ,we have 
        2 1 2

, ; 0,0LgH LUF x x x  
  . 

(ii) If 
   1 2

x x W， ,and         2 1 2

, ; 0,0LgH LUF x x x  
  ,we have

     1 2

LUF x F x   . 

for all 
 1

x and 
 2

x W . 

 

Example 3.12.Let W  be a nonempty open convex set in nR  and (0, )W   . Let us consider the fuzzy mapping 

: CF R  F  defined by 
2( )F x C x  , where C  is a fuzzy interval defined via its   level sets by    ,3C


  . 

Then, 
2 2( ) ,3F x x x      . 

Obviously, F  is gH-differentiable. According to Theorem 3.3, F  is LgH-differentiable. Moreover, F  is a  

quasiconvex function. Such as, for 
 1

1x  , 
 2

2x  , we have 

   1 ,3F   , 

   2 4 ,12F   , 

   , 2; 1 4 , 12LgHF        . 

Obviously, 

   1 2LUF F  
 

and    4 , 12 0,0LU    , for any  0,1  , satisfies the Definition 3.11. Therefore, F  is a   quasiconvex 

function. 

 

Definition 3.13. Let W  be a nonempty open convex set in nR , let F  be LgH-directional differentiable . For all 

 0,1  , the F  is said to be strictly   quasiconvex if for each 
 1

x ,
 2

x  W  with 
     1 2

F x F x  , we have  

             1 2 1 2
1 max ,LUF x x F x F x        

for each  0,1  . 

The function F  is called strictly   quasiconvex. 

 

Example 3.14. Let W  be a nonempty open convex set in nR  and (0, )W   . Let us consider the fuzzy mapping 

: CF R  F  defined by 
2( )F x C x  , where C  is a fuzzy interval defined via its   level sets by  

   ,1C


   . 
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Then, 

 2 2( ) , 1F x x x      . 

Obviously, F  is gH-differentiable. According to Theorem 3.3., F  is LgH-differentiable. For any 
 1

x ,
 2

x W and 

 0,W   , we have 

     1 2
1x x W    . 

Moreover, F  is a strictly quasiconvex   function. Such as, for 
 1

1x  , 
 2

2x  , we have  

   1 ,1F    , 

   2 4 ,4 1F      , 

      
2 2

2 2 , 1 2F          
 

. 

Obviously,    1 2F F  , for any  0,1  , 

      
2 2

2 , 1 2 2LU F     
   
 

 

Satisfies the Definition 3.12 for  0,1  . Therefore, F  is a strictly   quasiconvex function. 

 

Definition 3.15. Let W  be a nonempty open convex set in nR  , let F  be LgH-directional differentiable on W  . For all 

 0,1  , the F  is said to be pseudoconvex   if for each 
 1

x  and 
 2

x W  with  

        2 1 2

, ; 0,0LgH LUF x x x  
  , 

we have 
     1 2

LUF x F x   , for all 
 1

x and 
 2

x W . 

 

Example 3.16.Consider the following fuzzy mapping 

 
 

 

1 ,     2,0

1 1, 0,2

x x
F x

x x

  
 

 

, 

where 1  is triangular fuzzy number, namely 1 0,1,0 . Then, 

 
   

   

, ,     2,0

1, 1 , 0,2

x x x
F x

x x x


 

 

  
 

  

. 

Obviously, F  is gH-differentiable. According to Theorem 3.3, F  is LgH-differentiable. Therefore,  

 
   

   
,

, ,  2,0

, ,  0,2
LgH

x
F x

x


 

 

  
  



. 

Such as, for 
 1

2x  , 
 2

1x  , we have  

     , 1;1 , 0,0LgHF     . 

Moreover, 

   1 ,F   , 

   2 2 1,2 1F     , 

and 

   1 2F F  ,  0,1  . 

 

Definition 3.17. Let W  be a nonempty open convex set in nR , let F  be LgH-directional differentiable . For all 

 0,1  , we say that F  is strictly   pseudoconvex if for each 
 1

x  and 
 2

x W  satisfies  

        2 1 2

, ; 0,0LgH LUF x x x  
  , 

we have 
     1 2

LUF x F x   , for all 
 1

x  and 
 2

x W . 
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Example 3.18.Consider the following fuzzy mapping 

 
 

 

1 ,      0,2

1 ,   2,0

x x
F x

x x

 
 

  

, 

where 1  is triangular fuzzy number, namely 1 0,1,0 . Then, 

 
   

   

, ,     0,2

, , 2,0

x x x
F x

x x x


 

 

 
 

   

. 

Obviously, F  is gH-differentiable. According to Theorem 3.3, F  is LgH-differentiable. Therefore,  

 
   

   
,

, ,     0,2

, , 2,0
LgH

x
F x

x


 

 

 
  

   

. 

Such as, for 
 1

2x  , 
 2

1x  , we have  

     , 1;1 , 0,0LgHF     . 

