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Abstract  Review Article 
 

The development of a mathematical models for Economic growth of great importance in many fields. The growth and 

decline of real economical data can in many cases be well approximated by the solutions of a stochastic differential 

equations. However, there are many solutions in which the essentially random nature of economic growth should be 

taken into account. In this paper, we consider an accurate method done by approximating the differential equations by 

an equivalent difference equations for approximating the moments of the first – passage time for the Gross National 

Product GNP diffusion process with linear function drift coefficient to a general determined value.  
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INTRODUCTION 
The development of mathematical models in 

the area of applied probability especially in stochastic 

modelling is of great importance in many fields such as 

ecology, demography, genetics and economics. More 

specifically, First – passage time play an important rule 

in the area of applied probability theory especially in 

stochastic modeling. Several examples of such 

problems are the extinction time of a branching process, 

or the cycle lengths of a certain vehicle actuated traffic 

signals. Actually the the first – passage times to a 

moving barriers for diffusion and other markov 

processes arises in biological modeling [6], in statistics 

[4, 5]. 

 

Many important results related to the first – 

passage time have been studied from different points of 

view of different authors. For example [12], has derived 

the distribution of the integral functional

=
Tx

dttXgWx
0

)}({
 , where  

xT  is the first – passage 

time to the origin in a general birth – death process with 

X(0) = x and g(.) is an arbitrary function. Also [9, 13], 

have been shown a number of classical birth and death 

processes upon taking diffusion limits to asympotically 

approach the Ornstein – Uhlenbeck (O.U.) . 

 

Many properties such as a first – passage time 

to a barrier, absorbing or reflecting, located some 

distance from an initial starting point of the O.U. 

process and the related diffusion process and the related 

diffusion process such as the case of the first passage 

time of a Wiener process to a linear barrier is a closed 

form expression for the density available is discussed in 

[3]. Also, others such as [10, 14, 7, 15, 2, 8, 1, 16], etc. 

have been discussed the first passage time from 

different points of view.  

 

In particular [14], describes some mean first – 

passage time approximation for the Ornstein – 

Uhlendeck process [15] have studied the first-passage 

time of a Markov process to a moving barriers as a first-

exit time for a vector whose components include the 

process and the barrier.  

 

Also, [2], has discussed the problem of finding 

the moments of the first passage time distribution for 

the birth-death diffusion and the Wright-Fisher 

diffusion processes to a moving linear barriers using the 

method of approximating  the differential equations by 

difference equations. 

 

In addition [16] describe the moments 

approximation of the first passage time for the birth and 

death gross national product (GNP) to a fixed 

determined value by approximating the differential 

equations by equivalent difference equation. 
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Furthermore [1] considered a stochastic 

diffusion process able to model the interest rate 

evolving with respect to time and propose a first 

passage time (FPT) approach through a boundary, 

defined as the “alert threshold”, in order to evaluate the 

risk of a proposed loan. Above this alert threshold, the 

rate is considered at the risk of usury, so new monetary 

policies have been adopted. Moreover, the mean FPT 

can be used as an indicator of the “goodness” of a loan; 

i.e., when an applicant is to choose between two loan 

offers, s/he will choose the one with a higher mean exit 

time from the alert boundary. 

 

Finally [8] presented a methodology to build a 

log normal diffusion process with exogenous factors 

that models economic variables. They studied the 

problem of forecasting as first passage times and 

applied to the GNP of Spain.  

 

In this paper, we consider the GNP diffusion 

process with linear function drift coefficient and study 

the first – passage time for such a process to a general 

determined value. More specifically, the moment 

approximations are derived using the method of 

difference equations. 

