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Abstract  Original Research Article 
 

In this study, the stability and Hopf bifurcation analysis of periodic solutions of Duffing equations were considered. 

Also other types of bifurcation like the Saddle-node, Transcritical and Pitchkfork were also studied. The eigen value, 

Jacobian and Floquet theory were used to analyse both the stability and Hopf bifurcations of the periodic solutions of 

the equilibrium points. The results showed that equilibrium points have at most three -periodic solutions under a strong 

damped conditions due to the cubic nonlinearities. The bifurcation points showed; one critical, another subcritical and 

the third point showed that the homoclinic was present when the damping coefficient is zero. Furthermore, the 

presence of strange attractors varied with the driving force and damping. The MATCAD software was used to 

illustrate the numerical behaviour of the solution which extend some results in the literature. 
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INTRODUCTION 
Consider the Duffing Oscillator described by 

the Differential equation  

𝑥̈ + α𝑥̇ − 𝛽𝑥3  = 𝑓 𝑠𝑖𝑛𝜔𝑡……. 𝑓 ≥ 0      (1.1) 

With initial condition 

𝑥(0)=2π 𝑥̇(0) = 2𝜋                           (1.2) 

And the periodic solution  

𝑥(t)= 𝑥(𝑡 + 𝑇)                                (1.3) 

Where 𝑥 is the displacement,𝑥̇ is the velocity and 𝑥̈ is 

the acceleration. 

F: ℛxℛ ⟶ ℛ., and α, β, f, ω, are constant (functions). 

 

Duffing equation is a second order nonlinear 

differential equation, used to model damped and driven 

oscillators in [1, 2]. 

 

During the last decade many scholars 

investigated the qualitative behaviours of the solutions 

of this equation for instance Duta and Pragapatic [3] 

reported on symmetric investigation into the phase 

space of the double wall Duffing oscillator where 

bifurcation diagram was used to show the region 

characterized by the parameters for which one finds a 

periodic solution. They also observed that when the 

driving force is increased, there is a series of parallel 

“Islands” of parameters characterized by a periodic 

attractor. Furthermore, the study showed that if the 

model is perturbed by the linear term, it shows both 

periodic and chaotic behaviour. Again is that when the 

damping coefficient is taken to zero and the nonlinear 

stiffness parameter is taken sufficiently small, the 

model exhibits homoclinic nature for whatever value 

the force is. 

 

In order to understand the global structure of 

periodic solutions and stability of each solutions under 

the cubic restoring force Chen and Li [4] used a 

different approach based on Grandale-Robinowttz 

bifucation theorem and contraction method but devoted 

their work to exact multiplicity of periodic solution 

under the cubic ono-linear restoring force with strong 

damped condition. 

 

In a similar paper, Chen & Li [4] used the 

global bifurcation method based on maximum principle 

developed, [5-7] super sub-solutions methods are not 

applicable to degenerate situation and when the graph 

of the forcing term interact the critical level is missing 

where bifurcation occurs resulting in the periodic 

solution being at most three under strong damped 
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condition and formed an “S” shaped smooth curve that 

is symmetric with the origin. 

 

We have considered a linear and non-

autonomous system with linear damping in the 

following set of equations.  

 

We have modified the Duffing equation as  

𝑥̈ + α𝑥̇ − 𝛽𝑥3  = 𝑓 𝑠𝑖𝑛 𝜔t                  (1.4) 

 

Where ẋ is the velocity, 𝑥̈ is the acceleration 

and we replaced 𝑐𝑜𝑠𝜔t with 𝑠𝑖𝑛 𝜔t and assumed that 

𝛽 < 0. Hence we are studying about inverted Duffing 

oscillator and its chaotic properties. We find that our 

model undergoes chaotic behaviour as well as it also 

shows homo-clinic properties within a certain range of 

parameter values. Our study consists of the following:  

1. First, we have fixed the parameters α, β, and 

studied the behaviour for different values of f. 

we obtained the Hopf bifurcation diagram for 

0.1< f < 15.,  
2. Secondly we have obtained the phase portrait 

and poincare section in this regard,  

3. Thirdly we have shown x vs t graph for our 

model within same range of parameters, 

fourthly, we observed the behaviour of the 

strange attractors, how they vary with driving 

force and damping factor.  

