Scholars Academic Journal of Pharmacy (SAJP)

Abbreviated Key Title: Sch. Acad. J. Pharm. ©Scholars Academic and Scientific Publisher A Unit of Scholars Academic and Scientific Society, India www.saspublisher.com ISSN 2347-9531 (Print) ISSN 2320-4206 (Online)

Established New HPLC Method for Cleaning Validation of Pramipexol Dihydrochloride Monohydrate Active Pharma Ingredient

Swamy Sekhar Kaladi¹, Korupolu Raghu Babu^{1*}, Tentu Nageswara Rao²

¹Department of Engineering Chemistry, AU College of Engineering, Andhra University, Visakhapatnam AP Department of Chemistry, Krishna University, Machilipatnam, AP, India

²Department of Chemistry, GITAM University, Hyderabad Campus Telangana, India

Pramipexole is a is a non-ergoline dopamine agonist indicated for treating early-stage Parkinson's disease (PD) and restless legs syndrome [1,2]. Chemically it is (S)-2-amino-4,5,6,7-tetrahydro-6- (propylamino)benzothiazole. Pramipexole is a none-argot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D_3 than to D2 or D4 receptor subtypes.

Pramipexole dihydrochloride, a non-ergot dopamine agonist approved in the US 1997, is used as an antidyskinetic for treatment of Parkinson's disease [4, 5]. It is also sometimes used off-labelas a treatment forcluster headacheand to counteract the problems with sexual dysfunction experienced by some users of theselective, serotonin reuptake inhibitor (SSRI) antidepressants. Pramipexole is a category of Non ergot dopamine receptor agonist [3,4]. It can improves the ability to move and decrease shakiness (tremor), stiffness, slowed movement, and unsteadiness. The molecular formula is C10H17N3S.2HCl.H2O. This corresponds to a molecular weight of 302.2 g/mol [5, 6].

Cleaning validation is documented proof with high measure of assurance that one can always clean a system or piece of equipment to predetermined and suitable limits [7]. Cleansing validation is especially applicable to the cleansing of method manufacturing apparatus in pharmaceutical enterprise. It is integral to have effective cleaning programs in place because of regulatory requirements [8]. Cleansing is among the imperative strategies in pharmaceutical manufacturing. Equipment contamination may just come from any of the substances which have been in contact with the equipment surfaces [9,10]. It is crucial to restrict carryover of trace quantities of either active or different substances from one batch to yet another in order to preclude go-illness of the following product Consequently[11-13], equipment used in pharmaceutical manufacturing has got to be cleaned meticulously, and the cleansing approach used ought to be validated. In the pharmaceutical enterprise, just right Manufacturing Practices (GMP) require that the cleaning of drug manufacturing equipment be validated [14]. Many unique validation methods can exhibit that the manufacturing gear is cleaned and just about free from residual energetic drug components and all cleaning agents [15, 16]. Common analytical procedures in the validation procedure incorporate HPLC, spectrophotometry (UV/Vis) and TOC. HPLC and UV/Vis are categorized specific methods that identify and measure appropriate active and substances.

In the present study, a novel HPLC method was developed and successfully validated for Pramipexol Dihydrochloride Monohydrate. As on date, there were no research articles for cleaning validation of Pramipexol Dihydrochloride Monohydrate.

MATERIALS AND METHODS

Standards, reagents and samples

The analytical standard of Pramipexol Dihydrochloride (99.8%) was obtained from Sigma Aldrich. The HPLC grade solvents i.e., Ortho phosphoric acid and acetonitrile were purchased from Rankem, New Delhi.

Experimental

HPLC Chromatographic Parameters

The HPLC-UV system used, consisted shimadzu high performance liquid chromatography with LC- 20AT pump and SPD-20A interfaced with LC solution software, equipped with a reversed phase C18 analytical column of 100 mm x 4.6 mm and particle size 3.5 μ m (Phenomenex) Column oven temperature was maintained at 25°C. The injected sample volume was 20 μ L. Mobile Phases A and B was Acetonitrile and 0.4% ortho phosphoric acid (35:65 (v/v)). The flow- rate used was kept at 1.0 mL/min with a detector wavelength at 254 nm. The retention time of Pramipexol Dihydrochloride Monohydrate about 4.2 min.

