Scholars Academic Journal of Pharmacy (SAJP) Sch. Acad. J. Pharm., 2017; 6(5): 221-228 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com ISSN 2320-4206 (Online) ISSN 2347-9531 (Print)

Original Research Article

Detection and estimation of well-known free radical scavengers rutin, quercetin and gallic acid in market herbal anti-inflammatory and anti-arthritis formulations by HPTLC Methods

Arivukkarasu R*¹, Rajasekaran A¹, Sethuramani A², Kattu raja S², Mohamed Ali Jinna A², Nandhini P²,

Ramya M Vinothini R²

¹KMCH College of Pharmacy, Coimbatore, Tamilnadu, India-641048 ²Madurai medical college, Madurai, Tamilnadu, India-625020

*Corresponding author

R. Arivukkarasu Email: arivupriya@yahoo.co.uk

Abstract: The prime aim of the swot up is to observe the flavonoids and phenolic acids in three commercial herbal antiarthritis formulations. HPTLC method was adopted to confirm the presence of these common secondary metabolites in the tested commercial herbal formulations. Results of the study clearly revealed that these three formulations contain flavonoids -quercetin rutin and phenolic acid category gallic acid. The developed HPTLC method can be employed for the routine investigations of well-known free radical scavenger's rutin, quercetin and gallic acid in marketed herbal antiinflammatory and anti-arthritis formulations.

Keywords: Anti-arthritic, Rutin, Quercetin, Gallic acid, Herbal formulations, HPTLC.

INTRODUCTION:

Standardization of herbal formulation in stipulations of raw materials, manufacturing practices and composition is important to guarantee quality and most favourable level of active principles for their bio effectiveness [1]. Identification of major and unique compounds in herbs as markers and development of analytical methodologies for monitoring them are the key steps involved in marker based standardization. High performance thin layer chromatography (HPTLC) is a preferred analytical tool for fingerprints and quantification of marker compounds in herbal drugs due to its simplicity, high sensitivity, accuracy and less expensive [2]. Harish et al.; [3] and Duthie et al.; [4] reported that rutin scavenges free radicals; Middleton [5] revealed that rutin suppresses cellular immunity as well as anti-inflammatory effect by Guardia [6]. More recent reports show that rutin also has antimicrobial activity [7]. Specifically Rotelli et al.; regarding this anti-inflammatory activity [8] the investigators determined such activity in an experimental model of adjuvant-carrageenan-induced inflammation in rats. Until now, however, the anti-inflammatory effect of rutin on inflammation caused by specific infectious diseases has not been determined. This information led Yongmoon Han [9] to investigate the effect of rutin on septic arthritis caused by Candia albicans. Furthermore, they determined the anti-arthritic mechanism by which

rutin inhibits NO production by macro-phage, Tlymphocyte proliferation, and the growth of the fungus a critical step in the pathogenesis of septic arthritis. Boyce [10] Van den Broek et al.; [11] Anderson et al.; and Zafi rova et al.; [12-13]. Recently, quercetin is shown to be effective in controlling rheumatoid arthritis Mamani-Matsuda [14] Kandere-Grzybowska [15] Tiku et al.; [16]. Quercetin has been reported to inhibit the allergic and inflammatory responses of the immune system Jackson et al.; [17] by modulating several aspects of cell function relevant to inflammatory arthritis. At the molecular level, quercetin is known to inhibit nuclear factor kappa B (NF-kB), a central transcription factor in flammatory and proliferative diseases Min et al.; [18]. Quercetin inhibits inflammatory aspects of synovial cell function, neutrophil activation and hence quercetin could be an effective anti-arthritic agent. No HPTLC method is reported in the literature for detection and estimation of well-known free radical scavengers rutin, quercetin and gallic acid in market herbal anti-inflammatory, antiarthritis formulations and hence this paper describes the same.