4. Lastly we will observe the Homoclinic 

behaviour of the Oscillator when damping 

coefficient is taken as zero. 

 

2. PRELIMINARIES 
Bifurcation Theory 

A bifurcation occurs when a small smooth 

change made to the parameter values (the bifurcation 

parameter) of a system causes a sudden “qualitative” or 

topological change in behaviour. Generally, at a 

bifurcation, the local stability properties of equilibria, 

periodic orbits or other variant sets changes [8]. 

 

Theorem 1.1 (saddle-node bifurcation). Assume that the 

vector field f is of class 𝐶𝑘, 𝑘 ≥ 2, in a neighbourhood 

of (0,0) and satisfies: 
𝜕𝑓

𝜕𝜇
(0,0) = : 𝑎 ≠ 0,

𝜕2𝑓

𝜕𝑢2 (0,0) = : 2𝑏 ≠ 0    (2.1) 

 

Bifurcation of Dimension 2: Hopf bifurcation 

Here we consider Differential Equation in ℝ2, 
𝑥̈  +  α𝑥̇ − 𝛽𝑥3  = 𝑓 𝑠𝑖𝑛 𝜔t𝐹(𝑢, 𝜇)     (2.2) 

 

Here the unknown u is given a real-valued 

function that takes values in ℝ2, and the vector field F 

is real-valued depending, besides u, upon a parameter μ. 
The bifurcation parameter. We assume that the vector 

field is of class 𝐶𝑘, 𝑘 ≥ 3, in a neighbourhood of (0,0) 

satisfying: 

F(0,0) = 0                              (2.3) 

 

This condition ensures that u=0 is an 

equilibrium of equation (2.1) at μ = 0. The occurrence 

of a bifurcation is in this case determined by 

linearization of the vector field at (0,0): 

L = DuF(0,0)  

 

Which is a linear operator acting in ℝ2. When 

L has eigenvalues on the imaginary axes, bifurcation 

may occur at μ = 0. We focus in this section on the 

case where L has a pair of complex conjugated purely 

imaginary eigenvalues. This is called the Hopf 

bifurcation (or Andronov-Hopf bifurcation). 

 

Hypothesis 2.1: 

Assume that the vector field is of class 𝐶𝑘, 𝑘 ≥
5, in a neighbourhood of (0,0), that is satisfies (2.3) and 

the two eigenvalues of the linear operator L are ±iω for 

some ω > 0. 
 

We consider the eigenvector and associated to the 

eigenvalue iω of L, 

Lξ = iωξ 

If 𝐿∗ is the adjoint operator of L then we define 𝜉∗ as the 

eigenvector of 𝐿∗ satisfying: 

𝐿∗𝜉∗ = iω𝜉∗, 〈𝜉, 𝜉∗〉 = 1 

Where 〈∙,∙〉 denotes the Hermitian scalar product in ℂ2. 

consider the Taylor extension of the vector field F in 

(2.8): 

F(U,μ)= : ∑ μqFrq(U(r)) + o(|μ| + ‖U‖k)1≤r+q≤  

Where 𝐹𝑟𝑞 is the r-linear symmetric operator from 

(ℝ2)𝑟  to ℝ2 

𝐹𝑟𝑞=
1

𝑟!𝑞!

𝜕𝑞

𝜕𝜇𝑞 𝐷𝑢
𝑟𝐹(0,0) 

 We define the coefficients 

a = 〈F11ξ + 2F20(ξ, −L−1F01), ξ∗〉           (2.4) 

b = 〈2F20(ξ, (2iω − L)−1F20(ξ, ξ) +

2F20(ξ, −2L−1F20(ξ, ξ̅) + 3F30(ξ, ξ⏞ ,

∞

ξ̅)), ξ∗〉     (2.5) 

 

Hypothesis 2.2 

We assume that the complex coefficients a and 

b have non-zero real parts, 𝑎𝑟 ≠ 0 𝑎𝑛𝑑 𝑏𝑟 = 0. The 

coefficient 𝑏𝑟 = 𝑅𝑟(𝑏) is called the Lyapunov 

coefficient. 

 

Definition 1.2 

1. A non-constant solution to the differential equation 

(2.8) is periodic if it exist T> 0 such that U(t) =
U(t + T). The image of the interval [O,T] under U 

in the state space ℝ2 is called the periodic orbit. 