Moreover, 

   1 ,F   , 

   2 2 ,2F   , 

Obviously, 

   1 2F F  ,  0,1  . 

 

Theorem 3.19. Let W  be a nonempty open convex set in nR , let F  be LgH-directional differentiable . For all  0,1  , 

if F  is   convex on W , We have F  is   pseudoconvex on W . 

 

Proof. Let F  be   convex, let 
 1

x ,
 2

x W . And W  is convex aggregation, we have 
            1 2 1 2 1

, ; .LgH LU gHF x x x F x F x   
  !  

If 
        1 2 1

, ; 0,0LgH LUF x x x  
  , we have 

       2 1
0,0gH LUF x F x   ! , 

that is,  
            
            

 

2 1 2 1

2 1 2 1

min ,

0,0 ,

max ,
LU

F x F x F x F x

F x F x F x F x

   



   



  
 
 

   

 

i.e., 

     
     

2 1

2 1

0

0

F x F x

F x F x

 

 

  



 


, 

what is equivalent to 
     2 1

LUF x F x   , 

And F  be   pseudoconvex. 

 

Theorem 3.20. Let W  be a nonempty open convex set in nR , let F  be LgH-directional differentiable . For all  0,1  , 

if F  is   pseudoconvex, we have F  both strictly   quasiconvex. 

 

Proof. We first show that F  is strictly   quasiconvex. By contradiction, suppose that there exist 
 1

x  and 
 2

x W , 

such that  
     1 2

F x F x   

and  

       1 2
max ,LUF x F x F x   

 , 
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where 
     1 2

1x x x     , for some  0,1  . Without loss of generality, assume that      2 1

LUF x F x   , so 

that  
       2 1

LU LUF x F x F x     


 
 (5) 

Next, we consider ( ) ( ), ( )F x F x F x
 
 

. Since W is a convex subset, F  is differentiable on the closed segment I  of 

 1
x and 

 2
x . Then ( ), ( )F x F x  must be continuous on I W . 

 

From the property of continuous function on closed region, we can see that ( )F x  has the maximum value on 

I , which must be obtained on I . 

 

So there is x I  and  0,1  ,we have 

     1
F x F x x x     , 

     2
F x F x x x     .   (6)  

From the differentiability of F : 

     
  

1

1

,
0

lim ;LgH

F x x x F x
F x x x

 








  
  , 

     
  

2

2

,
0

lim ;LgH

F x x x F x
F x x x

 








  
  . 

From (5): 
    1

, ; 0,0LgH LUF x x x  
  , 

    2

, ; 0,0LgH LUF x x x  
  .   (7)  

And x I , suppose      1 2
1x x x    ,  0,1  , we have

 
   2 2

1 x x x
x





 
 . 

Substitute (7): 
    2

, ; 0,0LgH LUF x x x  
   

    2

, ; 0,0LgH LUF x x x  
  . 

Therefore, 
    2

, ; 0,0LgH LUF x x x  
   .  

Also known that F is   pseudoconvex function on W , so ( )F x  is a   pseudoconvex function , then 

    2

LUF x F x   . 

Similarly,  
    2

LUF x F x   . 

Overall, we have 
    2

LUF x F x   . 

Since 
     2 1

LUF x F x   , 

So     1

LUF x F x   . 

 

IV. SUFFICIENT AND NECESSARY OPTIMALITY CONDITIONS OF THE MIXED CONSTRAINED 

OPTIMIZATION PROBLEM 

In this section, we establish some sufficient and necessary Karush-Kuhn-Tucker conditions for a 
 1

x W  to be 

a feasible solution of constrained optimization problem (MFP). In the following, we consider the problem (MFP): 

Min      ,F x F x F x     

. .s t    0 1, ,jg x j m ， ; 
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   0 1, ,kh x k p ， ; 

x W  

where : CF W  F  , ( )jg x  and ( )kh x  is a differentiable real-valued function. nW R  is an open convex set. We 

denote the feasible solution set for (MFP) as D : 

 : ( ) 0, ( ) 0j kD x W g x h x     

we define 

  ( ) 1, , : ( ) 0jI x j m g x   , 

  ( ) 1, , : ( ) 0jI x j m g x   , 

  ˆ( ) 1, , : ( ) 0kI x k p h x   . 

 

Definition 4.1.[26] Given 
 1

x W  and  0,1  , we say that 
 1

x  is a weak  -LU-minimum point of F  if there exists 

no 
 2

x W  such that      2 1

LUF x F x  . Correspondingly, we say that 
 1

x  is a weak LU-minimum of F  if there 

exists no 
 2

x W  such that 
     2 1

LUF x F x ; and 
 1

x  is a weak global LU-minimum of F  if 
 1

x  is a weak  -

LU-minimum of F , for all  . 

