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Abstract: Heavy metals, for example, cadmium, copper, lead, chromium and mercury are considered as major 

environmental pollutants. Among all heavy metals, cadmium (Cd) is a non-essential metal which has pulled in the 

consideration of specialists in soil science and plant nutrition because of its potential harmfulness and toxicity to living 

beings, furthermore because of its relative mobility in the soil plant system. This survey underlines the dangerous side 

effects or toxic symptoms of Cd in plants i.e.  growth retardation, alternations of photosynthetic activity, change in 

stomatal movement, enzymatic activities, protein metabolism, membrane functioning furthermore outlines the 

mechanisms of cadmium uptake, translocation , deposition and cadmium-induced oxidative stress . This survey/review 

may likewise help in interdisciplinary study to evaluate/access ecological significance of the metal toxicity and stress. 
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INTRODUCTION

Heavy metals are characterized as the metals 

that have a density greater than 5 g cm3. Among  90 

naturally occurring elements, 53 are designated as 

heavy metals and some are biologically important [1]. 

On the basis of their solubility under physiological 

conditions, 17 heavy metals can be considered for being 

accessible to the living cells and have significant role in 

plant and animal communities within various 

ecosystems [2]. They are considered as significant 

environmental pollutants that [3,4,5]. As per [6], non-

contaminated soil contain Cd concentration ranging 

from 0.04 to 0.32 mM. Soil that have a Cd 

concentration ranging from 0.32 to around 1 mM are 

considered as contaminated to a moderate level. As Cd 

is naturally present in all soils, so all the food stuffs will 

contain some amount of Cd and subsequently all living 

beings including humans are exposed to natural levels 

of Cd. It has been accounted earlier that leafy 

vegetables and potato tubers accumulate more elevated 

amounts of Cd when contrasted with fruits and cereals. 

In addition, tillage and crop rotation practices have a 

more noteworthy effect upon the Cd content of food in 

comparison to that of Cd concentrations in soil [7]. 

Cadmium accumulation in the environment is presently 

turning into an essential reason for environmental 

pollution. Cadmium (Cd) is a standout amongst the 

most deleterious trace heavy metals both to plants and 

animals. Industrialization and culture cause Cd the most 

harmful and widespread pollutants in agricultural soils, 

and soil-plant-environment system [8]. The maximum 

tolerable intake limit of Cd for human beings, suggested 

by FAO/WHO is 70 μg/day [9]. Cd contamination is of 

expanding investigative interest since Cd2+ is taken up 

readily by the roots of all most all plant species and its 

harmfulness/toxicity is thought to be 2–20 times higher 

than other heavy metals [10]. Cd phytotoxicity is a 

minor, yet an important issue, particularly in 

exceedingly heavy metal contaminated locales/regions, 

where a diminishing in agricultural crop productivity 

has been  noticed. The main aim of this review is to 

focus our present understanding on the factors that 

utmost the development of plants exposed to Cd 

treatment. 

 

Mechanism of cadmium uptake, translocation  

Plants respond to expanded levels of Cd in soil 

differentially, regarding the capacity of different plants 

species uptake and transport Cd. Cd is effectively 

transported inside plants [11]  as metallo-organic 

complexes. The bio-accessibility of Cd in soil relies on 

its pH, concentration, redox potential, temperature, and 

concentration of different elements. Rhizosphere 

acidification and carboxylase exudation are considered 

as potential targets for upgrading accumulation of 

metals[12]. Mechanisms involved in the uptake of Cd 

by the root of plants generally includes competition for 

absorption sites between the heavy metals and a few 

mineral nutrients having comparable/similar chemical 

properties [13]. The decrease of metals like K, Ca and 

Mg in tissue because of high level of Cd has been seen 
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in tomato and cucumber plants [14], maize [15] and 

lettuce. An antagonistic relation amongst cadmium and 

zinc and their active absorption has been seen in roots 

of lettuce [16]. Other mineral nutrients, for example, 

nitrate, which does not have similar chemical properties 

with Cd, are also influenced by its presence. Cd  first 

enters into the roots and harms the root system first 

[17]. The mechanism controlling the Cd uptake by roots 

of plants and amassing in consumable/edible parts are 

yet not fully understood. The electrochemical potential 

difference between the action of Cd2+ in the cytosol and 

in the root apoplasts controls the absorption of Cd 

across the plasma membrane of root cells. Enough 

energy is given by the large membrane potential to 

drive Cd2+ uptake even at low levels/doses of Cd2+ .The 

energy of Cd2+ absorption by roots demonstrates bio-

phasic qualities with saturable components at low Cd2+ 

activities in the absorption solution and a linear 

components at higher Cd activities [18]. Absorption of 

Cd can likewise happen as inorganic complexes (for 

example, CdCl+, CdCl2 and CdSO4) [19] or else as 

organic complexes, for example, phytometallophore 

complexes. [20] noticed that Zn(II) phytometallophore 

complexes were promptly taken up by maize roots 

however the binding sites  in the root plasma membrane 

are not exceptionally particular for Fe(III) 