2. A periodic orbit Γ on a plane is called a limit cycle 

if it is theα − limit set of ω −limit set of some 

point z not on the periodic orbit, that is, the set of 

accumulation points of either forward or backward 

trajectory through z, is exactly Γ. Asymptotically 

stable and unstable periodic orbits are examples of 

limit cycles.  
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Theorem 2.1 (Hopf Bifurcation) 

Assume that hypothesis 2.1 and 2.2 holds. 

Then, for the differential equation (2.1) a Superciritcal 

(respectively Subcritical) Hopf Bifurcation occurs at 

μ = 0 when 𝑏𝑟 < 0 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑏𝑟 > 0). More 

precisely, the following properties hold in a 

neighbourhood of O in ℝ2 for small enough μ: 

i. If 𝑎𝑟𝑏𝑟 < 0 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑟𝑏𝑟 > 0) the 

differential equation has precisely one 

equilibrium u( μ) for μ < 0 (respectively μ >
0) with μ > 0 with u(0)=0. This equilibrium is 

stable when 𝑏𝑟 < 0 and unstable when 𝑏𝑟 > 0. 

ii. If 𝑎𝑟𝑏𝑟 < 0 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑟𝑏𝑟 > 0) the 

differential equation possesses for u( μ) for 

μ < 0 (respectively μ > 0) and equilibrium 

u(μ) and a unique periodic orbit 𝑈∗(𝜇) =

𝑂(√|𝑈|), which surrounds this equilibrium. 

The periodic orbit is stable when 𝑏𝑟 < 0 and 

unstable when 𝑏𝑟 > 0, whereas the equilibrium 

has the opposite stability. 

 

Remark 2.2 

The number of equilibria of the differential 

equation stays constant upon varying μ in 

neighbourhood of O. The dynamics of the bifurcation 

change at the bifurcation point μ = 0. Such bifurcation, 

are called dynamic bifurcations, whereas those in which 

the number of equilibria changes are also called steady 

bifurcation. 

 

Hopf bifurcation theorem for vector fields 

Let 𝑋𝜇 be a 𝐶𝑘 (𝑘 ≥ 4) vector field on ℝ2 

such that 𝑋𝜇(0) = 0 for all μ and X=(𝑋𝜇 , 0) is also 𝐶𝑘. 

Let dXμ(0,0) have two distinct, simple complex 

conjugate eigenvalues λ(μ) and 𝜆(𝜇)̅̅ ̅̅ ̅̅  such that μ < 0, 
Re λ(μ) < 0 , for μ = 0, Re λ(μ) = 0, and for μ > 0, 

Re λ(μ) > 0. Also assume 
𝑑Re λ(μ)

𝑑𝑢
|
𝜇=0

> 0. Then there 

is a 𝐶𝑘−2 function μ: (−ϵ, ϵ) → ℝ such that 

(𝑋1, 0, 𝜇(𝑋1)) is on a closed orbit of period ≈
2π

|λ(0)|
 and 

radius growing like √𝜇, of the flow of X for 𝑋1 ≠ 0 and 

such that μ(0) = 0. There is a neighbourhood u of 

(0,0,0) in ℝ3 such that any closed orbit in u is one of the 

above. 

 

Furthermore, if 0 is a ‘vague attractor’ 

(asymptotically stable) for 𝑋𝑜, 𝑡ℎ𝑒𝑛 𝜇(𝑋1) > 0 for all 

𝑋1 = 0 and the orbit is attracting. 

 

If, instead of a pair of conjugate eigenvalues 

crossing the imaginary axis, a real eigenvalue crosses 

the imaginary axis, two stable fixed point will branch 

off instead of a closed orbit. 

 

Center manifold theorem 

The center manifold theorem is one of the 

important bifurcation theorem and the key job is that it 

enables one to reduce to a finite dimensional problem. 

In the case of a Hopf bifurcation theorem, it enables a 

reduction to two dimensions without losing any 

information concerning stability.  

