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Abstract  Original Research Article 
 

Time series are frequently filtered to remove unwanted characteristics, such as trends and seasonal components, or to 

estimate components driven by stochastic cycles from a specific range of periods in a business cycle. A polynomial 

function of time is the most common deterministic time trend while an integrated process is the most common 

stochastic trend. The different filters implemented in this paper allow for different orders of deterministic time trends 

or integrated processes. The robustness of the filters is evaluated by plotting their gain function against the gain 

function of a simulated ideal filter. Implementing the filters on Nigerian gross domestic products (GDP), the results 

show that the gain of the Baxter-King (BK) filter deviates markedly from the square-wave gain of the ideal filter. The 

gain in Christiano–Fitzgerald (CF) filter is closer to the gain of the ideal filter than the BK filter. The gain in Hodrick–

Prescott (HP) filter goes to one for those cycles at frequencies above six periods, whereas the other gain functions go 

to zero. The Butterworth (BW) filter does a reasonable job of filtering out the high-periodicity stochastic cycles but the 

low- periodicity stochastic cycles is not been completely removed. 
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1. INTRODUCTION 
Time series may contain deterministic trends 

or stochastic trends. A polynomial function of time is 

the most common deterministic time trend. An 

integrated process is the most common stochastic trend. 

An integrated process is a random variable that must be 

differenced one or more times to be stationary 

(Hamilton, 1994).  

 

One common approach to filtering is the 

frequency domain method used by Hassler, et al., 

(1994) and Rush, et al., (1997). This method works as 

follows. First, one takes a discrete Fourier transform of 

the economic data, computing the periodic components 

associated with a finite number of “harmonic” 

frequencies. Second, one “zeros out” the frequencies 

that lie outside of the band of interest. Third, one 

computes the inverse Fourier transform to get the time 

domain filtered series, { Tyy ~,...,~
1 }. There are two 

major drawbacks with this explicitly domain procedure, 

relative to our time domain method. First, since there 

are likely “stochastic trends” in most economic time 

series, arising from unit root component, it is necessary 

to first de-trend the series prior to taking the Fourier 

transform: in order to accomplish band-pass filtering, 

one must therefore make a choice of de-trending 

method. Working with annual data, Hassler et al., 

(1994) used the Hodrick-Prescott filter with 10  for 

this initial de-trending step. Working with quarterly 

data, Rush, et al., (1997) argued for a much larger 

value, 000,10  in the initial detrending step so as to 

avoid distorting business cycle outcomes. Second, the 

results of the frequency domain method at all dates are 

dependent on the sample length T. Consider, for 

example, the business cycle outcome ty~  obtained from 

a study of quarterly economic data in a study of length 

T1, e.g. the observation on cyclical output in 1970:2, 

obtained used data through 1985. When the sample 

length is extended to T2, the discrete Fourier transform 

of { Tyyy ...,, 21 } must be recomputed and each of its 

elements will change. Consequently, so too will each of 

the elements of the inverse Fourier transform of the 

filtered series, i.e., the cyclical observations, {
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Tyy ~,...,~
1 }. Thus, the outcome for cyclical output in 

1970:2 will necessarily be different when data is added 

from 1986 to 1994. We need some concepts from the 

frequency-domain approach to time-series analysis to 

motivate how Baxter and King (1999) defined “as close 

as possible”. The intuitive explanation presented here 

glosses over many technical details discussed by 

Priestley (1981), Hamilton (1994), Fuller (1996), and 

Wei (2006). As with much time-series analysis, the 

basic results are for covariance-stationary processes 

with additional results handling some nonstationary 

cases. We present some useful results for covariance 

stationary processes and discuss how to handle 

nonstationary series below.  