 

Definition 4.2.[26] Given 
 1

x W  and  0,1  , we say that 
 1

x  is a  -LU-minimum point of F  if there exists no 

 2
x W  such that  

     2 1

LUF x F x  . 

Correspondingly, we say that 
 1

x  is a LU- minimum of F  if there exists no 
 2

x W  such that      2 1

LUF x F x ; 

and 
 1

x  is a global LU-minimum of F  if 
 1

x  is a  -LU-minimum of F , for all  . 

 

Theorem 4.3. (Sufficient optimality   condition) Let F  be a directional LgH- differentiable fuzzy function. Let 

 1
x W  and for all  0,1  , if there does not exist nd R  such that  

    1

, ; 0,0LgH LUF x d  
    (8) 

and F  is strictly   quasiconvex. Then 
 1

x  is a weak  -LU-solution of F . 

 

Proof. Suppose there exists 
 2

x W  such that 
     2 1

LUF x F x   . By the convexity of W , 
     2 1

1x x W     

for each  0,1  .  

But because F  is strictly   quasiconvex, we have  

             2 1 1 2
1 max , ,LUF x x F x F x        

where 
         1 2 1

max ,F x F x F x   . 

It follows that,  
           2 1 1

1 0,0gH LUF x x F x      ! . 

According definition 3.6, we have 

  
          

 

1 2 1 1

1

,
0

( ) ; lim 0,0
gH

LgH LU

F x x x F x
i F x d

 

 




 


 
 

!
 or 

  
          

 

1 2 1 1

1

,
0

( ) ; lim 0,0
gH

LgH LU

F x x x F x
ii F x d

 

 




 


 
 

!
or 

  
          

 

1 2 1 1

1

,
0

( ) ; lim 0,0 ,
gH

LgH LU

F x x x F x
iii F x d

 

 




 


 
 

!
 

i.e.,  
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    1

, ; 0,0LgH LUF x d  
 . 

With
   2 1

d x x  , what is a contradiction to the hypothesis that there exists no d  such that  
    1

, ; 0,0LgH LUF x d  
 . 

 

Definition 4.4.Let 
 1

x  be a feasible solution of (MFP) and  0,1  , then  

( )i
 1

x  is said to be a weak LU solution    of (MFP) if there no 
 2

x D  such that  

     2 1

LUF x F x   . 

( )ii
 1

x  is said to be a LU solution    of (MFP) if there no 
 2

x D  such that  

     2 1

LUF x F x   . 

 

Lemma 4.5. Let F  is LgH-partial differentiable. If 
 1

x  is a weak  -LU-solution of (MFP), ( )jg x  is continuous at 
 1

x  

for 
 1

( )j I x . For all  01  ， . Then the system  

      1 1

, ; 0,0LgH LUF x x x  
  ,   (9) 

    1 1
; 0jg x x x ▽ ,    (10)  

    1 1
; 0kh x x x ▽ ,    (11)  

has no solution x W , where 
nW R  is an open convex set. 

 

Proof. Assume there exist x  such that the inequalities (9), (10) and (11) are ture, i.e., 
      1 1

, ; 0,0LgH LUF x x x  
  , 

    1 1
; 0jg x x x ▽ , 

    1 1
; 0kh x x x ▽ . 

Let  
       1 1 1 1

( , , ) ( ( )) ( )F gHx x q F x q x x F x     ! . 

We observe that this function vanishes at 0q  , 

i.e., 
   1

( , ,0) 0 0F x x  ， . 

Given  0,1  , by definition 3.7, the right differential of 
 1

( , , )F x x q  with respect to q  is 

   

     

      

1 1

0

1 1 1

0

1 1

,

( , , ) ( , ,0)
lim

( ( )) ( )
= lim

= ; 0,0

F gH F

q

gH

q

LgH LU

x x q x x

q

F x q x x F x

q

F x x x

 

 

 










 

 

!

!
 

Therefore, 
   1

LU( , , ) 0 0F x x q   ，  if q  is in some open interval 1(0, ) . 

i.e., 
       1 1 1

( ( )) ( ) 0,0gH LUF x q x x F x     ! . 

That is 
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       
       
       
       

1 1 1

1 1 1

1 1 1

1 1 1

( )
min

( )

( )
max

( )

F x q x x F x

F x q x x F x

F x q x x F x

F x q x x F x

 

 

 

 

    
  
  

     
 

     
   

    
  

，
，

，
, 

i.e., 

       
       

1 1 1

1 1 1

( ) 0

( ) 0

F x q x x F x

F x q x x F x

 

 

    



   


. 

It follows that  
     1 1 1

( ( )) ( )LUF x q x x F x    ,
1(0, )q  . 

Similarly, by defining  

 

 

 

   

 

    

(1)

(1) (1)

1

1 1 1 1

( , , )

( ( )) ( ), .

I x

I x I x

g x x q

g x q x x g x j I x



    
 

When 0q  , we have 
 

 

(1)

1
( , ,0) 0

I x
g x x  . 