Method Validation

Method validation ensures analysis credibility. In this study, the parameters Specificity and Selectivity, linearity, precision, accuracy, Limits of Detection (LOD) and Quantification (LOQ) were considered. The accuracy of the method was determined is to verify the recovery and the release efficacy of the swabs and rinse used in the cleaning operation. Linearity was determined by different known concentrations (2.5, 5.0, 10.0, 15.0 and 20.0 μ g/mL) which were prepared by diluting the stock solution. The Limit of Detection (LOD, μ g/mL) was determined as the lowest concentration giving a response of 3 times the baseline noise defined from the analysis of control sample. The Limit of Quantification (LOQ, μ g/mL) was determined as the lowest concentration of given Pramipexol Dihydrochloride Monohydrate giving a response of 10 times the baseline noise.

RESULTS AND DISCUSSIONS Specificity; Selectivity

Procedure

To demonstrate the discrimination of the analyte in presence of others. Test samples containing each analyte then test sample without analyte (blank).

Take 10mg of each product in each 100ml volumetric flask and bring to volume with methanol. Take 10ml of each solution in each 100ml volumetric flask and bring to volume with methanol. Separately, inject once 20µl of each solution.

Selectivity

Take 10 ml of each solution in a 100 ml volumetric flask end bring to volume to 100 ml with methanol. (This solution contains 10 ppm of each substance).

Inject six times 20µl of this solution.

Since one product is utilized for this validation, six results of precision were used instead.

Linearity

Procedure

The linearity was determined according to the ICH guidelines. The chosen concentration as 100% was 10 μ g/ml of each product. The scheme carried out was the following:

Dilution scheme:	sample weight in 100ml	Solution A
	1ml solution A in 100ml	Solution B

Test solution

25% solution

Take 25mg of each product in a 100ml volumetric flask and bring to volume with methanol. (Sol A).Take 1ml in a 100ml volumetric flask and bring to volume with methanol.

50% solution

Take 50mg of each product in a 100ml volumetric flask and bring to volume with methanol (Sol A1). Take 1ml in a 100ml volumetric flask and bring to volume with methanol.

100% solution

Take 100mg of each product in a 100ml volumetric flask and bring to volume with methanol. (Sol A2) Take 1ml in a 100ml volumetric flask and bring to volume with methanol.

150% solution

Take 150mg of each product in a 100ml volumetric flask and bring to volume with methanol. (Sol A3) Take 1ml in a 100ml volumetric flask and bring to volume with methanol.

200% solution

Take 200mg of each product in a 100ml volumetric flask and bring to volume with methanol. (Sol A4) Take 1ml in a 100ml volumetric flask and bring to volume with methanol.

The linearity solutions were injected thrice and détails were given Table 1 and représentative chromatogram

was showéd in Figure. 1.

Fig-1: Representative chromatogram of linearity standard solution

SET	Percent%	Weight (mg)	Area	Normalized	AV. peak	RSD
			Injection 1	Area	area	%
1		25.2	112386	111494		
2	25%	25.2	114471	113563	113910	2.29
3		24.9	116206	116673		
1		53.6	184243	171868		
2	50%	50.0	183803	183803	179596	3.73
3		50.1	183484	183118		
1		100.0	336253	336253		
2	100%	100.0	335534	335534	335177	0.39
3		100.2	334411	333744		
1		143.8	472722	493104		
2	150%	150.0	475557	475557	479895	2.43
3		150.2	471652	471024		
1		200.2	623123	622500		
2	200%	200.1	626991	626678	626995	0.74
3		200.1	632124	631808]	

$1 a \mu c^{-1}$. Linearity uctains of praimperor universe function at monomy and	Table-1: Linearit	v details of prai	nipexol dihydr	ochloride mono	hvdrate
--	-------------------	-------------------	----------------	----------------	---------

Slope	29509
Intercept	37271
\mathbb{R}^2	1.00

Precision: Repeatability

This was determined on 6 different solutions having a concentration of 10µg/ml of each product (100%).