 

The autocovariances  ,1,..., ,0  , jj  of 

a covariance-stationary process ty  specify its variance 

and dependence structure. In the frequency-domain 

approach to time-series analysis, ty  and the 

autocovariances are specified in terms of independent 

stochastic cycles that occur at frequencies 

 ,,  The spectral density function )(yf  

specifies the contribution of stochastic cycles at each 

frequency   relative to the variance of ty , which is 

denoted by 
2

y . The variance and the autocovariances 

can be expressed as an integral of the spectral density 

function. Formally, 






dfe y

iwj

j )(




,     (1) 

where i is the imaginary number 1i . 

 

The equation can be manipulated to show what 

fraction of the variance of ty  is attributable to 

stochastic cycles in a specified range of frequencies 

(Hamilton (1994). The equation implies that if

0)( yf  for  ,, 21    stochastic cycles at 

these frequencies contribute zero to the variance and 

autocovariances of ty . The goal of time-series filters in 

this paper is to transform the original series into a new 

series 
*

ty for which the spectral density function of the 

filtered series )(* y
f is zero for unwanted frequencies 

and equal to )(yf for desired frequencies.  

 

1.1 Band-pass Filters: The Baxter-King and 

Christiano-Fitzgerald Filter 

For an infinitely long series, there is an ideal 

band-pass filter for which the gain function is 1 for 

 ,, 10    and 0 for all other frequencies. It just 

so happens that this ideal band-pass filter is asymmetric 

moving average (SMA) filter with coefficients that sum 

to zero. Baxter and King (1999) derived the coefficients 

of this ideal band-pass filter and then define the BK 

filter to be the SMA filter with 2q + 1 terms that are as 

close as possible to those of the ideal filter. There is a 

trade-off in choosing q: larger values of q cause the gain 

of the BK filter to be closer to the gain of the ideal 

filter, but larger values also increase the number of 

missing observations in the filtered series. Although 

Baxter and King (1999) minimized the error between 

the coefficients in their filter and the ideal band-pass 

filter, Christiano and Fitzgerald (2003) minimized the 

mean squared error between the estimated component 

and the true component, assuming that the raw series is 

a random-walk process. Christiano and Fitzgerald 

(2003) gave three important reasons for using their 

filter: 

1. The true dependence structure of the data 

affects which filter is optimal. 

2. Many economic time series are well 

approximated by random-walk processes. 

3. Their filter does a good job passing through 

stochastic cycles of desired frequencies and 

blocking stochastic cycles from unwanted 

frequencies on a range of processes that are 

close to being a random-walk process. 

 

The CF filter obtains its optimality properties 

at the cost of an additional parameter that must be 

estimated and a loss of robustness. The CF filter is 

optimal for a random-walk process. If the true process 

is a random walk with drift, then the drift term must be 

estimated and removed. The CF filter is not symmetric, 

so it will not remove second-order deterministic or 

second-order integrated processes. This filter is 

designed to be as close as possible to the random-walk 

optimal filter under the constraint that it be an SMA 

filter with constraints that sum to zero. 

 

1.2 High-pass Filters: The Hodrick-Prescott and 

Butterworth Filter 

The Hodrick and Prescott (1997) is a one-

parameter high pass filter. It is a trend-removal 

technique that could be applied to data that came from a 

wide class of data-generating processes. In their view, 

the technique specified a trend in the data, and the data 

were filtered by removing the trend. The smoothness of 

the trend depends on a parameter  . The trend 

becomes smoother as  . 

 

Hodrick and Prescott (1997) recommended 

setting   to 1,600 for quarterly data. King and Rebelo 

(1993) showed that removing a trend estimated by the 

HP filter is equivalent to a high-pass filter. They 

derived the gain function of this high-pass filter and 

showed that the filter would make integrated processes 

of order 4 or less stationary, making the HP filter 

comparable with the band-pass filters. 
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A two-parameter high pass filter is 

Butterworth filter. The gain functions of these filters are 

as close as possible to being a flat line at 0 for the 

unwanted periods and a flat line at 1 for the desired 

periods (Butterworth, 1930; Bianchi and Sorrentino, 

2007).  

