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Abstract: Diabetes mellitus is a metabolic disorder which affects the wide range of the 

population worldwide. Most of the pharmacotherapeutic agents available today might 

provide the symptomatic relief, but do not cure the disease completely. Further their 

limitations make the researcher look forward to the newer and the safer 

pharmacotherapeutic agents. Aim of the present work is to describe the role of the 

chalcones in the treatment of diabetes mellitus. Information regarding the chalcones was 

collected from the various site such as PubMed, Google, google scholars and science 

direct. It has been concluded that the chalcones have the key potential due to their 

structural property that might exert the beneficial effects of diabetes and the associated 

pathological conditions. 
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INTRODUCTION 

                Diabetes mellitus is a group of metabolic diseases characterised by 

hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The 

chronic hyperglycemia of diabetes is correlated with long-term damage, dysfunction, and 

failure of various organs, particularly the eyes, kidneys, nerves, heart, and blood vessels. 

It is reported that the common cause of DM is the ineffective production and utilization of 

insulin in the body which is further responsible for the rise in blood glucose levels and 

different metabolic abnormalities seen in the patients of DM. Thus, the degree of 

hyperglycemia reflects the severity of the underlying metabolic process. 

 

DM is characterized by the presence of various 

symptoms including polyuria, polydipsia, weight loss 

and blurred vision. Long-term complications of DM 

include retinopathy, gastrointestinal, genitourinary and 

cardiovascular dysfunction [1]. 

 

Type-1 DM is also known as insulin-

dependent DM (IDDM) or childhood-onset DM. It is an 

autoimmune disease characterized by the destruction of 

pancreatic β cells [2]. Type 1 diabetogenesis, consisting 

of sequential steps: (1) Genetic predisposition; (2) 

initiation of immune response or trigger; (3) 

autoimmunity; (4) beta cell destruction; and (5) clinical 

diabetes [3]. However, it remains unclear why the 

autoimmunity in Type-1 Diabetes mellitus is specific to 

insulin-producing β cells [2]. Type-2 DM is also known 

as non-insulin-dependent DM (NIDM) or adult onset 

DM because the body cannot effectively utilize the 

insulin so produced. T2DM is thus characterized by the 

presence of insulin resistance [4]. It has been reported 

that β-cells of the pancreas have very low levels of 

antioxidant enzymes and therefore they are particularly 

at risk of oxidative stress. Once glucose enters the cells, 

it is primarily and progressively metabolized to 

glyceraldehyde-3-phosphate, 1:3 bis-P-glycerate, 

glyceraldehyde-3-phosphate, and pyruvate. Pyruvate 

then enters tricarboxylic acid (TCA) cycle to undergo 

oxidative phosphorylation, during which formation of 

adenosine triphosphate (ATP) and reactive oxygen 

species (ROS) occurs. So, the excess glucose led to the 

formation of increased ROS and increased the 

formation of ROS has been implicated in the insulin 

resistance seen in the NIDM [5].  

 

Factors responsible for the development of 

Hyperglycemia  

Factors which are responsible for hyperglycemia 

include [6]. 

 Reduced insulin secretion from pancreatic β-cells 

 Elevated glucagon secretion from pancreatic α cells 

 Increased production of glucose in the liver 

 Neurotransmitter dysfunction and insulin resistance 

in the brain 

 Enhanced lipolysis 

 Increased renal glucose reabsorption 

 Reduced incretin effect in the small intestine 

 Impaired or diminished glucose uptake in peripheral 

tissues such as skeletal muscle, liver, and adipose 

tissue. 
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Whenever somebody takes the meal, there is a 

rise in blood glucose level that stimulates insulin 

secretion resulting in an increase in transportation, 

biotransformation and storage in muscles and fat 

tissues. In fasting conditions, glucose in the blood is 

provided by the liver that is used by the brain, without 

any dependency on insulin. Besides the storage of 

glucose, insulin also inhibits the secretion of glucagon 

and lowers the concentration of serum fatty acids 

leading to a decline in liver glucose production. 

Insufficient insulin or resistance to insulin in the body 

results in reduced tissue uptake of glucose that results in 

intracellular hypoglycemia and extracellular 

hyperglycemia. The intracellular hypoglycemia causes 

glucogenesis and gluconeogenesis that leads to fats 

breakdown and decreases protein synthesis and gamma 

globulins (causing cachexia, polyphagia, and impaired 

wound healing), while the extracellular hyperglycemia 

results in the oxidative stress which further produces 

stress damage to various body cells [7]. 