MATERIALS AND METHODS:

Collection of herbal formulations for HPTLC screening:

Four formulations were procured from the market, all are capsule dosage form. The four market formulations were Arthrum capsules, Rumafort capsules, Arjit forte, and Rumawin. The ingredients of all commercial herbal formulations are provided in Table 1. Organoleptic evaluation of formulations were carried out and tabulated in Table 2.

S.No	Rumafort Capsules	Arjit Forte Capsules	Arthrum Capsules	Rumawin Capsules
1	Commiphora mukul	Godanthibhaama	Boswella serrata	Shallai kukkul
2	Rubia cardifolia	Maha Yoharaja gukkulu	Yogaraj guggula	Kishore gukkul
3	Dasamoolam	Maha rasnadiquatha Choorna	Pluchea lanceola	Shuadishilajeet
4	Alpinia galangal	Shankhabhasma	Vitex nigundo	Nirgundi
5	Zingiber officinale			Maha rasnadi Ghana
6	Apium graveolens			Asgandh
7	Vitex negundo			Suranjian
8	Strychnos nux-vomica			Kuchlashudh
9				Trifla
10				Hardi
11				Pipalli
12				Gulancha
13				Sundh

Table 2: Organoleptic evaluation and pH of formulations

Name of the formulation	Colour	Odour	Nature of particles	Taste	pH of the 1% solution of formulation
Arthrum capsules	Light whitish Brown	Aromatic	Fine powder	Aromatic taste	6.2
Rumafort capsules	Green	leafy	Fine powder	Pleasant Leafy	5.7
Arjit forte capsules	Green	Leafy	Fine powder	Bitter	6.9
Rumawin capsules	Green	leafy	fine powder	Bitter	6.8

Equipment:

A Camag HPTLC system comprising of Linomat 5 applicator and Camag TLC scanner and single pan balance of Shimadzu model was used for weighing the samples.

Chemicals and solvents:

Rutin, quercetin and gallic acid were procured from Sigma chemical Company Inc., USA. Solvents for extraction were purchased from qualigens fine chemical (P) limited Mumbai. HPTLC was carried out using Merck aluminium sheet coated with silica gel GF 254 (0.2 mm).

Preparation of standards and extracts from the commercial herbal formulations:

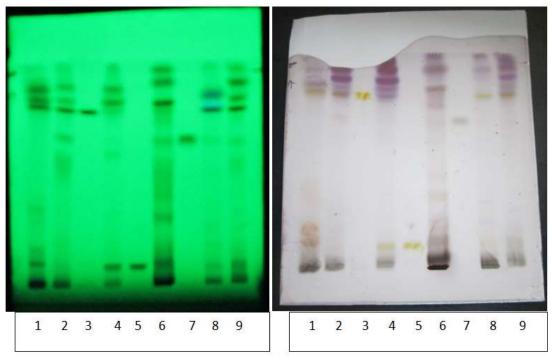
One gram of the each formulation was taken and sonicated with 10 ml of methanol. Sonicated and filtered and the filtrate solution was used for HPTLC analysis. Standard marker compounds were prepared using methanol to get a concentration 1 mg/1ml.Therefore 1000 μ g of standard marker was dissolved in 1000 μ l of methanol and 100mg of the capsule powder was dissolved in 1000 μ l of methanol after filtration by whatmann filter paper for detection and estimation.

Application of sample:

The sample solutions were spotted in the form of bands of width 6 mm with a Hamilton 100 μ l syringe on percolated plate 60 F254 (10 cm \times 10 cm with 0.2 mm thickness, E.Merck) using a Camag Linomat V applicator. The slit dimension was kept 6 mm \times 0.45 mm. ten μ l of each sample and five μ l of standard solutions were applied on to the plate.

Development:

The chromatogram was developed in Camag glass twin -through chamber (10-10 cm) previously saturated with the mobile phase toluene: ethyl acetate: formic acid: methanol [3:6:1.6:0.4] for 10 min (temperature 25.°C, relative humidity 40%). The migration distance was 80 mm. TLC plates were air dried with air dryer. Densitometry scanning was performed using Camag TLC Scanner -III at 254 nm and 366 nm operated by a Wincat software [19].