 

Pollock (2000) showed that Butterworth filters 

can be derived from some axioms that specify 

properties we would like a filter to have. Although the 

Butterworth and BK filters share the properties of 

symmetry and phase neutrality, the coefficients of 

Butterworth filters do not need to sum to zero. Phase-

neutral filters do not shift the signal forward or 

backward in time; Pollock (1999). Although the BK 

filter relies on the detrending properties of SMA filters 

with coefficients that sum to zero, Pollock (2000) 

showed that Butterworth filters have detrending 

properties that depend on the filters’ parameters.  

 

Yogo (2008) discussed the use of multire 

solution wavelet analysis to decompose an economic 

time series into trend, cycle, and noise. The method is 

illustrated with GDP data, and the business-cycle 

component of the wavelet-filtered series closely 

resembles the series filtered by the approximate 

bandpass filter.  

 

Hessler (2023) applied unobserved 

components (UC) models with real and financial trends 

and business and credit cycles to assess different 

measures of the credit cycle used by policymakers. The 

results suggest that the slope of the financial trend 

better predicts the credit to GDP ratio in the United 

States than the estimated business and credit cycles and 

the Basel gap. This suggests policymakers should 

consider permanent shocks to the financial sector when 

gauging the state of financial stability.  

 

Klarl (2020) investigated the response of CO2 

emissions to the business cycle for the U.S. on a 

monthly basis between 1973 and 2015. The study uses 

different filtering methods and a Markov-switching 

approach to find that emissions elasticity with respect to 

GDP is not constant over time and that emissions are 

significantly more elastic during recessions than in 

normal times. The results suggest that environmental 

policy instruments should account for this asymmetric 

response of emissions due to changes in GDP.  

 

Dutra et al., (2022) aimed at identifying the 

most reliable measure of financial cycles by applying 

filters similar to Gross Domestic Product (GDP) for 

Business Cycles.  

 

The Christiano and Fitzgerald (2003)'s filter 

was used to estimate and extract cycles from the 

original time series of four financial variables: Credit, 

House Prices, Share Prices, and Interest Rates. The 

results of three methods, namely the Concordance 

Index, the Granger Causality Test, and the AUROC 

Test, showed that Share Prices is the most accurate 

proxy to measure and estimate financial cycles. The 

study concluded that Share Prices have a higher 

capacity to predict financial and economic crises than 

GDP. 

 

Donayre (2022) examined the behavior of 

Okun's law across business cycles using U.S. data for 

1949-2020. The study relaxes the two-regime 

assumption of existing models of their relationship and 

documents three phases of the business cycle, revealing 

a steepening of Okun's relationship across three 

endogenously-determined regimes that align closely 

with expansions, mild recessions and deep recessions. 

The variation in Okun's coefficient correlates with 

changes in the average deviation of nominal wages 

from the median, uncovering the need for differentiated 

policy responses across recessions. 

 

2. RESEARCH METHODOLOGY 

A linear filter of ty  can be written as  

tjt

j

jt yLyy )(
*

  





     (2)  

where we let ty be an infinitely long series as, required 

by some of the results below. To see the impact of the 

filter on the components of ty  at each frequency , we 

need an expression for )(* y
f in terms of )(yf and 

the filter weights j . Wei (2006) shows that for each 

 , 

)()()(
2

*  y

iw

y
fef  (2), where )( iwe is 

known as the gain of the filter. 

 

Equation (1) makes explicit that the squared 

gain function 
2

)( iwe  converts the spectral density of 

the original series, )(yf , into the spectral density of 

the filtered series, )(* y
f . In particular, (1) says that 

for each frequency  , the spectral density of the 

filtered series is the product of the square of the gain of 

the filter and the spectral density of the original series. 

As expected, the gain function provides a crucial 

interpretation of what a filter is doing. We want a filter 

for which )(* y
f  = 0 for unwanted frequencies and 

for which )(* y
f = )(yf for desired frequencies. 