 

Different categories of the agents used for the 

treatment of Type-2 Diabetes mellitus 

             The major classes of oral antidiabetic 

medications include: 

 Biguanide- Metformin is the first-line oral drug 

used in the treatment of T2DM.  Metformin 

activates adenosine monophosphate-activated 

protein kinase (AMPK) in the liver, causing hepatic 

uptake of glucose and inhibiting gluconeogenesis, 

e.g. metformin [6, 8].  

 

 Sulfonylureas- Sulfonylureas lower blood glucose 

level by increasing the insulin secretion from the 

pancreas by blocking KATP channels. They also 

limit gluconeogenesis, decrease the breakdown of 

lipids to fatty acids and reduce clearance of insulin 

[6, 8].  

 

 Meglitinide- Meglitinide also binds to the 

sulfonylurea receptor present on the β-cells of the 

pancreas. However, the binding of meglitinide to 

the receptor is weaker than sulfonylurea, and thus 

recognised as short-acting insulin secretagogues, 

which gives flexibility in its administration. Also, a 

raised blood sugar level is required before it can 

stimulate β-cells, resulting in the insulin secretion, 

making it less effective than sulfonylureas. Drugs 

commonly used are repaglinide, nateglinide [6, 8].  

 

 α-Glucosidase inhibitors (AGIs)- These drugs 

inhibit the enzyme α-glucosidase responsible for 

the breakdown of complex carbohydrates into the 

simpler units which are further absorbed into the 

blood circulation accountable for the rise in the 

blood glucose levels. Drugs commonly used are 

acarbose, miglitol, voglibose [8].  

 

 Thiazolidinediones (TZDs)- TZDs act as an 

agonist at peroxisome proliferator-activated 

receptors (PPAR receptor) and facilitate increased 

glucose uptake in numerous tissues including 

adipose, muscle, and liver. Mechanism of action 

includes diminution of free fatty acid accumulation, 

reduction in inflammatory cytokines, rising 

adiponectin levels, and preservation of β-cell 

integrity and function, all leading to improvement 

of insulin resistance and β-cell exhaustion. Drugs 

commonly used are rosiglitazone, pioglitazone [6, 

8].  

 

 Incretin Mimetics- They are insulinotropic agents, 

stimulates the release of insulin in response to the 

entry of food into the small intestine. These include 

a glucose-dependent insulinotropic polypeptide 

(GIP, or incretin) and glucagon-like peptide (GLP-

1). However, these peptides have a short half-life, 

as these are rapidly hydrolyzed by DPP-4. It is 

reported that the incretin effect is reduced or absent 

in patients of T2DM [6, 8].  

 

 Dipeptidyl peptidase 4 (DPP-4) inhibitors- 

Dipeptidyl peptidase 4 inhibitors inhibit hydrolysis 

of the Glucagon-like peptide (GLP) and Gastric 

inhibitory polypeptide (GIP) and increased their 

plasma half-life. The gliptins have not been 

reported to create the higher incidence of 

hypoglycemic events compared with controls. In 

diabetic patients with coronary heart disease, that 

treatment with sitagliptin improved cardiac 

function, and coronary artery perfusion [6, 8] 

further suggested their advantage increased under 

the burden and worry underdiagnosis of diabetes 

mellitus.   

 

Problems associated with the current therapy 

DM is characterized by the rise in the blood 

glucose levels and pancreas release the insulin, which 

lowers the blood glucose levels and the failure of 

release and the action of insulin is responsible for the 

development of persistent hyperglycemia which is seen 

in the patients of Diabetes mellitus (DM). Oral 

hypoglycemic agents generally stimulate the failing 

pancreas to release more insulin which does not make 

correct sense actually [9]. Because of the failure of the 

pancreas to release insulin is one of the main causes of 

DM further if any drug stimulated the failed pancreas to 

produce insulin, it evolves more damage. Metformin 

monotherapy is not normally accompanied by 

hypoglycemia, interferes with vitamin B12 absorption 

and cannot be used in the patients of renal dysfunction 

because its use may increase the risk of lactic acidosis 

that might cause potentially fatal complication. The 

major problem associated with sulphonylureas is 

hypoglycemia, which can be life-threatening. Alpha-

glucosidase inhibitors (AGIs) are less effective in 

lowering glycemia than metformin or the sulfonylureas. 
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AGIs results in the increased delivery of carbohydrate 

to the colon commonly result in increased gas 

production and gastrointestinal symptoms, and therefore 

in clinical trials, 25-45% of participants have 

discontinued α-glucosidase inhibitor use. TZDs results 

in the weight gain and fluid retention, responsible for 

twofold increased risk for congestive heart failure. 