 

Theorem 2.2 (Center manifold theorem): Let ψ be a 

mapping of a neighbourhood of zero in a Banach space 

Z into Z. We assume that ψ is 𝐶𝑘+1, k≥ 1 and that 

ψ(0) = 0. We further assume that Dψ(0) has spectral 

radius 1 and that the spectrum of Dψ(0) splits into a 

part on the unit circle and the remainder which is at a 

non-zero distance form the unit circle. Let Y denote the 

generalized eigenspace of Dψ(0) belonging to the part 

of the spectrum on the unit circle; assume that Y has 

dimension d< ∞ then there exist a neighbourhood v of 

O in Z and a 𝐶𝑘 submanifold M of v of dimension d, 

passing through O and tangent to Y at O. such that  

a. Local invariance: If x∈ M and ψ(x) ∈ V then 

ψ(x) ∈ M 

b. Local attractively: If ψ𝑛(𝑥) ∈ 𝑉 for every 

n=0,1,2,…, then as n→ ∞, the distance from ψ𝑛(𝑥) 

to M→ 0. This holds automatically if Z is finite 

dimensional or, more generally, if Dψ(0) is 

compact. 

 

Existence and Uniqueness 

1. Lipschitz conditions 

Consider 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)  

Y(𝑡0)=𝑦0 

Where f is a differentiable function. We would like to 

know when we have existence of a unique solution for 

given initial date. One condition on f which guarantees 

this in the following: 

Given a subset S of the (t,y)-plane, we say that f is 

lipschitz with respect to y on the domain s if there exist 

some constant k such that; 
|𝑓(𝑡, 𝑦2) − 𝑓(𝑡, 𝑦1)| ≤ 𝑘|𝑦2 − 𝑦1| for every point (t,𝑦1) 

and (t,𝑦2) in S. The constant K is called the Lypschitz 

constant. 

 

Example 2.1 Let f(t,y)=𝑡𝑦2 

then since |𝑓(𝑡, 𝑦2) − 𝑓(𝑡, 𝑦1)| ≤ 𝑓|𝑦2 + 𝑦1||𝑦2 −
𝑦1| is not bounded by any constant times |𝑦2 − 𝑦1| , f is 

not Lipschitz continuous with respect to y on the 

domain ℝXℝ. However f is Lipschitz on any rectangle 

ℝ = [a, b]x[cxd] since we have 

t|y2 + y1| ≤ 2max{|a|, |b|}.max{|c|, |d|} on ℝ. 

1. d(x, y) ≥ 0 

2. d(x, y) = 0 iff x = y 

3. d(x, y) = d(y, x) 

4. d(x, z) = d(x, y)  + d(y) 

 

Floquet theory:  

The fundamental matrix x(t) of  

𝑥̇ = 𝐴(𝑡)𝑥̇                    (2.6) 

With x(t) = 1 , has a Floquet normal form  

x(t) = Q(t)eBt          (2.7) 

where Q ∈  C1(ℝ) is T periodic and the matrix B, B ∈
 ℂnxn satisfies the equation  
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C = X(T) = eBT          (2.8) 

Q(0) = 1 and Q(t) is an invertible matrix for all t. 

 

PROOF: 

By lemma 2.5, there exist a non-singular constant 

matrix C with x(t+T)= X(t)C using  

X(t+T) = X(t)X(T) = x(t)C and Lemma 2.6 gives 

C=X(T)=−𝑒𝐵𝑇  

For some matrix B, if Q(t) =  X(t)eBT, then for all t, 
Q(t + T) =  x(t +  T)e−B(t+T) 

= x(t)Ce−Bte−BT 

                     = x(t)eBTe−Bte−BT 

                     = x(t)e−Bt 

                     = Q(t) 

This means that  

x(t) = Q(t)eBt where  

Q ∈ C1(ℝ) is T-periodic and x(0) = X(0)e0 = 1 

The matrix 𝑒−𝐵𝑡  is invertible for all t, because 

exponential of square matrices are invertible and x(t) is 

invertible Hence, Q(t) is invertible. 

 

Lemma 2.3 

If x(t) is a fundamental matrix of (1), then so is 

Y(t) = x(t)B for non-singular constant matrix B.  

 

Lemma 2.4 

If x(t) is a fundamental matrix of (1), then so is 

Y(t) = X(t + T). 