Detection:

The plate was scanned at UV 254 nm using Camag TLC Scanner-3. R_f value of each compound which were separated on plate and data of peak area of each band was recorded.

RESULTS:

The following different solvent compositions were tried for monitoring the elution of components in herbal formulations [20]. Ethyl acetate: glacial acetic acid formic acid: water (100:3:3:28), Ethyl Acetate: Methanol: Water Toluene (100:13:10:13), Chloroform: ethyl acetate: methanol (6:4:0.3). Ethyl Acetate: Methanol :Water Toluene (100:15.5:13.5:2),Ethyl acetate: methanol: water (100:15.5:13.5),Toluene :ethyl acetate :formic acid :methanol (3:6:1.6:0.4), Ethyl acetate: (93:7).Totally 8 mobile phase were trailed for better elution of formulations. Of which Toluene: ethyl acetate: formic acid: methanol (3:6:1.6:0.4) were given

better elution for all the formulation to screen in one plate. The optimized chamber saturation time for mobile phase was 3.0 min at room temperature (25 \pm 1°C). The densitometry analysis was performed at 254 nm in reflectance mode. The elution of all the formulation were carried out in mobile phase of toluene: ethyl acetate: formic acid: methanol (3:6:1.6: 0.4) and in this mobile phase elution was good results were tabulated by considering each R_f value for one ingredients of formulation whether it may be pharmacologically active or inert but for screening the number of principle in the formulation can be considered as one of the principle in it. Therefore the obtained R_f value were compared with R_f value of the standard and well-known free radical scavengers rutin. quercetin and gallic acid in market herbal antiinflammatory and anti-arthritis formulations (Table : 3). For identifying these free radical scavengers rutin, quercetin and gallic acid, we used UV light at 254 nm.

1. Herbal formulations, 2. Arthrum capsules, 3.Quercetin standard, 4.Rumafort capsules, 5.Rutin standard, 6.Arjit forte, 7.Gallic Acid standard, 8.Herbal formulations, 9.Rumawin

Fig-1:	Chromatogram	of four	formulations	and three	standards	after	development i	n mobile phase
--------	--------------	---------	--------------	-----------	-----------	-------	---------------	----------------

Table 3: Rf values of free radical scavengers rutin, quercetin and gallic acid in herbal formulations								
Track	Amount of	Number	No of compounds and its R _f	Name of the marker				
Number/Name of	Sample applied	of peak	values in Herbal marketed	present in formulations				
the formulation	in ul	_	formulations	_				

			ite of compounds and its it	
Number/Name of	Sample applied	of peak	values in Herbal marketed	present in formulations
the formulation	in µl		formulations	
Track-1- Herbal	10	10	0.10 ,0.17 0.32, 0.36 0.42 0.48,0.56	Rutin and quercetin
formulations			0.73, 0.83 and 0.86	_
Track-2	10	9	0.09 ,0.19,0.22,0.35,0.57, 0.69 ,0.75,	Rutin, Gallic acid and
Arthrum capsules			0.82 ,0.86	quercetin
_				_
Track-3	5	1	0.81	Quercetin
Quercetin standard				
Track-4 Rumafort	10	09	0.09 ,0.14,0.19,0.21,0.26,0.33,0.60,	Rutin and quercetin
		-		

capsules			0.67, 0.80 and 0.84	
Track-5 Rutin standard	5	1	0.08	Rutin
Track-6 Arjit forte	10	09	0.10 ,0.15,0.18,0.31,0.41,0.50,0.67, 0.80 , and 0.84	Rutin and quercetin
Track-7 Gallic Acid standard	5	1	0.67	Gallic acid
Track-8 Herbal formulations	10	10	0.08 ,0.13,0.18,0.24,0.27,0.35,0.51, 0.66, 0.80 and 0.87	Rutin and quercetin
Track-9 Rumawin	10	11	0.09 ,0.15,0.18,0.25,0.27,0.33,0.41, 0.56, 0.66, 0.77, 0.81 and 0.86	Rutin and quercetin