The right differential of 
 

 

(1)

1
( , , )

I x
g x x q  with respect to q  is 

 

 

 

 

 

   

 

 

    

(1) (1)

(1) (1)

1 1

0

1 1 1

0

1 1

( , , ) ( , ,0)

lim

( ( )) ( )

= lim

= ; 0.

I x I x

I x I x

g g

q

q

j

x x q x x

q

g x q x x g x

q

g x x x

 











  

 ▽

 

we can prove that 

 

   

 

 

(1) (1)

1 1 1 2( ( )) ( ), (0, )
I x I x

g x q x x g x q     . 

By definition of 
  1

I x  and 
  1

j I x , we have 
 

 

(1)

1
( ) 0

I x

g x  . We obtain  

 

   

(1)

1 1 2( ( )) 0, (0, )
I x

g x q x x q     . 

Since jg  is continuous at 
 1

x  for 
 1

( )j I x , Therefore , there exists 3  such that  

   1 1 3( ( )) 0, (0, )jg x q x x q     . 

Similarly, by defining 
 

      

1

1 1 11

( , , )

ˆ( ( )) ( ),

h

k k

x x q

h x q x x h x k I x



    
 

When 0q  , we have 
 1

( , ,0) 0h x x  . 

The right differential of 
 1

( , , )h x x q  with respect to q  is 

   

   

    

1 1

0

1 11

0

1 1

( , , ) ( , ,0)
lim

( ( )) ( )
= lim

= ; 0.

h h

q

k k

q

k

x x q x x

q

h x q x x h x

q

h x x x

 










  

 ▽

 

we can prove that 



 

    
Juwen Li et al., Sch J Phys Math Stat, Feb, 2023; 10(2): 63-86 

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          77 

 

 

     1 1 1 4( ( )) ( ), (0, )k kh x q x x h x q     . 

Let  1 2 3 4min , , ,     . 

Then , 
     1 1 1

( ) ( ), (0, )x q x x N x q


    , 

where 
 1

( )N x


 is a neighborhood of 
 1

x . 

Now 
     1 1 1

( ( )) ( )LUF x q x x F x       (12) 

 

   

 

 

(1) (1)

1 1 1
( ( )) ( )

I x I x

g x q x x g x      (13) 

 
     1 1 1

( ( )) ( )j jg x q x x g x           (14) 

     1 1 1
( ( )) ( )k kh x q x x h x              (15)  

By (12-15), we get  
     1 1 1

( ) ( ) ,   (0, )x q x x N x D q


    . 

Hence (12) is contradiction to the assumption that 
 1

x  is a weak  -LU-solution of (MFP). Thus, there exists 

no x W  satifying the system. 

 

Theorem 4.6. (KKT necessary condition) 

Let W  be a nonempty open convex set of nR . For all  01  ， , and we can find a point 
 2

x W  such that  

        1 2 1

, ; 0,0LgH LUF x x x  
   . 

(i) Assume F  is LgH-partial differentiable and LgH-directional differentiable at 
 1

x  such that  

    1 1

,

1

; ( )
n

LgH

LgH i

i i

F
F x d x d

x







  


 ,  

for any nd R . 

(ii) Suppose 
 1

x  be a weak  -LU-solution of (MFP) and assume that jg  is continuous at
 1

x  for 
 1

( )j I x . 

(iii) jg  and kh  is directionally differentiable at 
 1

x  such that 

    1 1

1

; ( )
m

j i

i i

g
g x d x d

x


 


▽ , 

    1 1

1

; ( )
m

k i

i i

h
h x d x d

x


 


▽ . 

Then, there exist R , 1( , , ) m

m R     and 1( , , ) m

m R     such that  

       

1

1 1 1

1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I x

F x g x h x  


   ， ▽ ▽ ▽

  

 (16) 

 1
( ) 0j jg x  ,       (17) 

( , , ) 0    .        (18) 

 

Proof. Since 
 1

x  be a weak  -LU-solution of (MFP). By the lemma 4.5 , there exist no x W  statisfying  
      1 1

, ; 0,0LgH LUF x x x  
  , 

    1 1
; 0jg x x x ▽ , 

    1 1
; 0kh x x x ▽ . 