 

Lemma 2.5  

If x(t) is a fundamental matrix of 𝑥̇ =
𝐴(𝑡)𝑥 𝑏𝑦 𝑙𝑒𝑚𝑚𝑎 2.4, Y(t) = X(t + T) is a fundamental 

matrix of (1), then there exist a non-singular constant 

matrix C with  

X(t + T) =  X(t)C                              (2.9) 

 

Floquet Multiplier  

We continue using the fundamental matrix 

X(t) for (1) in Lemma 2.5, we proved that X(t + T) =
 X(t)C 

Where C is a non-singular constant matrix. Recall in (5) 

C = C(0) = x−1(0)Y(0) = x−1(0)x(T)     (2.10) 

This C is known as the monodromy matrix. 

 

Definition 2.3 

The eigenvalues of the monodromy matrix are 

called the Floquet multiplier of (1). 

 

Definition 2.4 

The eigenvalues of the matrix B of the Floquet 

form x(t) = Q(t)eBt , are called the Floquet exponents 

of (1). Since the monodromy matrix is non singular, its 

eigenvalues are non zero, therefore, we can state the 

following: 

Corollary 2.5 

Let 𝜆1, 𝜆2, . . . , 𝜆𝑛 be the Floquet multipliers and 𝜇1, 

𝜇2, . . . , 𝜇𝑛 be the Floquet exponents for (1), we can 

write  

λj = eμjt for all j= 1,…,n 

 

Stability of the Floquet System 

Floquet multipliers are very useful in stability 

analysis of periodic system. Recall the following 

definitions. 

 

Definition 3.5: 

An eigenvalue λ of A is simple if its algebraic 

multiplicity equals 1. 

 

Definition 3.6: 

Let λ be an eigenvalue of a matrix A the 

geometric multiplicity of λ is dim(Null (A-λΙ)) in order 

words, the number of linearly independent eigenvector 

associated with λ. 

 

Definition 3.7: 

An eigenvalue λ of A is semi simple if its 

geometric multiplicity equals its algebraic. A simple 

eigenvalue is always semi-simple. But the converse is 

not true.  

 

Definition 3.8 

Consider the system 𝑥̇ = 𝐴(𝑡)𝑥 𝑖𝑛 𝑣 = [𝑡0, ∞]    

(2.11) 

 

And assume A(t) is T periodic and continuous in V. The 

solution ψ(t) to system (2.6) is 

1. Stable on v if for every ϵ >
0, there exist a δ > 0, such that |𝛹(𝑡0) −
𝑥(𝑡0)| < 𝛿 implies that |𝛹(𝑡) − 𝑥(𝑡)| <
𝜖, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 t≥ 0 And the solution x(t) is 

defined for all t ∈ v 

2. Asymptotically stable on v If it is stable and if 

in addition lim
𝑡→∞

|𝜓(𝑡) − 𝑥(𝑡)| ⟶ 0 

3. Unstable if it is not stable on v. it can be 

proven that the following stability condition 

hold for the Floquet system. 

 

Theorem 2.10 

Assume 𝜆1, 𝜆2, . . . , 𝜆𝑛 are Floquet multipliers of system  

1. Then the zero solution of (1) is 

i. Asymptotically stable on [0,∞) if and only if 

|𝜆: | < 1 for i=1,…,n 

ii. Stable on [0, ∞) if |𝜆𝑗| ≤ 1 for all I=1,…,n 

and whenever |𝜆𝑗| = 1, 𝜆𝑗 is a semi-simple 

eigen value 

iii. Unstable in all other cases. 

 

It should be noted that for the Floquet 

exponents, the conditions |𝜆𝑗| < 1, |𝜆𝑗| ≤ 1, |𝜆𝑗| > 1 is 

equivalent to Re μj < 0, Re μj ≤ 0, and Re μj > 0 

 

Eigenvalue 

Eigenvalue are a special set of scalars 

associated with a linear system of equation (ie a matrix 

equation) that are sometimes known as characteristic 
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roots, characteristic value [6], proper value, or latent 

roots [13]. 

 

Theorem 2.1 

The following gives the link between the 

characteristic polynomial of a matrix A and its 

eigenvalues. If A is an nxn matrix and λ is a complex 

number the the following are equivalent 

a. λ is an eigenvalue of A 

b. The system of equation (A-λΙ=0) has a trivial 

solution 

c. There is a non-zero vector X in ℂ𝑛 such that 

Ax=λx 

d. λ is a solution of the characteristic equation 

det(𝐴 − 𝜆𝛪). Some coefficient of the 

characteristic polynomial of A have a specific 

shape. The following theorem gives the 

information about it.  