Arivukkarasu R et al., Sch. Acad. J. Pharm., May 2017; 6(5):221-228

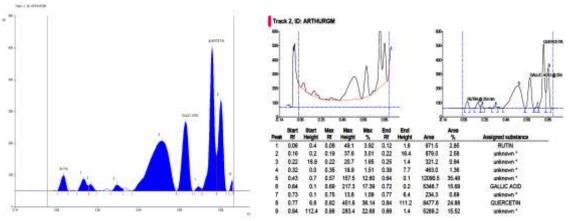


Fig 2: Chromatogram of Arthrum capsules track-2

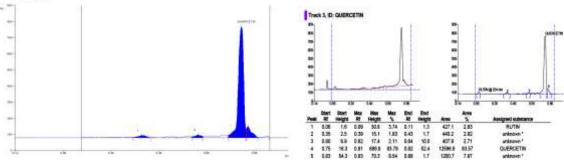


Fig 3: Chromatogram of Quercetin track-3

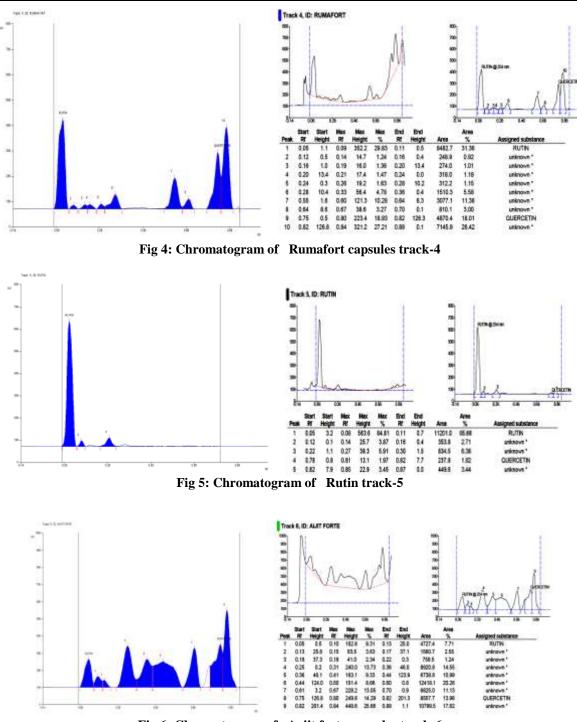


Fig 6: Chromatogram of Arjit forte capsules track-6

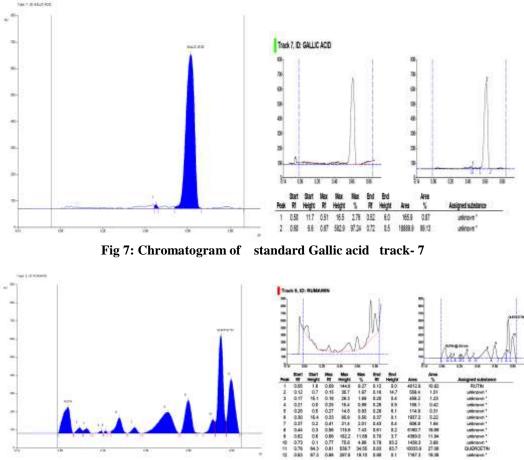


Fig 8: Chromatogram of Rumawin track.-9

Table 4: Estimation of free radical sc	avengers rutin, quercetin and	I gallic acid in herbal formulations
--	-------------------------------	--------------------------------------