Then we take 
 2

x , there exists 
   2 1

x x  such that  

            1 2 1 1 2 1

,

1

; ( ) ( )
n

LgH

LgH

i i

F
F x x x x x x

x







    


  .   (19) 

And according to conditions, the opposite of  
        1 2 1

, ; 0,0LgH LUF x x x  
   

has and only has the following case : 
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        1 2 1

, ; 0,0LgH LUF x x x  
  ,     (20)  

      1 2 1
; 0jg x x x ▽ ,       (21)  

      1 2 1
; 0kh x x x ▽ .       (22)  

We multiply inequalities (20-22) by the multipliers   j kand  ， , respectively, obtaining 

          1 2 1

, ; 0,0 0,0 ,LgH LUF x x x  
               (23)  

      1 2 1
; 0j jg x x x  ▽ ,      (24)  

      1 2 1
; 0k kh x x x  ▽ .           (25)  

According to the conditions, we have  

       1 2 1

1

( ) ( ) 0,0 ,
n

LgH

LU

i i

F
x x x

x



 




 


     (26)  

 

     

1

1 2 1

( )

( ) ( ) 0j

ij I x

g
x x x

x





  


 ,              (27)  

 

     

1

1 2 1

ˆ( )

( ) ( ) 0k

ij I x

h
x x x

x





  


 .              (28) 

Now, combining interval inequalities in (26-28), we get 

                   1 2 1 1 2 1 1 2 1

1 1 1

( ) ( ) ( ) ( ) ( ) ( ) 0,0
n m m

LgH

j k LU

i i ii i i

F g h
x x x x x x x x x

x x x



   

  

  
       

  
    

From this inequality, we have  

     

 

 

1

1 1 1

1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I x

F x g x h x  


   ， ▽ ▽ ▽  

The proof is completed. 

 

Theorem 4.7. (KKT sufficient condition) 

Let W  be a nonempty open convex set of nR . For all  01  ， ,  

F  is LgH-partial differentiable and LgH-directional differentiable at 
 1

x  such that  

    1 1

,

1

; ( )
n

LgH

LgH i

i i

F
F x d x d

x







  


 ,  

for any nd R . jg  and kh  is directionally differentiable at 
 1

x  and there exist R , 1( , , ) m

m R     and 

1( , , ) m

m R     such that 

     

 

 

1

1 1 1

1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I x

F x g x h x  


   ， ▽ ▽ ▽    (29) 

 1
( ) 0j jg x  .        (30)  

( , , ) 0    .               (31)  

If F  is strictly   quasiconvex at 
 1

x , jg  is convex at 
 1

x  in D , for 
 1

( )j I x , kh  is convex at 
 1

x  in D , for 

1, ,k p , then 
 1

x  be a  -LU-solution of (MFP). 

 

Proof. Let us suppose the contrary. So, there exists  2
x D  such that  

   2 1
( ) ( )LUF x F x   . 

By the convexity of W , we have 
   2 1

(1 ) , (0,1)x x W       

By the definition of strictly   quasiconvex of F , it follows that  
        2 1 1 2

( (1 ) ) max ( ), ( ) ,LUF x x F x F x        

where 
      1 2 1

max ( ), ( ) ( )F x F x F x   . 
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Then we have  
     2 1 1

( (1 ) ) ( )LUF x x F x      , 

that is, 

       
       

2 1 1

2 1 1

(1 )

(1 )

F x x F x

F x x F x

 

 

 

 

   



  


, 

 

what implies that, 

       
       

2 1 1

2 1 1

(1 ) 0

(1 ) 0

F x x F x

F x x F x

 

 

 

 

    



   


, 

Given  0,1  , According definition 3.6, 

      
       1 2 1 1

1 2 1

,
0

( ( )) ( )
; lim 0LgH

F x x x F x
F x x x  








  
    , 

      
       1 2 1 1

1 2 1

,
0

( ( )) ( )
; lim 0LgH

F x x x F x
F x x x  








  
    , 

what is equivalent to 

      
       

 
1 2 1 1

1 2 1

,
0

( ( )) ( )
; lim 0,0 .LgH LU

F x x x F x
F x x x  

 




 


  
    

Since F  satifies condition  

    1 1

,

1

; ( )
n

LgH

LgH i

i i

F
F x d x d

x







  


 , 

we have  

              1 2 1 1 2 1

,

1

; ( ) ( ) 0,0
n

LgH

LgH LU

i i

F
F x x x x x x

x



  



    


 .  (32) 

By differentiable and convexity of jg  and kh , for  j I x  and 1, ,k p , we have that  

            1 2 1 2 1 2
; ( ) ( ) ( ) 0j j j jg x x x g x g x g x    ▽ .           (33) 

And 

 
          1 2 1 2 1

; ( ) ( ) 0.k k kh x x x h x h x   ▽                     (34)  

By hypothesis there exist R and ( , , ) 0     such that the conditions (29-31) are satisfied. We multiply inequalities 

(32-34) by the multipliers  , j and k , respectively, obtaining 

       1 2 1

1

( ) ( ) 0,0
n

LgH

LU

i i

F
x x x

x



 




 


 .     (35) 

         1 2 1 1
; 0,j jg x x x j I x   ▽ .             (36)  

and 
      1 2 1

; 0, 1, ,k kh x x x k p   ▽ .            (37)  

Now, combining interval inequalities in (35-37), we get 

                     1 2 1 1 2 1 1 2 1

1

( ) ( ) ; ; 0,0
n

LgH

j j k k LU

i i

F
x x x g x x x h x x x

x



   




     


 ▽ ▽ .   (38) 

The interval inequality (38) implies that 

     

 

 

1

1 1 1

1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I x

F x g x h x  


   ， ▽ ▽ ▽ , 

what is contradiction to (29), and proof is completed. 