 

Theorem 2.1.2 

If A is an n x n matrix, then the characteristic 

polynomial P(λ) of A has degree n, the coefficient of 

𝜆𝑛  𝑖𝑠 (−1)𝑛, the coefficient of 𝜆𝑛 +1 is (−1)𝑛 −1 trace 

(A) and the constant term is det(a), where trace 

(A)=𝑎11  +  𝑎22 +. . . + 𝑎𝑛𝑛. In some structured 

matrices, eigenvalues can be read as shown in theorem 

2.1.3. 

 

Theorem 2.1.3 

If a is an nxn triangular matrix (upper 

triangular, lower triangular, or diagonal), then the 

eigenvalues of A are entries of the main diagonal of A. 

 

Cayley-Hamilton’s theorem is one of the most 

important statements in linear algebra. The Theorem 

states that. 

 

Theorem 2.1.4 

Substituting the matrix A for λ in characteristic 

polynomial of A, we get the result of zero matrix ie, 

P(A)=0 

 

Jacobian Theorem  

If u and v are functions of the two independent 

variables of x and y,  

the determinant (
𝜕𝑢

𝜕𝑥
 
𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥
 
𝜕𝑣

𝜕𝑦

) is called the Jacobian of u,v 

with respect to x,y and is written as 
𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
 𝑜𝑟 𝐽(

𝑢,𝑣

𝑥,𝑦
) 

 

Properties of Jacobian 

First property 

If U and V are the function of x and y then 
𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
 X 

𝜕(𝑥,𝑦)

𝜕(𝑢,𝑣)
 = 1 

Second Property 

If U,V are the functions of r,s where r and s are function 

of x,y, the  

𝜕(𝑢,𝑣)

𝜕(𝑥,𝑦)
 = 

𝜕(𝑢,𝑣)

𝜕(𝑟,𝑠)
 X 

𝜕(𝑟,𝑠)

𝜕(𝑥,𝑦)
  

Third Property 

If function U,V,W of three independent variables x,y,z 

are not independent then  
𝜕(𝑢, 𝑣, 𝑤)

𝜕(𝑥, 𝑦, 𝑧)
= 0  

 

Recently, Rachunkova in [6] and Torres in [9] 
studied periodic boundary problems by using signed 

Green’s function combining Kransnoselskii’s fixed 

point theorem on compression and expansion of cones, 

and they obtained the new existence and multiplicity 

result concerning one signed periodic solution of the 

equation as well as equations with singularity. But the 

method mentioned above is difficult to be applied for 

estimate of the sharp number of solutions of (1.1), 

because it is impossible to determine the sharp norm for 

the Green’s function. For the case indefinite weight, 

even the existence of T- periodic solution is not known. 

It seems that infinite dimensional singularity theory 

established in [11] provides a natural platform to deal 

with such kind of problems, and has been already 

successfully applied to non- homogeneous non-linear 

elliptic equations with both Dirchlet and Neumann 

boundary values respectively. To know more about this 

approach, one can refer to the approach, one can refer to 

comprehensive survey articles [10, 13]. 
 

In order to understand the global structure of 

periodic solutions and stability of each solutions under 

the cubic restoring force, Chen and Li in [4] used the 

different approach based on Crandall-Robinowitz 

bifurcation theorem and contraction method but devoted 

their work to the exact multiplicity and stability of 

periodic solution under cubic nonlinear restoring force 

with a strong damped condition. 

a(t) ≤
(π)2

T2  +  
C2

4
, and a̅ > 0 where a̅ denotes the 

average of a(t) over a period. 

 

In this paper they used global bifurcation 

method to cover the situation that the method to cover 

the situation that the method based on maximum 

principle developed in [5-7] and super-sub solutions 

methods are not applicable to degenerate situation and 

the interesting case when the graph of forcing term h(t) 

intersect the critical level is missing where bifurcation 

occurs. There result confirmed the first issue of the 

number of periodic solution of (1.1) is at most three 

under strong damped condition. Generally exactly one 

or three. The periodic solution of (1.1) forms an “S” - 

shape smooth curve, symmetric with respect to the 

origin. 

 

Dutta and Prajapatic in [3] reported a 

symmetric investigation in the phase space of the 

double well Duffing Oscillator, they used bifurcation 

diagram to show the region characterized by the 

parameters for which one finds periodic solutions, a 
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periodic solution. They also observed that when driving 

force is increased, there is a series of parallel “islands” 

of parameters characterized by a periodic attractors. 