Further TZD, e.g. rosiglitazone increased the risk of 

myocardial infarction.  TZDs increase the incidence of 

fractures. Exenatide increased the frequency of 

gastrointestinal disturbances, with 30-45% of treated 

patients experiencing one or more episodes of nausea, 

vomiting or diarrhea [10]. Current drugs for diabetes, in 

which treatment strategies focus on insulin replacement 

therapy (type 1) and reducing insulin resistance (type 

2), do not directly target the underlying 

pathophysiology of the loss of β-cells [11]. Further, the 

prolonged exposure to sulphonylureas has been 

associated with β cell exhaustion, desensitization and 

possibly expedition of oxidative stress and apoptosis, 

causing a progressive reduction of insulin production 

capacity and deterioration of glycemic control over time 

[12, 13]. 

 

Chalcones 

Chalcones are also known as benzyl 

acetophenone or benzylidene acetophenone. In 

chalcones, two aromatic rings are joined together by an 

aliphatic three carbon chain. Chalcones (trans-1, 3-

diaryl-2-propen-1-ones) are α, β-unsaturated ketones 

consisting of two aromatic rings (ring A and B) having 

a diverse array of substituents. Rings are interconnected 

by an extremely electrophonic three carbon α, β-

unsaturated carbonyl system that pretends a linear or 

nearly planar structure [14-16]. They contain 

ketoethylenic group (–CO–CH=CH-). Chalcones 

contains conjugated double bonds and a completely 

delocalized π-electron system on both benzene rings. 

Chalcones have been used as an intermediate for the 

preparations of compounds having therapeutic value 

[17-19]. Chalcones have been recognised as interesting 

compounds that are correlated with several biological 

activities. The most common chalcones found in foods 

are phloretin and its glucoside phloridzin (phloretin 2′-

0-β-glucopyranoside), and chalconaringenin. From 

plants, stable chalcone moiety can't be isolated because 

of the presence of enzyme chalcone synthetase (CSH) 

which immediately converts chalcone into flavanone. 

The structure of the parent molecule of chalcones 

consists of two phenyl rings (A and B) and one α, β 

unsaturated double bond. The ring A must contain an 

electron deficient moiety like ethyl, methyl or alkyl 

groups for better activity. The ring B must contain the 

hydrophobic groups like halogens, nitro and cyano for 

the better activity. The unsaturated double bond plays 

an important role in the activity, but marginal 

modifications in this bond don't have much effect on the 

activity. Para position of the ring B is important for the 

activity. The ortho position of ring B also enhances the 

activity, but in comparison with the para position, it is 

low. 3D QSAR and in-house QSPR studies of 

chalcones have proved all these facts [20]. 

 

History of chalcone discovery  

Chalcones are natural compounds that are 

widely distributed in plants, fruits, and vegetables. The 

first aldol condensation product was reported by 

Kostanecki, and he gave the name "Chalcones" or 1,3-

diaryl-2-propen-1-ones. They belong to the flavonoid 

group of molecules, and some of them display 

numerous biological activities. Chalcones are the 

precursors in the biosynthesis of anthocyanins and 

flavones. The nature of chemistry they consist of open-

chain flavonoids in which the two aromatic rings are 

joined by a three-carbon α, β -unsaturated carbonyl 

system. Chalcones possess conjugated double bonds 

and a completely delocalized π-electron system on both 

benzene rings. Molecules possessing such system have 

relatively low redox potentials and have a higher 

probability of undergoing electron transfer reactions. 

An interesting feature of chalcones pharmacophore is 

that they serve as starting materials for the synthesis of 

five and six-membered heterocyclic compounds such as 

Pyrimidines, Pyrazolines, Flavones, Flavonols, 

Flavanones, Aurones and Benzoylcoumarones as well 

as certain compounds like Deoxybenzoins and 

Hydantoins which are of some therapeutic application. 