So we seek a filter for which the gain is 0 for unwanted 

frequencies and for which the gain is 1 for desired 

frequencies.  
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2.1 METHODOLOGY 

Baxter and King (1999) showed that there is an 

infinite-order SMA filter with coefficients that sum to 

zero that can extract the specified components from a 

non-stationary time series. The components are 

specified in terms of the minimum and maximum 

periods of the stochastic cycles that drive these 

components in the frequency domain. This ideal filter is 

not feasible, because the constraints imposed on the 

filter can only be satisfied using an infinite number of 

coefficients. Therefore, Baxter and King (1999) derived 

a finite approximation to this ideal filter. The infinite-

order, ideal band-pass filter obtains the cyclical 

component with the calculation. 







j

jtjt ybc      (3) 

Letting lp  and hp  be minimum and maximum 

periods of the stochastic cycles of interest, the weights 

in this calculation are given by 


















0     if  )}sin(){sin()(

                      0      if    )(

1

1

jjjj

j

b

lh

lh

j





  (4)  

where 

l
l p

 2 and
h

h p
 2  are the lower and higher 

cutoff frequencies, respectively. For the default case of 

non-stationary time series with finite length, the ideal 

band-pass filter cannot be used without modification. 

Baxter and King (1999) derived modified weights for a 

finite order SMA filter with coefficients that sum to 

zero. As a result, Baxter and King (1999) estimated tc  

by 







q

qj

jtjt ybc ˆ      (5) 

The coefficients jb̂  in this calculation are equal 

qjj bbb ˆ  where jj bb ˆˆ  and qb  is the mean of 

the ideal coefficients truncated at q : 

 





q

qj

jq bqb 1)12(

     

(6)  

Note that 





q

qj

jb 0ˆ  and that the first and last q values 

of the cyclical component cannot be estimated using 

this filter. 

Pollock (2000) showsed that the gain of the Butterworth 

high-pass filter is given by  

 
1

2

2

2

)tan(

)tan(
1)(


































m
c





     (7)  

Where m is the order of the filter, 

hc p 2 is the cutoff frequency, and hp  is the 

maximum period. The model represents the series to be 

filtered, ty  , in terms of zero mean, covariance 

stationary, and independent and identically distributed 

shocks tv  and t : 

 

ttm

m

t v
L

L
y  






)1(

)1(
)(

    

(8)  

 

Since the time series has finite length, the ideal 

band-pass filter cannot be computed exactly. Christiano 

and tc  = 0. On the other extreme, as  , the 

solution approaches the least-squares fit to the 

tt 10    

 

Fitzgerald (2003) derive the finite-length CF 

band-pass filter that minimizes the mean squared error 

between the filtered series and the series filtered by an 

ideal band-pass filter that perfectly separates out the 

components. This filter is not symmetric nor do the 

coefficients sum to zero. The formula for calculating 

the value of cyclical component 
tc  for t = 2, 3, . . . , T - 

1 using the asymmetric version of the CF filter can be 

expressed as  

11

2

1

1

1

0

~~
ytjt

t

j

jtyTTjt

tT

j

jtt bybbybybc 











 
   

(9)  

where ,..., 10 bb are the weights used by the ideal band-

pass filter. 
1

~
Tb and

1

~
tb  are linear functions of the ideal 

weights used in this calculation. The CF filter uses two 

different calculations for ebt depending upon whether 

the series is assumed to be stationary or nonstationary. 

For the default nonstationary case with 1 < t <T, 

Christiano and Fitzgerald (2003) set 
tTb 

~
and 

1

~
tb  to  












 
2

1

01

1

1

0
2

1~
     and     

2

1~ t

j

jt

tT

j

jtT bbbbbb

   

(10)  

which forces the weights to sum to zero.  