THE GNP DIFFUSION FIRST – PASSAGE TIME MOMENT APPROXIMATIONS 

Consider the GNP diffusion  Process  0:)( ttX  with infinitesimal mean +bx  and variance ax2  

starting at some 0x > 0, where b   and  a    are the drift and the diffusion coefficients respectively and  is the constant 

rate. Also,  0:)( ttX  is a Markov process with state space  )= ,0S  and satisfies the Ito stochastic 

differential equation 

( ) )()(2)()( tdWtaXdttbXtdX ++=                              (1) 

 

Where  0:)( ttW is a standard Wiener process with zero mean and variance t. Assume that the 

existence and uniqueness conditions are satisfied. Let  0:)( ttY be a general determined value equation of the 

GNP such that )()( thtY = , with )0()0( hY = . Or equivalently  

)(
)(

th
dt

tdY
=  

 

Now, denote the first – passage time of a process )(tX to a general determined value function 

)()( thtY =  by the random variables
 

)}()(:0inf{ thtXtTY =                                                       (2) 

 

with probability density function 

g (t ; 
0x ) = - 

dt

d
 

−

)(th

p ( 0x , x ; t ) dx 

 

Here  p ( 0x , x ; t)  is the probability density function of X (t) conditional on X (0) = 0x  

Let  ( )tYxM n ;,0
 ; n = 1,2,3,…… , be the  n-th  moment of the first – passage time 

YT  , i.e. 

( ) )(;,0

n

Yn TEtYxM =    ; n = 1,2,3,…,                                                 (3) 

 

It follows from the forward Kolmogorov equation that the  n-th moment of 
YT  must satisfy the ordinary 

differential equation  

( ) ( ) ( )
( ) ( )tYxnMtYxMth

tYxMbxtYxMax

nn

nn

;,;,)(

;,;,

010

00

−−=+

++ 
                                            (4) 

 

Or equivalently 

( ) ( )

( ) ( )tYxM
ax

n
tYxM

ax

th

tYxM
ax

bx
tYxM

nn

nn

;,;,
)(

;,;,

010

00

−−=


+


+

+


                                  (5) 
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Where ( )tYxM n ;,0
  and ( )tYxM n ;,0

  are the first derivatives of ( )tYxM n ;,0
 with respect to  

x   ( )Yxx 0 , with appropriate boundary conditions for  n=1,2,3,…….Note that  ( ) .1;,00 =tYxM  

 

Now, rewrite the equation in (5), we obtain 

( ) ( )

( )tYxM
ax

th

a

b

tYxM
ax

n
tYxM

n

nn

;,
)(

;,;,

0

010








 +
+−

−=
−


                                                 (6)                    

 

Let   be the difference operator. Then we defined the first order difference of ( )tYxM n ;,0
  as follows: 

( ) ( ) ( )tYxMtYxMtYxM nnn ;,;,;, 0010 −= +
                        (7) 

(Cf.) [9]. 

 

Note that equation (6) can be approximated by 

( ) ( )

( )tYxM
ax

th

a

b

tYxM
ax

n
tYxM

n

nn

;,
)(

;,;,

0

010








 +
+−

−=
−


                                                (8) 

 

By applying equation (7) to equation (8)  we get : 

( ) ( )

( )

( )tYxM
ax

th

a

b

tYxM
ax

th

a

b

tYxM
ax

n
tYxM

n

n

nn

;,
)(

;,
)(

;,;

01

0

010

+

−








 +
+−








 +
++

−=



                                 (9) 

 

Now, we will use the matrix theory to solve the differential equation defined in equation (9). If we let 

( ) ( ) ( ) = 


,;,,;,;, 02010 tYxMtYxMtYxM  

 

Then we get  

( )
( )tYxMA

dx

tYxMd
;,

;,
02

0

2 


=                                                            (10) 

 

Where 
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)()(3
0

0
)()(2

00
)()(




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Now let 

( )
( )tYxR

dx

tYxMd
;,

;,
0

0




=                                                          (11) 

 

This imply 
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( ) ( )
dx

tYxRd

dx

tYxMd ;,;, 0

2

0

2


=                                                         (12) 

 

Apply to equation (10), we get 

( )

( )

( )

( )



















=













0

0

0

0

;,

;,xR
 .  