phytometallophores, along these lines likewise 

permitting the transport of different metals like Cd. In 

any case, there is no immediate confirmation for Cd 

binding with phytometallophores during its transport 

ation in the root cells. Different metals, particularly 

Zn2+ collaborate with Cd and lessen uptake during Zn-

insufficient/deficient conditions and it is clear from the 

evidence that cereal roots developed under Zn- 

insufficient /deficient conditions are implicated in 

diminished Cd uptake following the application of Zn 

[21]. Cadmium effectively penetrates the root system of 

xylem through both  apoplastic and/or symplastic 

pathway [22] and therefore reaches tissues of plants 

specifically aerial [23]. The metal content is greater or 

more prominent in the root than in the above ground 

tissues of plants regardless of the distinction of metal 

ions mobility [24]. Generally Cd particles are held in 

the roots and just little amounts are transported to the 

above ground parts [25]. The concentration of Cd in 

plants diminishes in the order: root > leaves > fruits > 

seeds/grains [26, 27]. The degree of Cd transport into 

edible organs varies generally among crops. In soybean 

more than 98% of the Cd accumulated was held by 

roots and just 2% was transported to shoots/above 

ground parts [25]. Additionally, Cd was effectively 

transported to the shoots and leaves yet was not 

detected in fruits of tomato plants [28]. After uptake by 

the roots Cd is transported to the shoots, through the 

cells of vascular bundles. Transport of the trace metal is 

likewise directed by vascular tissues [29]. There are 

various cell membrane obstructions that Cd must cross 

to enter consumable/edible plant organs and this is 

particularly true for seeds and grains. 

 

Cadmium Deposition 

The aggravates that bind Cd in mature seeds 

amid their development are not known. Cadmium may 

bind to phytate (myo-inositol hexaphosphate) in 

globoid crystals inside the protein structure of 

developing seeds. Different metals (Fe, Zn, Mn, Mg 

and Ca) have been accounted for to be associated with 

phytate inside globoid crystals of these organelles. 

[30,31, 32] reported that phytate globular deposits 

containing Zn was formed in small vacuoles of root 

cells inside the elongation zone of roots of soybean, 

maize and wheat. Furthermore, Cd was not bound to 

phytic acid in these little root-cell vacuoles. 

Alternatively, Cd could be found to second class 

metallothioneins in developing seeds and grains since 

genes for the expression of these sulphydryl-rich 

proteins  have been accounted for in seeds of some 

plant species like wheat and maize [33,34]. Further 

research directed to determine the major type of Cd in 

edible parts of crops demonstrated that in oat (Avena 

sativa L.) roots, Cd transport from cytosol to the 

vacuole over the tonoplast is exhibited through 

Cd2+/H+ antiport movement and stored in cell 

compartments [35].  

 

Effect of Cd on stress proteins 

      Changes in the environment can bring about 

change in gene expression, in this manner prompting 

change in the diversity of proteins in the cell. Therefore, 

changes in level of protein under stress conditions can 

be molecular markers for the manifestations of the 

responses to stress in living beings. In plants, the 

proteomics methodology is developed as a critical 

strategy for research on stress resistance/tolerance [92]. 

Heat-shock proteins (HSPs) are known as proteins that 

have functions to tolerate stress in eukaryotes.  
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Table 1: Toxic symptoms induced by Cadmium 

Parameters Effects References 

Photosynthesis 

Retards photosynthesis [36,37,38] 

Hindered stomatal opening in  Syzygium aromaticum, 

Medicago sativa , Glucine max 
[39,40] 

Chlorotic leaves, changed ratios of chlorophyll a and b, 

decreasing  net photosynthetic rate 
[41,42,43,35,44] 

Destructs the photosynthetic apparatus particularly the light 

harvesting complex II 
[45] 

Destructs photosystems I and II [46,47] 

Inhibition of root Fe(III) reductase [48] 

Overall destruction of photosynthetic efficiency [49,50,37] 

Diminished  chlorophyll and carotenoids content, and 

increased non-photochemical quenching in  Brassica napus 

[51,52,53,54,55, 

56,57,58,59] 

Fresh weight and dry mass 

Diminished the fresh mass in  Vigna radiata [60] 

Decline in root and shoot mass in  Vigna ambacensis [61] 

Decrease in dry mass in Cicer arietinum [62,63] 