 

For HP filter, Hodrick and Prescott (1997), the 

following optimization problem for 
t  

       







 









1

2

2

11

1

2
  min
T

t

tttt

T

t

tty
t




   
(11)  

where the smoothing parameter  is set fixed to a 

value. If  = 0, the solution degenerates to tt y  

 

3. Data Analysis 

The data used is the Nigerian GDP which 

covers 1981Q1 – 2012Q4. All analyses were carried out 

using STATA 12 (S.E) 
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Table 1: Natural log of GDP 

11.058 11.060 11.312 11.386 11.544 11.897 12.191 

11.042 11.072 11.323 11.386 11.544 11.696 12.258 

11.032 11.071 11.317 11.387 11.545 11.766 11.984 

11.057 11.073 11.314 11.431 11.540 11.944 12.071 

11.028 11.078 11.311 11.427 11.591 11.978 12.268 

11.025 11.067 11.324 11.427 11.591 11.764 12.340 

11.018 11.062 11.345 11.426 11.591 11.816 12.051 

11.049 11.064 11.340 11.459 11.585 11.998 12.143 

10.969 11.073 11.338 11.456 11.632 12.040 12.339 

10.957 11.136 11.347 11.456 11.638 11.819 12.415 

10.952 11.136 11.361 11.453 11.636 11.869 12.112 

10.967 11.138 11.355 11.488 11.633 12.061 12.205 

10.962 11.149 11.355 11.484 11.728 12.115 12.402 

10.942 11.209 11.360 11.484 11.728 11.864 12.483 

10.938 11.205 11.366 11.479 11.726 11.924  

10.948 11.206 11.364 11.494 11.722 12.121  

11.056 11.215 11.364 11.497 11.649 12.184  

11.051 11.317 11.368 11.498 11.726 11.913  

11.052 11.314 11.389 11.493 11.866 11.996   

 

Table 2: Results of some filters revealing the first 30 quarters 

GDP ln_gdp gdp_bk bkgain gdp_cf cfgain gdp_hp hpgain gdp_bw bwgain 

63433.08 11.05774  0.011868 0.023778 0.001128 0.037473 0.000246 0.019705 0.000241 

62446.97 11.04207  0.046866 0.020558 0.003526 0.024879 0.003914 0.009903 0.003845 

61818.98 11.03197  0.103208 0.018531 0.005218 0.017822 0.019497 0.005624 0.019182 

63353.25 11.05648  0.178050 0.019391 0.003395 0.045327 0.059091 0.035887 0.058291 

61555.17 11.02769  0.267659 0.021072 0.004405 0.01941 0.132838 0.012692 0.131487 

61383.79 11.0249  0.367653 0.019515 0.013313 0.019308 0.240870 0.015255 0.239327 

60930.50 11.01749  0.473272 0.012126 0.033952 0.014299 0.369906 0.012823 0.368851 

62857.10 11.04862  0.579668 -0.00015 0.330028 0.047448 0.500000 0.048410 0.500000 

58056.49 10.96917  0.682200 -0.01382 0.641061 -0.03048 0.615248 -0.027290 0.616463 

57335.02 10.95667  0.776704 -0.02583 0.602503 -0.04209 0.708675 -0.036940 0.710918 

57041.70 10.95154  0.859729 -0.03541 0.759094 -0.04709 0.780415 -0.040320 0.783357 

57947.59 10.96729  0.928723 -0.04319 0.785753 -0.03207 0.833941 -0.024040 0.837268 

57654.91 10.96223 -0.06581 0.982147 -0.04846 0.901113 -0.03878 0.873413 -0.029910 0.876888 

56515.58 10.94227 -0.06800 1.019529 -0.04772 1.049189 -0.06135 0.902489 -0.052060 0.905955 

56260.04 10.93774 -0.05840 1.041434 -0.03659 1.124617 -0.06949 0.924019 -0.060130 0.927378 

56824.20 10.94772 -0.03599 1.049374 -0.01402 1.287113 -0.0641 0.940098 -0.054970 0.943298 

63303.30 11.05569 -0.00784 1.045649 0.015028 1.209317 0.038384 0.952232 0.047056 0.955248 

63021.69 11.05123 0.015811 1.033144 0.041138 1.137297 0.027617 0.96149 0.035718 0.964314 

63095.2 11.0524 0.028627 1.01509 0.055783 0.96787 0.021734 0.968632 0.029248 0.971266 