The chalcones or phenyl styryl ketones are α, β -

unsaturated ketones containing the reactive keto-

ethylenic group (-COCH=CH-). The chalcones are 

colored compounds because of the presence of the 

chromophore (-COCH=CH-). The pharmacological 

properties of chalcones are due to the presence of both 

α, β- unsaturation [21-24]. 

 

Claisen-Schmidt condensation reaction: Reaction 

involved in the synthesis of chalcone  

The mechanism involved the formation of α, β 

unsaturated carbonyl moiety. The basic principle 

involved in the condensation is dehydration followed by 

nucleophilic addition. In these four steps are involved 

for the mechanism of formation [25]:  

 Initially, the abstract of a proton from the methyl 

ketone is done by the alcoholic basic pH medium. 

Usually, alkali like NaOH or KOH of ethanol or 

methanol medium is used. 

 The abstraction of proton results in the formation 

of carbanion species and can act as a nucleophile in 

this condensation. Nucleophilic addition of 

carbanion to the aldehyde followed by the addition 

of proton form corresponding α, β-hydroxy 

carbonyl compound; 

 In the final step, dehydration takes place from β-

hydroxy carbonyl compound to form corresponding 

α, β unsaturated carbonyl compound. In the 

presence of electron donating group in the aldehyde 

or presence of a hetero nucleus, the final chalcone 

was achieved by the utilization of mineral acid 

such as HCl. 
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Step.1: Formation of nucleophile from methyl ketone
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Note- A variety of methods are available for the 

synthesis of chalcones, the most suitable method is the 

one that involves the Claisen-Schmidt condensation of 

equimolar quantities of substituted acetophenone with 

substituted aldehydes in the presence of aqueous 

alcoholic alkali. In the Claisen-Schmidt reaction, the 

concentration of alkali used usually ranges between 10 

and 60 %. The reaction is carried out at about 50ºC for 

12-15 hours or at room temperature for one week. 

Under these conditions, the Cannizzaro reaction also 

takes place and thereby decreases the yield of the 

desired product [26]. 

 

 

Flavonoids- the Chalcones of Natural origin 

Flavonoids are synthesized via the 

phenylpropanoid and polyketide pathway, which starts 

with the condensation of one molecule of CoA-ester of 

cinnamic acid or derivatives such as coumaric or ferulic 

acid, and three molecules of malonyl-CoA, yielding a 

naringenin chalcone as a major product. This reaction is 

carried out by the enzyme chalcone synthase (CHS). 

Chalcone synthase condenses 4-coumaroyl-CoA and 

malonyl-CoA to form the open-chain flavonoid 

naringenin chalcone, which is converted to naringenin 

by chalcone isomerase [27]. From these central 

intermediates, the pathway diverges into several 

branches, each resulting in a different class of 
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flavonoids. Flavanone 3-hydroxylase (F3H) catalyzes 

the stereospecific 3ß-hydroxylation of (2S)-flavanones 

to dihydroflavonols. For the biosynthesis of 

anthocyanins, dihydroflavonol reductase (DFR) 

catalyzes the reduction of dihydroflavonols to flavan-

3,4-diols (leucoanthocyanins), which are converted to 

anthocyanidins by anthocyanidin synthase (ANS). The 

formation of glucosides is catalyzed by UDP glucose-

flavonoid 3-O-glucosyl transferase (UFGT), which 

stabilizes the anthocyanidins by 3-O-glucosylation [28] 

 

Chemistry of flavonoids  

Flavonoids are composed of a 15-carbon (C6–

C3–C6) skeleton, and two benzene rings joined by a 

linear 3-carbon chain.  Structurally, flavonoids consist 

of 2 aromatic rings (A and B rings) linked by a 3-

carbon chain that forms an oxygenated heterocyclic ring 

(C ring). Flavonoids are classified as flavan-3-ols, 

flavanones, flavonols, anthocyanidins, flavones, and 

isoflavones based on differences in the generic structure 

of the C ring, functional groups on the rings, and the 

position at which the B ring is attached to the C ring. 