 

Example 4.8. Consider the following fuzzy optimization problem: 

     min    ,F x F x F x     
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. .s t 1 2 4 0x x    

2 1x   

1 0x   

2x R  

Where F is fuzzy function via its cut   as follows: 

   1( ) ( ), ( ) 1, 1 , 0,1F x F x F x x       
 

. 

Let us verify the hypothesis of Theorem 4.6. It is easy to get that 

                   1 1 1 1
, , , ,F x F x F x F x     

    do exist. Moreover,  

            

         

1 1 1

1 1

min , ,

                   max ,

F x F x F x

F x F x



 

 

 

 

         

 
 
 

. 

Then, by Theorem 3.5, we have that F  is LgH-partial differentiable. Furthermore, and given  0,1  , we find  

 
 

1

0
LgH F x

x








， , 

 
 

2

0
LgH F x

x





，0 . 

Now, given   2

1 2,d d d R  , and by simple calculus, we get that there exists the LgH-derivative at x  in the direction 

d , and it is  

 
   

 

   

1 1 2 2 1 2

,
0

1

1 2

1 2

, ,
; lim

0,

gH

LgH
h

LgH LgH

F x hd x hd F x x
F x d

h

d

F x F x
d d

x x

 



 





 
 



 
   

 

!

 

Therefore,  
 2

,

1

;
LgH

LgH i

i i

F x
F x d d

x







  


 . 

On the other hand, the real-valued functions defined as  1 1 2 4g x x x   ,  2 1g x x   is differentiable. 

 

If we choose 0.5  , and by calculus, we obtain that  0,1x   is the unique feasible point such that 

condition(16)-(18) are fulfilled, although there exsit several different values for the multipliers  , j and k , 

1,2,  1j k  . For instance,  0,1x  , 1 20, 1 1,       ， 1 1   . 

 

V. DUALITY PROBLEM FOR GENERALIZED  CONVEX FUZZY MAPPINGS 

Now, we consider the dual problem (DMFP) of (MFP)  

Max      ,F b F b F b      

s.t. 

 
1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽    (39) 

( ) 0j jg b  ,        (40) 

( , , ) 0    .        (41) 

We denote the feasible set of the dual problem (DMFP) by  

  , , , n n m p

j kD b R R R R       . 

It satifies  

 
1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽ , ( ) 0j jg b  , 0  and ( , , ) 0    . According to Theorem 4.7, 

we have the following weakly duality. 
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Theorem 5.1.(Weakly duality) Let 
 1

x  be MFP-feasible,  , , ,j kb     be DMFP-feasible. Let W  be a nonempty open 

convex set of nR . For all  0,1  , 
 1

x  and b , we have     1

, ; 0,0LgH LUF b x b  
   . 

(i) Assume that F  is LgH-partial differentiable and LgH-directional differentiable at b  such that  

 ,

1

; ( )
n

LgH

LgH i

i i

F
F b d b d

b







  


 , for any nd R .    (42) 

(ii) Assume that jg  and 
kh  is directionally differentiable at b  such that  

 
1

; ( )
m

j i

i i

g
g b d b d

b


 


▽ ,  j I b  

 
1

; ( )
m

k i

i i

h
h b d b d

b


 


▽ , 1, , .k p  

(iii) If F  is strictly   quasiconvex, jg and 
kh  at b  satisfy the following conditions 

    1 1
; ( ) ( )j j jg b x b g x g b  ▽       (43)  

    1 1
; ( ) ( )k k kh b x b h x h b  ▽       (44)  

for all feasible solution 
 1

x . 

Then, 
    1

LUF x F b   . 

Proof. We proceed by contradiction. The opposite of this inequality  
    1

LUF x F b    

has the following three cases : 
    1

LUF x F b  
, 

    1

LUF x F b  
, 

    1

LUF x F b  
. 

According to the above inequalities, we have  
  1

max ( ), ( ) ( )F x F b F b   . 

Since F  is strictly   quasiconvex, by definition 3.10, we have  
    1 1

( (1 ) ) max ( ), ( ) ,LUF x b F x F b      
   1

(1 ) , 0,1x b W      . 

It implies that  
   1

( (1 ) ) ( ) 0,0gH LUF x b F b      !  

According definition 3.6, 

  
 

 

1

,

1

0

( ) ;

( ( )) ( )
lim 0,0

LgH

gH

LU

i F b x b

F b x b F b



 






 


 

 


!
, 

  
 

 

1

,

1

0

( ) ;

( ( )) ( )
lim 0,0

LgH

gH

LU

ii F b x b

F b x b F b



 






 


 

 


!
, 

According to the condition in the inequality :  
    1

, ; 0,0LgH LUF b x b  
   , 

we know that  
    1

, ; 0,0LgH LUF b x b  
    

do not exist. 