63593.08 11.06026 0.030107 0.994805 0.056357 0.826104 0.021866 0.974203 0.028844 0.976655 

64371.74 11.07243 0.023285 0.975444 0.046912 0.897845 0.025671 0.978593 0.032202 0.980874 

64245.64 11.07047 0.013503 0.95976 0.034128 1.003057 0.014742 0.982086 0.020918 0.984209 

64426.51 11.07328 0.003937 0.949909 0.022046 1.06611 0.007996 0.984893 0.013891 0.986869 

64740.56 11.07814 -0.00633 0.947295 0.010106 1.102702 0.002717 0.987168 0.008362 0.989009 

64039.07 11.06725 -0.01961 0.952482 -0.00408 1.022031 -0.0189 0.989026 -0.01354 0.990744 

63716.38 11.0622 -0.03506 0.965164 -0.02016 1.015462 -0.03526 0.990557 -0.03027 0.992161 

63815.59 11.06375 -0.04505 0.9842 -0.03335 1.004703 -0.04558 0.991826 -0.04111 0.993327 

64425.93 11.07327 -0.04349 1.007713 -0.03768 0.935672 -0.04848 0.992885 -0.0447 0.994292 

68564.07 11.13552 -0.0315 1.033235 -0.03147 1.000869 0.000876 0.993776 0.003762 0.995095 

68577.13 11.13571 -0.01792 1.057898 -0.01994 1.135305 -0.01221 0.994528 -0.01041 0.995768 
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Fig. 1: The estimated business-cycle component Fig. 2: Periodogram of the BK showing the information 

about the periodic component of the data 

 

 
Fig. 3: The gain of the BK filter deviates from the business 

cycle component 

Fig. 4: The periodogram of the CF estimates of the 

business cycle component square-wave gain of the 

ideal filter 

 

 
Fig. 5: Comparison of the BK gain and CF with ideal 

filter of the business cycle component 

Fig. 6: The periodogram of the HP estimates 

 

-.
1

-.
0
5

0

.0
5

ln
_

g
d

p
 c

y
c
lic

a
l 
c
o

m
p
o

n
e

n
t 
fr

o
m

 b
k
 f
ilt

e
r

1980q1 1990q1 2000q1 2010q1
quarterly time variable

-6
.0

0
-4

.0
0

-2
.0

0
0

.0
0

2
.0

0
4

.0
0

6
.0

0

-6
.0

0
-4

.0
0

-2
.0

0
0

.0
0

2
.0

0
4

.0
0

6
.0

0

ln
_

g
d

p
 c

y
c
lic

a
l 
c
o

m
p
o

n
e

n
t 
fr

o
m

 b
k
 f
ilt

e
r

L
o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

-6
.0

0
-4

.0
0

-2
.0

0
0

.0
0

2
.0

0
4

.0
0

6
.0

0

-6
.0

0
-4

.0
0

-2
.0

0
0

.0
0

2
.0

0
4

.0
0

6
.0

0

ln
_

g
d

p
 c

yc
lic

a
l c

o
m

p
o

n
e

n
t 
fr

o
m

 c
f 
fil

te
r

L
o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function

0
.5

1

0 1 2 3

Ideal filter BK filter

0
.5

1
1

.5

0 1 2 3

Ideal filter CF filter

-6
.0

0
-4

.0
0

-2
.0

0
0

.0
0

2
.0

0
4

.0
0

6
.0

0

-6
.0

0
-4

.0
0

-2
.0

0
0

.0
0

2
.0

0
4

.0
0

6
.0

0

ln
_

g
d

p
 c

y
c
li
c
a
l 
c
o

m
p
o

n
e

n
t 
fr

o
m

 h
p

 f
il
te

r

L
o
g

 P
e

ri
o

d
o

g
ra

m

0.00 0.10 0.20 0.30 0.40 0.50
Frequency

Evaluated at the natural frequencies

Sample spectral density function



 