Track Number/Name		Rf value of peak	Area of	Amount of	Percentage of standard
of the formulation	of Sample		peak	marker	marker present in each
	applied			present in	100mg of capsules
	in µl			applied µl of	
				Sample in µg	
Track-1-Herbal	10µl	0.10-Rutin	7848.6	3.50 µg	3.50%
formulations		0.83-Quercetin	5702.3	2.26 µg	2.26%
Track-2-	10 µl	0.09- Rutin	0971.6	0.43 µg	0.43%
Arthrum capsules		0.69-Gallic acid	5346.7	1.41 µg	1.41%
		0.82- Quercetin	8477.6	3.36 µg	3.36%
Track-3	5 µl	0.81- Quercetin	12596.9	5.0 µg	5.00%
Quercetin standard		-			
Track-4 Rumafort	10 µl	0.09- Rutin	9482.7	4.23 μg	4.23%
capsules		0.80- Quercetin	4870.4	1.93 µg	1.93%
Track-5 Rutin standard	5 µl	0.08- Rutin	11201.0	5.0 μg	5.0%
Track-6 Arjit forte	10 µl	0.10- Rutin	4727.4	2.11 µg	2.11%
-	-	0.80- Quercetin	8557.7	3.39 µg	3.39%
Track-7 Gallic Acid	5 µl	0.67- Gallic acid	18889.9	5.0 µg	5.00%
standard					
Track-8 Herbal	10 µl	0.08- Rutin	3100.9	1.38 µg	1.38%
formulations		0.80- Quercetin	11232.0	4.45 µg	4.45%
Track-9 Rumawin	10 µl	0.09- Rutin	4012.8	1.79 µg	1.79%
		0.81- Quercetin	10035.8	3.98 µg	3.98%

DISCUSSION:

The HPTLC of Arthrum capsules found to gallic rutin 0.43% acid contain 1.41% and querctin3.36%. Rumafort capsules contains rutin 4.23% and quercetin 1.93%, Arjit forte contains rutin 2.11% and quercetin 3.39 %, and Rumawin contains rutin 1.79% and quercetin 3.98 %, using the mobile phase toluene: ethyl acetate: formic acid: methanol. Flavonoids and phenolic acids which serve as an important source of anti-oxidants found in different medicinal plants and related phytomedicines [21].The anti-oxidant activity of flavonoids is due to their ability to reduce free radical formation and to scavenge free radicals. Oxidative stress, the consequence of an imbalance of pro-oxidants and antioxidants in the organism is the key phenomenon in chronic illness like inflammatory diseases. Phytopharmaceuticals are gaining importance in modern medicine as well as traditional system of medicine owing to their therapeutic potential due to the presence of phytochemicals such as polyphenols, flavonoids and triterpenoids etc. Since they possess anti-inflammatiory, antioxidant, analgesic and cytostatic activity, the quantification of phytochemicals such as flavonoids and necessary.Phenol phenolic phenolics was and compound such as flavonoids have shown free-radical scavenging activity and protection against oxidative stress. These secondary metabolite in plant possess potent antioxidant activity in terms of its radical scavenging activity. The antioxidant activity of phenol is mainly due to their redox properties, hydrogen donors and singlet oxygen quenchers. Flavonoids ability of scavenging hydroxyl radicals and lipid peroxy radicals is important for prevention of diseases associated with oxidative damage of membranes, proteins and DNA. Hence in this effort we estimated the well-known free radical scavengers rutin, quercetin and gallic acid in market herbal anti-inflammatory and anti-arthritis formulations by HPTLC methods. This paper exposed that the levels of markers in formulations responsible for theraputic activity.

REFERENCES

- 1. Arivukkarasu R, Rajasekaran A. Detection of Flavonoids, Phenolic Acids and Xanthones in Commercial Herbal Formulations by HPTLC Technique. Research Journal of Pharmacognosy and Phytochemistry. 2015; 7(1):13-27.
- 2. Andol HC, Purohit VK. High performance thin layer chromatography (HPTLC): A modern analytical tool for biological analysis. Nature and Science. 2010; 8(10):58-61.
- Kandaswami C, Middleton Jr E. Free radical scavenging and antioxidant activity of plant flavonoids. InFree radicals in diagnostic medicine 1994 (pp. 351-376). Springer US.