According to ( )i : 

    1

, ; 0,0LgH LUF b x b  
  . 
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By assumption (i), it follows that  

  
   

1

,

1

1

;

( ) ( ) 0,0

LgH

n
Lg

LU

i i

F b x b

F
b x b

b





 


 


  




. 

Multiplying the inequality by 0  , we have  

      1 1

,

1

; ( ) ( ) 0,0
n

LgH

LgH LU

i i

F
F b x b b x b

b



   




    


 .   (45)  

From (iii),  
    1 1

; ( ) ( )j j jg b x b g x g b  ▽ , 

    1 1
; ( ) ( )k k kh b x b h x h b  ▽ . 

Multiplying the above two inequalities by 0j   and 0k  , respectively, we have 

    1 1
; ( ) ( )j j j j j jg b x b g x g b    ▽ .     (46)  

    1 1
; ( ) ( )k k k k k kh b x b h x h b    ▽ .        (47)  

 

Now, from feasility of 
 1

x  for (MFP) we have 
 1

( ) 0j jg x   and ( ) 0j jg b  , respectively. Since  , , ,j kb     for 

(DMFP), 
 1

( ) 0k kh x   and ( ) 0k kh b  , respectively. Hence, by (46) and (47), we obtain  

  1
; 0j jg b x b  ▽ , 

  1
; 0k kh b x b  ▽ . 

From (ii), we have 

  1

1

( ) 0
m

j

i i

g
b x b

b





  


 .     (48)  

  1

1

( ) 0
m

k

i i

h
b x b

b





  


 .      (49)  

Now, combining interval inequalities in (45), (48) and (49), we get  

         1 1 1

1 1 1

( ) ( ) ( ) ( ) 0 0
n m m

LgH

j k

i i ii i i

F g h
b x b b x b b x b

b b b


  

  

  
       

  
   ，  

equivalent to 

 
1( )

( ) ( ) ( ) 0 0
p

LgH j j k k

kj I b

F b g b h b  


   ，▽ ▽ ▽    (50) 

The interval inequality (50) implies that  

 
1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽ , 

which is a contradiction to the dual constraint 

 
1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽ . 

Similarly, According to ( )ii : 

    1

, ; 0,0LgH LUF b x b  
  , 

we have  

 
1( )

( ) ( ) ( ) 0 0 .
p

LgH j j k k

kj I b

F b g b h b  


   ，▽ ▽ ▽  

i.e., 

 
1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽ . 

The proof is completed. 
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Theorem 5.2. (Strong duality) Let 
 1

x  be a weak  -LU-solution for (MFP) which the constraint qualification is 

satisfied.  

(i) Let F  is LgH-partial differentiable and LgH-directional differentiable at 
 1

x . 

(ii) jg  and 
kh  is directionally differentiable at 

 1
x , and jg  is continuous for 

 1
( )j I x .  

Then there exsits nR  , , mR    such that   1
, , ,j kx     is feasible for (DMFP). Moreover, if weak duality 

(Theorem 5.1) between (MFP) and (DMFP) holds then   1
, , ,j kx     is a weak maximum for (DMFP). 

 

Proof. Since 
 1

x  satisfies all the conditions of theorem 4.7, there exists nR  , , mR    such that  

     

 

 

1

1 1 1

1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I x

F x g x h x  


   ， ▽ ▽ ▽  

 1
( ) 0j jg x  , 

( , , ) 0    . 

It implies that   1
, , ,j kx     is feasible for (DMFP). Also, by weak duality (Theorem 5.1), it follows that 

  1
, , ,j kx     is optimal for (DMFP). 

 

Theorem 5.3. (Converse duality) Let  , , ,b     be a weak -LU-maxinmum for (DMFP). Let W  be a nonempty open 

convex set of nR . For all  0,1  , b  and b , we have    , ; 0,0LgH LUF b b b  
   . 

Moreover, 

(i) Assume that F  is LgH-partial differentiable and LgH-directional differentiable at b  such that  

 ,

1

; ( )
n

LgH

LgH i

i i

F
F b d b d

b







  


 , for any nd R .   (42) 

(ii) Assume that jg  and kh  is directionally differentiable at b  such that  

 
1

; ( )
m

j i

i i

g
g b d b d

b


 


▽ ,  j I b  

 
1

; ( )
m

k i

i i

h
h b d b d

b


 


▽ , 1, , .k p  

(iii) If F  is strictly   quasiconvex, jg  and kh  at b  satisfy the following conditions 

    1 1
; ( ) ( )j j jg b x b g x g b  ▽         (43)  

    1 1
; ( ) ( )k k kh b x b h x h b  ▽      (44)  

for all feasible 
 1

x . 