Dilution Scheme: 100mg in 100ml Solution A 1ml solution A in 100ml Solution B

Precision Solution

Take 100mg of each product in a 100ml volumetric flask and bring to volume with methanol. Take 1ml in a 100ml volumetric flask and bring to volume with methanol. The détails were given Table 2.

		-			
Injection	Weight (mg)	factor N	area	Area N	Date
1	100.1	0.9990	1222456	1221235	
2	100.1	0.9990	1219156	1217938	018
3	99.9	1.0010	1221557	1222780	3/2(
4	100	1.0000	1220371	1220371	30/0
5	99.9	1.0010	1217157	1218375	10
6	100.1	0.9990	1217690	1216474	
Avera	ige		1226147		
S			5099.9		
RSD	%		0.42%		
Confide	ence		4081		

Table-2: Repeatability detials of pramipexol dihydrochloride monohydrate

Precision: Intermediate

This was determined on 6 different solutions having a concentration of $10\mu g/ml$ of each product, performed on different days and using fresh mobile phase.

Dilution scheme: 100mg in 100ml olution A 1ml solution A in 100ml Solution B

Precision Solution

Take 100mg of each product in a 100ml volumetric flask and bring to volume with methanol. Take 1ml in a 100ml volumetric flask and bring to volume with methanol. The Intermediate détails were given Table 3 and Table 4.

Table-3: The intermediate details of pramipexol dihydrochloride monohydrate on first day

Injection	Weight (mg)	factor N	area	Area N	Date
1	99.9	1.0010	317596	317914	9
2	100.1	0.9990	322522	322200	010
3	100.2	0.9980	320552	319912	8/2
4	99.8	1.0020	322662	323309	/10
5	99.8	1.0020	322549	323195	12
6	100.2	0.9980	322230	321587	

Table-4: The intermediate details of pramipexol dihydrochloride monohydrate on second day

Injection	Weight(mg)	factor N	area	Area N	Date
1	100.1	0.9990	1222456	1221235	2
2	100.1	0.9990	1219156	1217938	010
3	99.9	1.0010	1221557	1222780	8/2
4	100	1.0000	1220371	1220371	0/0
5	99.9	1.0010	1217157	1218375	11
6	100.1	0.9990	1217690	1216474	
7	100.1	0.9990	1222456	1221235	
8	100.1	0.9990	1219156	1217938	016
9	99.9	1.0010	1221557	1222780	3/2(
10	100	1.0000	1220371	1220371	80/
11	99.9	1.0010	1217157	1218375	11
12	100.1	0.9990	1217690	1216474	
Ave	erage		329	892	
	S		97	44	
RS	D %		2.9	5%	
conf	idence		55	13	

Accuracy

The purpose of determining accuracy is to verify the recovery and the release efficacy of the swabs and rinse used in the cleaning operation. The determination of the recovery factor is obtained using the following Scheme:

- Transfer a known quantity of product, possibly dissolved in a volatile solvent, upon a surface which is similar to that used in the production plant. It is important to take care to distribute the product homogenously on the surface.
- Carefully eliminate the solvent from the surface, to prevent loss of product from the surface.
- Proceed to the mechanical cleaning of the surface (swab) or rinse as is described in the protocol using the identified solvent.
- For standard solutions one may use the means of peak areas obtained in Precision-Intermediate precision results.
- Extract with the swabs and determine the quantity of substance removed according to the analytical method. The percentage recovery obtained represents the recovery factor of the solvent to be used in the final calculation of the residual quantity of substance present in the equipment used for synthesis.
- Repeat in triplicate the operation described with all surfaces with which product has come in contact.