Within each subclass, individual compounds are 

characterized by specific hydroxylation and conjugation 

patterns [29]. The antioxidant activity of the flavonoids 

depends on the structure of flavonoid [30]. It is 

generally accepted that the number and position of 

hydroxyl groups on B and A rings, and the extent of 

conjugation between the B and C rings are the main 

features affecting the flavonoids' antioxidant activity 

[31]. The structural features of flavonoids that are 

necessary to exert radical scavenging and/or the 

antioxidative actions are described by the three criteria: 

(1) the ortho-dihydroxy (3′,4′-diOH, i.e., catechol) 

structure in the B ring, giving high stability to the 

flavonoid phenoxyl radicals via hydrogen bonding or by 

expanded electron delocalization; (2) the C2-C3 double 

bond (in conjugation with the 4-oxo group), which 

confers the co-planarity of the hetero-ring and 

contributes to radical stabilization via electron 

delocalization over all three ring systems; (3) the 

presence of both 3-OH and 5-OH groups for the 

maximal radical scavenging capacity and the strongest 

radical absorption. Also, the lack of o-dihydroxy 

structure in the B ring can be compensated by hydroxyl 

substituents in a catechol structure on the A ring: this 

feature represents a larger determinant of flavonoid 

antiradical activity. The basic flavonoid structure is 

essential for the antioxidant activity only when a 

catechol configuration is absent. Glycosylation of 

flavonoids decreases their antioxidant activity. The 

block or the removal of the C3 OH group results in a 

reduction of antioxidative properties of flavonoids 

[31,32]. 

 

 

 

 

Classification of flavonoids 

Flavonoids can be classified into multiple 

subgroups according to the substitution patterns of the 

ring C, and flavonoids within the same class can be 

differentiated by the substitution of A and B [33-35]. 

There are six major subgroups of flavonoids, including 

flavonols (including quercetin, kaempferol, and 

myricetin), flavanones (including eriodictyol, 

hesperetin, and naringenin), isoflavonoids (including 

daidzein, genistein, and glycitein), flavones (including 

apigenin and luteolin), flavans-3-ol (including 

catechin), and anthocyanins (including cyanidin, 

delphinidin, malvidin, pelargonidin, peonidin, and 

petunidin).  

 

Flavonoids and diabetes 

Flavonoids cahave the ability to scavenge free 

radicals and chelate metals [36]. Given the 

hypothesized relation between diabetes and 

inflammation [37, 38] and the potential for flavonoids 

to protect the body against free radicals and other pro-

oxidative compounds [39, 40], it is biologically 

plausible that consumption of flavonoids or flavonoid-

rich foods may reduce the risk of diabetes [41, 42]. 

These functional foods and phytomedicines play 

positive roles in maintaining blood glucose levels, 

glucose uptake and insulin secretion and modulating 

immune function to prevent specific DM [43, 44]. 

Flavonoids regulate carbohydrate digestion, insulin 

secretion, insulin signalling, and glucose uptake in 

insulin-sensitive tissues through various intracellular 

signalling pathways [45]. 

 

Flavan-3-ols exist as monomers (epicatechin 

and catechin) or oligomers (proanthocyanidins). 

Catechin and epicatechin are the main flavan-3-ols in 

fruits and cocoa, whereas epicatechin gallate (ECG), 

gallocatechin, epigallocatechin (EGC), and 

epigallocatechin gallate (EGCG) are found in tea, 

grapes and seeds of certain leguminous plants [46]. 

EGCG improved mitochondrial function and functional 

integrity of mitochondria in high glucose-exposed 

pancreatic β-cells [47]. EGCG also protect insulin-

producing β-cells from pro-inflammatory cytokine 

stimulated apoptosis [48] and had beneficial effects on 

fatty acid-induced insulin resistance [49] and at 

pharmacological doses improves glucose intolerance 

[50].  

 

Flavanones, i.e. naringin and hesperidin, 

present in citrus fruits. Hesperidin and naringin 

treatment also led to the activation of PPARγ [51] and 

improves glucose homeostasis by stimulating GLUT4 

production. Thus, hesperidin and naringin may treat 

hyperglycemia in T2D by regulating gene expression of 

glucose-regulating enzymes which may be mediated via 

PPARγ, a major target of T2D drugs.  
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Anthocyanidins are widely distributed and are 

responsible for colours of the fruits and the flowers 

[52]. The six most commonly occurring anthocyanidins 

are cyanidin, delphinidin, malvidin, peonidin, 

pelargonidin, and petunidin [53]. Anthocyanins enhance 

GLUT4 translocation to plasma membranes of skeletal 

muscle and thereby enhanced glucose uptake. 

Anthocyanins also improved insulin signalling by 

stimulating IR phosphorylation, leading to a greater 

tyrosine kinase activity in the β-subunit of the IR and 

anthocyanins increased the β-cell viability and cellular 

function in diabetic rats [54]. 