0     I

A    0
 

;,

;,

tYxM

tY

tYxM

tYxR

dx

d








         (13) 

 

Where  I  is the identity matrix and  0  is the zero matrix. 

 

Thus, the solution of the system of equation in (13) is then given by 

( )

( )

( )

( )










=











 








0

00    
A    0

0

0

;,

;,xR
 .  e 

;,

;,
*

tYxM

tY

tYxM

tYxR D








                      (14) 

 

Where  D  =  [
ijd ] ; 1, ji    is  the diagonal matrix with entries 

( )
 

Otherwise ;            0    

ij ;     )( 0



 =−

=
xth

d ij
                                                       (15) 

 

And    1,; =  jiaA ij
  is the matrix with entries  

( )

( )

















+=−






 +
+−

=−






 +
+

−=







−

=

Otherwise

ijxth
ax

th

a

b

ijxth
ax

th

a

b

ij
x

th

ax

i

aij

;0

1;)(
)(

;)(
)(

1;
)(

ln

0

0

0




       (16)  

 

 Note that the matrix   
Be  where    








=



0

0

D

A
B    is defined by 

..............
!3!2

32

++++=
BB

BIeB  

 

This series is convergent since it is a cauchy operator of equation (2.6) (Cf. [17]). 

 

MEAN AND VARIANCE APPROXIMATION FOR THE GNP FIRST-PASSAGE TIME 
Now for approximating the moments of the GNP first-passage time for such a process using the first and the 

second order difference operators to the differential equation in (9), we define the operators as follows: 

 

Let 
2  be the second order difference operators. Then we defined the second order differences of ( )tYxM n ;,0

 

and as follows: 

 

( ) ( ) ( ) ( )tYxMtYxMtYxMtYxM nnnn ;,;,2;,;, 001020

2 +−= ++
         (17) 

 

(Cf. [11]). 

 

Note that equation (9) can be approximated by 
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( ) ( )

( )

( )tYxM
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a

b

tYxM
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th

a

b

tYxM
ax

n
tYxM

n

n

nn

;,
)(

;,
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;,;

01

0

010

2

+

−








 +
+−







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

                             (18) 

 

By applying equation (17) to equation (18) we get: 

( )

( ) ( )

( )tYxM
ax

th

a

b

tYxM
ax

th

a

b
tYxM

ax

n

tYxMtYxMtYxM

n
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nnn

;,
)(
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)(
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);,();,(2;,
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00102

+

−
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
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


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+−








 +
++−

=+−



                      (19) 

 

Now rewriting equation (19) we get: 

( ) ( )

( )

( )tYxM
ax

th

a

b

tYxM
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th

a

b

tYxM
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n
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n

n
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;,
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2

;,1
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;,;,
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0

0102

+

−+





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








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


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
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
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

                      (20) 

 

Through equation (20), the first moment ( )tYxM ;,01
 and the second moment ( )tYxM ;,02

 of the first –passage 

time can be approximated by 

( )

                  

)(
2;,01 















 +
+−

ax

th

a

b
tYxM


                                                        (21) 

 

And 
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a

b
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a

b
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2
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











 +
+−+









−






 +
+


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Therefore the variance ( )tYxV ;,0
 can be approximated by 

 

( ) 







−







 +
+ 1

)(
;,0

ax

th

a

b
tYxV


                                          (23) 

 

Note that these results are of great importance for the statistical inference problems. 

 

CONCLUSION 
In conclusion the advantage of this technique 

is to use the difference equation to approximate the 

ordinary differential equation since it is the 

discretization of the ODE. Also, the system of the 

solutions in equation (14) gives an explicit solution to 

the first – passage time moments for the GNP diffusion 

process with linear function drift coefficient to a general 

determined value. Also, the mean and the variance of 

the GNP first-passage time for such a process are 

approximated which are useful for statistical inference 

problems. This increases the applicability of the 

diffusion process in stochastic modeling or in all area of 

applied probability theory especially in economics.  
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