Solution to be used: Use 1 ml of each solutions (Sol A1 50%; Sol A2 100%; Sol A3 150%) prepared for the determination of linearity at 50%, 100%, 150%. The Swab and Rinse details were given Table 5 and Table 6.

			Lable et bilab	<i>cubic</i>	
%	Mg Product	Volume	ml deposited	Volume extracted	Theoretic µg/ml
50%	50	100	1	100	5
100%	100	100	1	100	10
150%	150	100	1	100	15

Table-5: Swab table

Table-6: Rinse table

%	Mg Product	Volume	ml deposited	Volume extracted	Theoretic µg/ml
50%	50	100	1	100	5
100%	100	100	1	100	10
150%	150	100	1	100	15

Table-7: Pramipexol dihydrochloride monohydrate swab - glass lined

	50%	100%		150%	0		
Weight (mg)	53.6	100.0		143.8			
Total dilution	100	100		100			
µg/ mL	5.36	10.00		14.38			
µg deposited	536	1000	1438				
Sample No.	Added	Peak area	Found Recovery% AV recove				
-	(µg/ml)		(µg/ml)	-	-		
50% A	5.36	172733	5.236	97.687	95.195		
100% A	10.00	311244	9.435	94.347			
150% A	14.38	443793	13.453	93.551			
50% B	5.36	175245	5.312	99.108	94.573		
100% B	10.00	309127	9.371	93.706			
150% B	14.38	431241	13.072	90.905			
50% C	5.36	171119	5.187	96.775	94.815		
100% C	10.00	312418	9.470	94.703			
150% C	14.38	441027	13.369	92.968			
Mea	n recovery	:		94.86%)		
RSE) recovery			0.33%			

Accuracy: Glass lined

50% solution

Swab - Take 1 ml of solution A1. Extract the swab with 100 ml of methanol Rinse - Take 1 ml of solution A1. Rinse with 100 ml of methanol

100% solution

Swab - Take 1 ml of solution A2. Extract the swab with 100 ml of methanol Rinse - Take 1 ml of solution A2. Rinse with 100 ml of methanol

150% solution

Swab - Take 1ml of solution A3. Extract the swab with 100 ml of methanol Rinse - Take 1ml of solution A3. Rinse with 100 ml of methanol The Swab and Rinse recovery details were given Table 7 and Table 8.

	50%	100%	150%					
Weight (mg)	53.6	100.0		143.8				
Total dilution	100	100	100					
µg∕ mL	5.36	10.00		14.38				
µg deposited	536	1000	1438					
Sample No.	Added	Peak area	Found	Recovery%	AV recovery%			
	(µg/ml)		(µg/ml)					
50% A	5.36	184363	5.589	104.265	101.845			
100% A	10.00	336777	10.209	102.087				
150% A	14.38	470514	14.263	99.184				
50% B	5.36	182657	5.537	103.300	101.115			
100% B	10.00	333592	10.112	101.122				
150% B	14.38	469283	14.225	98.925				
50% C	5.36	183455	5.561	103.751	101.104			
100% C	10.00	331653	10.053	100.534				
150% C	14.38	469762	14.240	99.026				
Mea	n recovery	•		101.35%	6			
RSE) recovery	1		0.42%				

Table-8: Pramipexol dihydrochloride monohydrate rince - glass lined

Accuracy: Steel

50% solution

Swab - Take 1 ml of solution A1. Extract the swab with 100 ml of methanol Rinse - Take 1 ml of solution A1. Rinse with 100 ml of methanol

100% solution

Swab - Take 1 ml of solution A2. Extract the swab with 100 ml of methanol Rinse - Take 1 ml of solution A2. Rinse with 100 ml of methanol

150% solution

Swab - Take 1ml of solution A3. Extract the swab with 100 ml of methanol Rinse -Take 1ml of solution A3. Rinse with 100 ml of methanol The Swab and Rinse recovery details were given Table 9 and Table 10.