- Duthie SJ, Dobson VL. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. European journal of nutrition. 1999 Feb 24; 38(1):28-34.
- 5. Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews. 2000 Dec 1; 52(4):673-751.
- Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Antiinflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco. 2001 Aug 1; 56(9):683-7.
- Pereira AP, Ferreira IC, Marcelino F, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereira JA. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules. 2007 May 26; 12(5):1153-62.
- Rotelli AE, Guardia T, Juárez AO, De la Rocha NE, Pelzer LE. Comparative study of flavonoids in experimental models of inflammation. Pharmacological research. 2003 Dec 31; 48(6):601-6.
- 9. Han Y. Rutin has therapeutic effect on septic arthritis caused by Candida albicans. International immunopharmacology. 2009 Feb 28; 9(2):207-11.
- Boyce E. Pharmacology of antiarthritic drugs. Clinics in podiatric medicine and surgery. 1992 Apr; 9(2):327-48.
- 11. Van Den Broek MF, Van De Langerijt LG, Van Bruggen MC, Billingham ME, Van Den Berg WB. Treatment of rats with monoclonal anti-CD4 induces long-term resistance to streptococcal cell wall-induced arthritis. European journal of immunology. 1992 Jan 1; 22(1):57-61.
- Anderson D, Chambers K, Hanna N, Leonard J, Reff M, Newman R, Baldoni J, Dunleavy D, Reddy M, Sweet R, Truneh A. A PrimatizedMAb to Human CD4 Causes Receptor Modulation, without Marked Reduction in CD4+ T Cells in Chimpanzees: In Vitroandin Vivo Characterization of a MAb (IDEC-CE9. 1) to Human CD4. Clinical immunology and immunopathology. 1997 Jul 31; 84(1):73-84.
- 13. Zafirova Y, Yordanov M, Kalfin R. Antiarthritic effect of VIP in relation to the host resistance against Candida albicans infection. International immunology. 2004 Aug 1; 16(8):1125-31.
- Mamani-Matsuda M, Kauss T, Al-Kharrat A, Rambert J, Fawaz F, Thiolat D, Moynet D, Coves S, Malvy D, Mossalayi MD. Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochemical pharmacology. 2006 Nov 15; 72(10):1304-10.

Arivukkarasu R et al., Sch. Acad. J. Pharm., May 2017; 6(5):221-228

- 15. Kandere-Grzybowska K, Kempuraj D, Cao J, Cetrulo CL, Theoharides TC. Regulation of IL-1induced selective IL-6 release from human mast cells and inhibition by quercetin. British journal of pharmacology. 2006 May 1; 148(2):208-15.
- 16. Tiku ML, Gupta S, Deshmukh DR. Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants. Free radical research. 1999 Jan 1; 30(5):395-405.
- Jackson JK, Higo T, Hunter WL, Burt HM. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflammation Research. 2006 Apr 29; 55(4):168-75.
- 18. Min YD, Choi CH, Bark H, Son HY, Park HH, Lee S, Park JW, Park EK, Shin HI, Kim SH. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-[kappa] B and p38 MAPK in HMC-1 human mast cell line. Inflammation Research. 2007 May 1; 56(5):210.
- Bhandari P, Kumar N, Gupta AP, Singh B, Kaul VK. A rapid RP-HPTLC densitometry method for simultaneous determination of major flavonoids in important medicinal plants. Journal of separation science. 2007 Aug 1; 30(13):2092-6.
- 20. Nurok D. Strategies for optimizing the mobile phase in planar chromatography. Chemical Reviews. 1989 Mar; 89(2):363-75.
- 21. Pietta P. In Flavonoids in Health and Disease; Rice-Evans, CA; Packer, L., Eds.