Protein Inhibition of protein synthesis [64,65,66,67] 

Carbonic anhydrase Retards the activity of carbonic anhydrase [68] 

Proline 
Increase in proline in Oryza sativa , Brassica napus, Armeria 

moritima, Helianthus annus, Brassica juncea 

[69,70,71,72,73, 

74] 

Lipid peroxidation Membrane leakage, change of lipid composition [75,76,77] 

Cellular concentrations 
Changes in cellular concentrations of essential 

micronutrients like iron, calcium, manganese, zinc 
[78,79,80,] 

Root ultrastructure 
Inhibition of root elongation, increase in volume of cortex 

cells, damage to epidermis 
[81,82,41,83] 

 

Table 2: Cadmium-induced signaling events mediated by reactive oxygen species (ROS) in different plant species 

Plant species 

(References) 

Cd 

concentration 

Time of 

treatment 
Signaling events 

Oryza sativa [84] 100μM Cd(NO3)2 13 days 

Accumulation of H2O2 and modification of the 

auxin signaling pathway and/or cell-cycle gene 

expression 

Oryza sativa [85] 
5mM 

CdCl2 
24 h 

H2O2 accumulation dependent on NADPH-oxidase 

and phosphatidylinositol 3-phosphate 

Oryza sativa [86] 
100,200, 400mM 

CdCl2 
1 h 

Regulation of MAP kinase activity by :non-

enzymatic (OH•) and enzymatic ROS production 

(O2•− or H2O2) involving NADPH oxidase, 

CDPKs, PI3 kinase, and closing of the 

mitochondrial pore Regulation of NADPH oxidase 

and CDPKs activity by Ca2+ 

Pisum sativum [87,88] 
50μM 

CdCl2 

 

15days 

Accumulation of O2•− and H2O2, Ca2+-dependent 

decrease in NO levels, activation of peroxidases 

and NADPH oxidase 

Pisum sativum [89] 
100μM 

CdCl2 
48 h 

Necrotic cell death associated with NO and H2O2 

generation 

Nicotiana tabacum (cell 

suspension) [90] 

5mM 

CdCl2 
15 min 

Oxidative burst mediated by Ca2+
 , calmodulin and 

protein phosphorylation 

Nicotiana tabacum (cell 

suspension) [91] 

3mM 

CdCl2 
8 h 

Three waves of oxidative stress: (1) transient, 

NADPH oxidase-dependent accumulation of H2O2 

(2) increased production of O2•− in mitochondria 

(3) fatty acid hydroperoxide accumulation 

concomitant with necrotic type of cell death 

Regulation of NADPH oxidase activity involving 

Ca2+-mediated signaling and protein 

phosphorylation 
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Fig-1: A general model for local and systemic stress signaling in plants 

 

Table 1: Effect of Cd on stress proteins 

Plant Treatment Effects References 

Zea mays Cd exposure 
Production of 70 kDa phosphoprotein 

(HSP) 
[93] 

Lycopersicon 

peruvianum 

Pre-treatment with a short 

heat stress before Cd 

exposure 

Preventing membrane damage. 

 

HSP17 (molecular weight 17 kDa) and 

HSP70 proteins were additionally found in 

the cytosol of heat-shocked cells. 

[94] 

Pisum sativum Cd exposure 
Pathogen-related proteins PrP4A and 

HSP71 were observed. 
[88] 

Triticum aestivum 50 μM CdCl2 for 48 h 

51-kDa soluble protein was found and 

protein was assigned as a Cd stress-related 

protein. 

[95] 

 

Populus tremula 

Cd for a short term (14 

days) or a more longer 

term (56 days) treatment 

Stress related proteins, as HSPs, 

proteinases, and pathogenesis-related 

proteins, increased in abundance in leaves. 

[96] 

Oryza sativa Cd exposure Affected the synthesis of 36 proteins [97] 

Solanum lycopersicum 

Low Cd concentration 

(10μM) 
changes in 36 polypeptides [98] 

Higher Cd level (100 μM) changes in 41 polypeptides [98] 

Arabidopsis thaliana 10 μM Cd 
Among 730 determined proteins 21 were 

up-regulated in response of Cd 
[99] 

 

CONCLUSION 

Cadmium is a non- essential heavy metal 

which is phytotoxic and has negative impact on plants. 

It retards various physiological, morphological, 

biochemical and molecular activities of plant species. It 

is easily taken up by the roots of plants and causes 

severe damage to plant system. At higher concentration 

it may even cause death of the plant species. At low 

concentrations it can induce production of stress 

proteins and other secondary metabolites which 

indirectly help plants to resist against the oxidative 

damage caused by cadmium. This review highlights the 

effects of cadmium on various plant activities.  
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