Table-9: Pramipexol dihydrochloride monohydrate swab - ste
--

	50%	100%		150%		
Weight (mg)	53.6	100.0	143.8			
Total dilution	100	100.0		100		
ug/ mI	5 36	10.00		14 38		
ug deposited	536	1000		1438		
Sample No	Added	Peak area	Found	Recoverv%	AV recovery%	
Sample No.	$(\mu\sigma/ml)$	I cak area	$(\mu\sigma/ml)$	Recovery /0	Av iceovery/0	
50% A	5 36	171768	5 207	97 142	94 213	
100% A	10.00	307975	9 336	93 356	<i>y</i> 11213	
150% A	14.38	437100	13.250	92.140		
50% B	5.36	171481	5.198	96.979	97.782	
100% B	10.00	311265	9.435	94.354		
150% B	14.38	483938	14.670	102.014		
50% C	5.36	194529	5.897	110.014	103.579	
100% C	10.00	309427	9.380	93.796		
150% C	14.38	507249	15.376	106.928		
Mean recovery		98.52%				
RSD recovery			4.80%			

Table-10:	Pramipe	xol dihydro	chloride n	nonohydrate r	rinse – steel
	50%	100%		150%	
Weight (mg)	53.6	100.0		143.8	
Total dilution	100	100		100	
µg∕ mL	5.36	10.00		14.38	
µg deposited	536	1000		1438	
Sample No.	Added	Peak area	Found	Recovery%	AV recovery%
	(µg/ml)		(µg/ml)		
50% A	5.36	184077	5.580	104.103	101.465
100% A	10.00	334932	10.153	101.528	
150% A	14.38	468529	14.202	98.766	
50% B	5.36	186793	5.662	105.639	101.971
100% B	10.00	334352	10.135	101.352	
150% B	14.38	469276	14.225	98.923	
50% C	5.36	185139	5.612	104.704	101.663
100% C	10.00	333552	10.111	101.109	
150% C	14.38	470477	14.262	99.176	
Mean recovery:		101.70%			
RSD recovery:				0.25%	

Accuracy: Rubber

50% solution

Swab - Take 1 ml of solution A1. Extract the swab with 100 ml of methanol Rinse - Take 1 ml of solution A1. Rinse with 100 ml of methanol

100% solution

Swab - Take 1 ml of solution A2. Extract the swab with 100 ml of methanol Rinse - Take 1 ml of solution A2. Rinse with 100 ml of methanol

150% solution

Swab - Take 1ml of solution A3. Extract the swab with 100 ml of methanol Rinse - Take 1ml of solution A3. Rinse with 100 ml of methanol The Swab and Rinse recovery details were given Table 11 and Table 12.

Table-11: Pramipex	ol dihydrochloride mono	hydrate swab – rubber
--------------------	-------------------------	-----------------------

50%	100%		150%	
53.6	100.0		143.8	
100	100		100	
5.36	10.00		14.38	
536	1000		1438	
Added	Peak area	Found	Recovery	AV
(µg/ml)		(µg/ml)	%	recovery%
5.36	172139	5.218	97.352	94.164
10.00	311350	9.438	94.379	
14.38	430563	13.052	90.762	
5.36	175714	5.326	99.373	96.434
10.00	310125	9.401	94.008	
14.38	455034	13.793	95.921	
5.36	184342	5.588	104.253	96.972
10.00	310505	9.412	94.123	
14.38	438993	13.307	92.539	
ean recovery:			95.86%	
SD recovery:			1.55%	
	50% 53.6 100 5.36 536 Added (µg/ml) 5.36 10.00 14.38 5.36 10.00 14.38 5.36 10.00 14.38 5.36 10.00 14.38 5.36 10.00 14.38 can recovery: SD recovery:	50% 100% 53.6 100.0 100 100 5.36 10.00 536 1000 AddedPeak area $(\mu g/m l)$ 172139 10.00 311350 14.38 430563 5.36 175714 10.00 310125 14.38 455034 5.36 184342 10.00 310505 14.38 438993 ean recovery: SD recovery:	50% 100% 53.6 100.0 100 100 5.36 10.00 5.36 1000 536 1000 AddedPeak area $(\mu g/ml)$ $(\mu g/ml)$ 5.36 172139 5.218 10.00 311350 9.438 14.38 430563 13.052 5.36 175714 5.36 175714 5.36 175714 5.36 13.052 5.36 184342 5.588 10.00 310505 9.412 14.38 438993 13.307 can recovery:SD recovery:	50% 100% 150% 53.6 100.0 143.8 100 100 100 5.36 10.00 14.38 536 1000 1438 AddedPeak areaFoundRecovery $(\mu g/m l)$ $(\mu g/m l)$ $\%$ 5.36 172139 5.218 97.352 10.00 311350 9.438 94.379 14.38 430563 13.052 90.762 5.36 175714 5.326 99.373 10.00 310125 9.401 94.008 14.38 455034 13.793 95.921 5.36 184342 5.588 104.253 10.00 310505 9.412 94.123 14.38 438993 13.307 92.539 ean recovery: 95.86% 95.86%