    

Isaac Oluwaseyi Ajao et al., Sch J Phys Math Stat, Jun, 2023; 10(5): 105-112 

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          111 

 

 

 
Fig. 7: Gain of CF filter closest to the gain of the ideal 

filter increases with the order of the filter 

Fig. 8: Slope of gain function of BW filter 

 

 
Fig. 9: Comparison of gain function of various filters Fig. 10: The periodogram of the BW estimates of the 

business cycle component 

 

 
Fig. 11: Comparison of gain function of various BW filters 
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4. DISCUSSION OF RESULTS 
The graph in Fig. 1 cannot really show the 

evidence as to well the component have been estimated 

but the periodogram in Fig. 2 shows this. It is an 

estimator of the spectral density function. The results 

are natural frequencies, which are the standard 

frequencies divided by 2 . If the filter completely 

removed the stochastic cycles corresponding to the 

unwanted frequencies, the periodogram would be a flat 

line at the minimum value of -6 outside the range 

identified by the vertical lines. That the periodogram 

takes on values greater than -6 outside the specified 

range indicates the inability of the BK filter to pass 

through only stochastic cycles at frequencies inside the 

specified band. The graph in Fig. 3 reveals that the 

gains of the BK filter deviates markedly from the 

square-wave gain of the ideal filter.  

 

Increasing the symmetric moving average will 

cause the gain of the BK filter to more closely 

approximate the gain of the ideal filter at the cost of lost 

observations in the filtered series. In Fig. 4, the 

periodogram of the CF estimates of the business-cycle 

component indicates that the CF filter did a better job 

than the BK filter of passing through only the desired 

stochastic cycles. Comparing the graph in Fig.5 with the 

graph of the BK gain function reveals that the CF filter 

is closer to the gain of the ideal filter than is the BK 

filter. The graph also reveals that the gain of the CF 

filter oscillates above and below 1 for desired 

frequencies. Fig. 7 shows that by comparing the gain 

graphs, gain of the CF filter is closest to the gain of the 

ideal filter. Both the BK and the HP filters allow some 

low-frequency stochastic cycles to pass through. The 

plot also illustrates that the HP filter is a high-pass filter 

because its gain is 1 for those stochastic cycles at 

frequencies above 6 periods, whereas the other gain 

functions go to zero. The graph in fig. 8 reveals that the 

slope of the gain function increases with the order of the 

filter, and in Fig. 9, although the slope of the gain 

function from the CF filter is closer to being vertical at 

the cutoff frequency, the gain function of the 

Butterworth filter does not oscillate above and below 1 

after it first reaches the value of 1. The flatness of the 

Butterworth filter below and above the cutoff frequency 

is not an accident, it is one of the filter’s properties. The 

periodogram in Fig. 10 reveals that the two-pass 

process has passed the original through a band-pass 

filter. It also reveals that the two-pass process did a 

reasonable job of filtering out the stochastic cycles 

corresponding to the unwanted frequencies. Finally in 

Fig. 11, because the cutoff period is 6, the gain 

functions for m = 2 and m = 6 are much flatter than the 

gain functions for m = 2 and m = 6 in when the cutoff 

period was 32. The gain function for m = 20 is 

reasonably close to vertical, so we used it. For any 

given cutoff period, the computation eventually 

becomes unstable for larger values of m. For instance, 

when the cutoff period is 32, m = 20 is not numerically 

feasible. 

 

5. CONCLUSION AND RECOMMENDATION  

In a business cycle, which estimate is better 

depends on whether the oscillations around 1 in the 

graph of the CF gain function cause more problems 

than the non-vertical slopes at the cutoff periods that 

occur in the BW6 gain function of that same graph and 

the BW upper filter 20 gain function graphed above. 

The choice between the BK or the CF filter is one 

between robustness or efficiency. The BK filter handles 

a broader class of stochastic processes, but the CF filter 

produces a better estimate of ct if yt is close to a 

random-walk process or a random-walk-plus-drift 

process. 
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