Then, b  is optimal in (MFP). 

 

Proof. We proceed by contradiction. Suppose that b  is not optimal for (MFP), that is, there exists b D  such that  

   LUF b F b   , 

   LUF b F b   . 

It impies that    LUF b F b   . 

Since F  is strictly   quasiconvex, it follows the inequality 

 ( (1 ) ) max ( ), ( ) ,LUF b b F b F b      

    (1 ) , 0,1 , ,b b W b b W        

By    LUF b F b   , we have 

( (1 ) ) ( )LUF b b F b       
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i.e., 

 ( (1 ) ) ( ) 0,0gH LUF b b F b      ! . 

Given  0,1  , by the definition 3.6 and assumption (i),we have  

 

 

,

0

( ) ;

( (1 ) ) ( )
lim 0,0 ,

LgH

gH

LU

i F b b b

F b b F b



 




 

 


 

 


!
 

 

 

,

0

( ) ;

( (1 ) ) ( )
lim 0,0 ,

LgH

gH

LU

ii F b b b

F b b F b



 




 

 


 

 


!
 

According to the condition in the inequality :  

   , ; 0,0LgH LUF b b b  
   , 

we know that  

   , ; 0,0LgH LUF b b b  
    

do not exist. 

According to ( )i : 

   , ; 0,0LgH LUF b b b  
  . 

Multiplying the inequality by  , we have  

   ,

1

; ( ) ( ) 0,0
n

LgH

LgH LU

i i

F
F b b b b b b

b



   




    


 .   (51)  

Similarly, from (iii), the inequality 

 ; ( ) ( )j j j j j jg b b b g b g b    ▽ .     (52)  

 ; ( ) ( )k k k k k kh b b b h b h b    ▽ .        (53)  

Now, from of feasibility of b  for (MFP) and  , , ,b     for (DMFP), we have  

( ) 0j jg b   and ( ) 0j jg b  , 

( ) 0k kh b   and ( ) 0k kh b  , 

respectively. Hence, by (52), (53) and assumption (ii), we get 

 
1

( ) 0
m

j

i i

g
b b b

b





  


 .    (54)  

 
1

( ) 0
m

k

i i

h
b b b

b





  


 .    (55)  

Now, adding (51), (54) and (55), we obtain 

   
1 1 1

( ) ( ) ( ) ( ) 0
n m m

LgH

j k

i i ii i i

F g h
b b b b b b b b b

b b b


  

  

  
        

  
   . 

equivalent to 

 
1( )

( ) ( ) ( ) 0 0
p

LgH j j k k

kj I b

F b g b h b  


   ，▽ ▽ ▽ .   (50) 

The interval inequality (50) implies that  

 
1( )

0 0 ( ) ( ) ( )
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽  

which is a contradiction to the dual constraint 

 
1( )

0 0 ( ) ( ) ( ).
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽   

Similarly, According to ( )ii : 

   , ; 0,0LgH LUF b b b  
  , 

we have  
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 
1( )

( ) ( ) ( ) 0 0
p

LgH j j k k

kj I b

F b g b h b  


   ，▽ ▽ ▽  

i.e., 

 
1( )

0 0 ( ) ( ) ( ).
p

LgH j j k k

kj I b

F b g b h b  


   ， ▽ ▽ ▽  

The proof is completed. 

 

Example 5.4.Consider the following fuzzy optimization problem: 

         ,max F b F b F b     

. .s t  1 2 1

1
0 1 1 0

0 , 2
0 1 0 1

0

   

  
                             

   

 

1 2

1 1
0

1 0
 

   
    

   
, 

1 2 1( , , , ) 0,       0,1  , 

where F  is fuzzy function via its cut   as follows: 

 1( ) ( ), ( ) 0, 1F b F b F b b    
 

 

If we choose 0.5  , and by calculus, we obtain that  0,1,1, 1  is the unique feasible point. 

 

VI. CONCLUSION 
Convexity and generalized convexity play an 

important role in optimization theory. The study of 

generalized convexity is one of the important directions 

in optimization problems. With the emergence of fuzzy 

optimization problems, fuzzy generalized convexity has 

attracted more attention. More and more scholars have 

studied fuzzy optimization problems, and fuzzy 

generalized convexity has also been widely studied. 

 

In this paper, we first define quasiconvex, 

strictly quasiconvex, pseudoconvex, strictly 

pseudoconvex based on the concept of convexity given 

in [26]. Then, some relations and properties between 

them are discussed. Finally, the KKT condition of fuzzy 

optimization problem and its weak duality, strong 

duality theory are given, and an example is given to 

illustrate. These results are useful for solving practical 

problems. In addition, in life, there are various 

optimization problems. In the next step, we can reduce 

the convexity of the constraint conditions for research 

and discussion. These studies may bring more novel 

results. 
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