Table-12: Pramipexol dihydrochloride monohydrate rinse – rubber					
	50%	100%		150%	
Weight (mg)	53.6	100.0		143.8	
Total dilution	100	100		100	
µg∕ mL	5.36	10.00		14.38	
µg deposited	536	1000		1438	
Sample No.	Added	Peak area	Found	Recovery	AV
	(µg/ml)		(µg/ml)	%	recovery%
50% A	5.36	183353	5.558	103.693	101.132
100% A	10.00	333760	10.117	101.173	
150% A	14.38	467410	14.169	98.530	
50% B	5.36	184549	5.594	104.370	101.660
100% B	10.00	334800	10.149	101.488	
150% B	14.38	470216	14.254	99.121	
50% C	5.36	183778	5.571	103.934	101.291
100% C	10.00	335427	10.168	101.678	
150% C	14.38	466140	14.130	98.262	
	Mean recovery:			101.36%	
	RSD recovery:			0.27%	

. .

Swamy Sekhar Kaladi et al., Sch. Acad. J. Pharm., Dec, 2018; 7(12): 493-502

Limit of Quantification (LOQ) and Limit of Detection (LOD)

The limit of quantification is at least 1 ppm. Dilute 10 ml of linearity solution A at 100% in 100 ml of methanol. Inject six times 20µl of this solution. The LOQ and LOD details were given in Table 13 and Table 14 and représentative LOQ chromatogram was showed in Figure 2.

Table-13: Loq	details of	pramipexol	dihydrochloride	monohydrate
---------------	------------	------------	-----------------	-------------

Tuble Let Log	actume of prumpe	nor any arounor	ae monony ai ace
SET	Area	Found(ppm)	Recovery %
1	33412	1.013	101.282
2	33872	1.027	102.676
3	35352	1.072	107.162
4	34064	1.033	103.258
5	33319	1.010	101.000
6	33808	1.025	102.482
Average	33971.17	1.03	102.98
Std Dev	733.45	0.02	2.22
RSD	2.16%	2.16%	2.16%

Fig-2: LOQ Level chromatogram of Pramipexol Dihydrochloride Monohydrate

The limit of detection is at least 0.25 μ g/mL.

Inject 5 μl of solution used for the limit of quantification.

Calculations

The quantity of the Active Ingredient is determined according to the sampling procedure. The assay of the Active Ingredient is calculated by comparing the peak area, applying the formulas:

Rinse

$\frac{Ac^{*}C}{dc^{*}C} = ug/mL$ in wash	h
As	

Where

Ac: area in sample	solution	
As: area in standard solution		
C: concentration solution standard (µg/mL)		
Calculation µg/mL in product based on rinse		
ug/mL product*V = ppm Active ingredient		
1000*Kg (prod)		

Where:

V: volume total solvent rinse (L)
Kg : Quantity in Kg of successive product
1000: Conversion Factor

(Ac – Ab)*C x Vestr	=ug/cm ² in swab
As x St	

Where

Swab:

Ac: area in sample solution
Ab: area blank extracted with swab
As: area in standard solution
C: concentration standard solution(µg/ml)
Vestr: extraction solvent (ml)
St: sampled surface (cm ²)

Calculation ppm in product based on swab

ug/cm ² product*S	=ppm Active ingredient
1000* kg(prod) *R	

Where,

S: total surface of employed plant (cm ²)
kg: Quantity in Kg of successive product
1000: conversion factor
R : recovery factor

CONCLUSIONS

The method developed for quantitative determination of Pramipexol Dihydrochloride Monohydrate residues in clean samples the method was completely validated showing satisfactory data for all method - validated parameters tested. The mobile phase composition of acetonitrile and 0.4% H3PO4 in water showed good separation and resolution. Satisfactory validation parameters such as linearity, recovery, precision LOD and LOQ were established by following ICH guidelines [16]. Therefore, the proposed analytical procedure could be useful for regular monitoring, pharma manufacturing labs and researchers.

ACKNOWLEDGEMENT

The authors are thankful to the Dr. B. Gowtham Prasad, SVV University, for providing necessary facility to conduct the Laboratory experiment.

REFERENCES

- 1. Patil MH and Rokade MD. An International Journal. 2013, 5; 78-83.
- 2. Sawsan Abdel Razeq A, Khalid Abdel Salam M, Manal Fouad M, Tahany Mohamed F. 2015, 3; 1444-1457.
- Venkata Rajesh N. Deepa Ramani, Durraivel, International Journal of Pharmaceutical and Clinical Research. 2013; 5, 17-22

- 4. Shubhangi pawar M, Laxman khatal D, Satish gabhe Y, Sunil dhaneshwar R. Journal of Pharmaceutical Analysis. 2013,3,109–117.
- 5. Lavudu P, Prameela Rani A, Balashekaran C & Venumadhav V. Global Journal of Medical research. 2012, 4; 19-24.
- 6. Deepan TK, Paulambethkar K, Vijayalakshmi R, Dhanaraju MD. A validated RP-HPLC method for the estimation of pramipexole dihydrochloride in pharmaceutical dosage form. World Journal of Chemistry. 2012;7(2):59-63.
- 7. Vilas Chaudhary and Milind Ubale. International Journal of Research in Pharmacy and Chemistry. 2013, 3; 134-139.
- 8. Jain PS, Gorle AP, Patil SS, Chavan RS, Bari PR, Surana SJ. Stability-indicating RP-HPLC Method for Estimation of Salmeterol xinafoate in Bulk and in Pharmaceutical Formulation. International Journal of Pharmaceutical Chemistry and Analysis. 2015;2(1):28-33.
- 9. Md. Semimul Akhtar and Shailendra Kumar Verma, International Journal of Pharmaceutical Quality Assurance. 2016, 7; 29-34
- 10. Patel N, Jansari S, Arvadiya A, Panchal K, Desai H. Development and validation of cleaning procedure of mixing equipment used for manufacturing ceftriaxone and sulbactam injection tablet by using total organic carbon. IOSR J Pharm. 2012 Sep;2:46-50.
- 11. Murthy DN, Chitra K. A Review Article on cleaning validation. International journal of pharmaceutical sciences and research. 2013 Sep 1;4(9):3317.
- 12. Venugopal S. World Journal of Pharmaceutical Research. 2014, 3; 3819-3844.
- 13. Kathiresan K, Rasayan Journal. 2010, 3, 503-506.
- 14. Kumar S. International Research Journal of Pharmaceutical Sciences. 2012, 3; 17-19.
- 15. Ghosh T, Maity TK, Sengupta P, Dash DK, Bose A. Antidiabetic and in vivo antioxidant activity of ethanolic extract of Bacopa monnieri Linn. Aerial parts: a possible mechanism of action. Iranian Journal of Pharmaceutical Research. 2010 Nov 20:61-8.
- 16. International Conference on Harmonisation. ICH harmonised tripartite guideline for statistical principles for clinical trials. Brookwood Medical Publ. 1998.