 

Flavonols include kaempferol, quercetin, and 

fisetin [55]. Fisetin is a tetrahydroxyflavone, and the 

fistein treatment increased the glycogen content and the 
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activity of glycogen synthase whereas it suppressed 

glycogen phosphorylase and thus improve glucose 

homeostasis by modulating these regulatory enzymes of 

carbohydrate metabolism [56]. Kaempferol improved 

the synthesis and secretion of insulin in β-cells and 

islets and protected the β-cells from apoptosis [57–59]. 

Quercetin and quercetin aglycone enhances insulin-

independent glucose uptake and stimulates AMPK in 

muscle cells. Quercetin protects clonal β-cells against 

cytokine-induced cell death [60]. Quercetin also inhibits 

the α-glucosidases and exerts more potent effect than 

that of acarbose [61]. However, it is not clear whether 

this inhibitory effect of quercetin on α-glucosidases is 

specific, which is essential for the nutritional or 

pharmacological use of this compound to decrease 

postprandial glucose load because it was discovered 

that some α-glucosidase inhibitors such as acarbose also 

cause inhibition of α-amylase [62–64].  

 

Flavones such as apigenin and luteolin have 

been recognized as a potential chemopreventive agent 

[65]. Apigenin increases the phosphorylation of AMPK 

[66], and apigenin has beneficial effects in diabetes by 

regulating the AMPK-dependent energy metabolism 

[67]. Luteolin improves insulin sensitivity and enhances 

Akt2 phosphorylation in adipocytes via activation of 

PPARγ [68].   

 

Isoflavones are daidzein and genistein, are 

present primarily in soy foods. Dietary supplementation 

of genistein led to improved glucose metabolism and 

insulin levels in T1D animals [69, 70]. Soy intake led to 

enhanced phosphorylation of AMPK and favourable 

metabolic changes associated with AMPK activation, 

including phosphorylation and inactivation of ACC, 

increased mitochondrial biogenesis and expression of 

genes involved in peroxisomal fatty acid oxidation, and 

increased glucose uptake in skeletal muscle [71]. 

Genistein exerts anti-diabetic effects by improving 

plasma lipids [72], thereby increasing insulin 

sensitivity. Genistein exerts its beneficial effects on 

glucose homeostasis by influencing β-cell mass and 

function, and insulin signalling in animal models. 

 

CONCLUSION 

Diabetes mellitus is a group of metabolic 

diseases characterized by hyperglycemia resulting from 

defects in insulin secretion, insulin action, or both. Oral 

hypoglycemic agents generally stimulate the failing 

pancreas to release more insulin which does not make 

correct sense. Further the current drugs for diabetes, in 

which treatment strategies focus on insulin replacement 

therapy (type 1) and reducing insulin resistance (type 

2), do not directly target the underlying 

pathophysiology of the loss of β-cells. Chalcones are 

also known as benzyl acetophenone or benzylidene 

acetophenone and identified as interesting compounds 

that are associated with several biological activities. 

Chalcones are aromatic ketone with two phenyl rings 

that are precursors of flavonoids and isoflavonoids and 

exert several biological and pharmacological activities. 

Generally, natural chalcones occur as petal pigments 

and have been found in the heartwood, bark, leaf, fruit, 

and root [73]. Different studies have shown that 

chalcones present antihyperglycemic properties, while 

chalcone with iodine substitution showed great potential 

in reducing glucose medium concentration, [74] 

increasing insulin secretion [75] and increasing glucose 

uptake [76]. In a study published Hu et al. it was 

reported that 2',4'-dihydroxy-6'-methoxy-3',5'-dimethyl 

chalcone might increase insulin secretion under the 

condition of elevated glucose by mimicking glucagon-

like peptide-1 (GLP-1) and to promote the expression of 

GLUT2 and glucokinase (GCK). On the other hand, the 

2',6'-dihydroxy-4'-methoxy-3',5'-dimethyl chalcone 

might stimulate the secretion of insulin by increasing 

the GLUT2 and GCK. The GLUT 2 facilitates the 

transport of glucose and thus initiates the GSIS by the 

uptake of glucose [77]. After, glucose is then 

phosphorylated by glucokinase and further metabolized 

through the glycolytic route. Thereby, this process 

increases the production of ATP into the cell that 

increases calcium influx and leads to insulin secretion. 

Thus, chalcones might be the promising agents for the 

treatment of the diabetes mellitus 
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