They found that even the model is perturbed by linear 

term, it shows periodic and chaotic behaviour and that 

when damping coefficient is taken as zero and the non-

linear stiffness parameter is taken sufficiently small, the 

model shows homoclinic nature for whatever the value 

of force. 

 

3. RESULT AND DISCUSSION 
Our modified Duffing equation is  

𝑥 ̈ + 𝛼𝑥̇  + 𝜏2𝑥 − 𝛽𝑥3 = 𝐹𝑠𝑖𝑛𝜔𝑡     (3.1) 

 

With initial condition 

𝑥(0)=2π 𝑥̇(0) = 2𝜋                     (3.2) 

And the periodic solution  

𝑥(t)= 𝑥(𝑡 + 𝑇)                         (3.3) 

 

Going back to the duffing equation, we have 

tried different values of α and ω and observed where 

the periodic doubling route to chaos occurs. 

 We have fixed α = 0.1, τ2 = 2, β = −2, ω = 1.2. 
𝑥 ̈ + 0.1𝑥̇  − 2𝑥3 = 𝐹𝑠𝑖𝑛1.2𝑡  

with initial condition 

𝑥(0)=1                 𝑥̇(0) =0 

and the solution of the periodic condition  

𝑥(t)= 𝑥(𝑡 + 𝑇)                        (3.4) 

And F is taken within 0.1 to 15 to obtain the bifurcation 

diagram below 

 

SIMULATION OF THE ODE 
2 3

1 1 1 1 sinx x x x F t   + + − =  

Vectorizing the ode; let 1x x= , the equation becomes 

2 3

1 1 1 1 sinx x x x F t   + + − =  

 

Now if we let 1 2x x=  so that 1 2x x= then we have a 

system of first order odes written 

1 2x x=  

2 3

2 2 1 1 sinx x x x F t   = − − + +  

 

MathCAD 14 Solution 

Numerical values of the parameters 

 
Define a function that determines a vector of derivative 

values at any solution point (t,Y): 

 

 
 

 
 

Graphical profiles 

 

 
Fig-1:   Position as a function of time 

 



 

    

Onuma Martins Ochunkwo et al., Sch J Phys Math Stat, Aug, 2023; 10(6): 132-139 

© 2022 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          138 

 

 

 
Fig-2: Velocity as a function of time 

 
Fig-3: Phase portrait 

 

Discussion 

For the given values of the values of the 

parameters, figure 1 depicts the variation of the position 

with time. The trajectory is clearly oscillatory and fairly 

regular but with varying amplitude.  

 

Figure 2 represents a profile of the velocity 

with time, and this is also oscillatory, regular with 

varying amplitude. 

 

Figure 3 depicts the phase portrait which is the 

plot of the velocity against the position. The closed 

curve in the phase plane tells us that the system under 

study is conservative. 

 

Clearly we see period doubling route to chaos. 

With parameters chosen in the region of limit cycles the 

system is either in the well of positive x or in the well 

of negative x, depending on the precise value of F, but 

does not hop between the wells, we see that there is a 

repetition of period one, period two behaviour which 

ultimately leads to chaotic behaviour.  

 

Bifurcation using Stability Formular Developed in 

Marsden and Mccraven 

Let 𝑥̇ = 𝑦, 𝑦̇ = 𝑥̈  

𝑦̇  = −∝ 𝑦 − 𝜏2𝑥 +  𝛽𝑥3 + 𝐹𝑠𝑖𝑛𝑤𝑡  

Let 𝑋𝛼(𝑥, 𝑦) = (𝑦, −∝ 𝑦 − 𝜏2𝑥 +  𝛽𝑥3 + 𝐹𝑠𝑖𝑛𝑤𝑡 ) 

Now 𝑋𝛼(0,0) = 0 for every α and  

 𝑑𝑥𝛼(0,0) = ( 0 1
−𝜏2 −𝛼

) 

( 0 1
−𝜏2 −𝛼

) − λ(1 0
0 1

) = 0  

( 0 1
−𝜏2 −𝛼

) − λ(𝜆 0
0 𝜆

) = 0  

( −𝜆 1
−𝜏2 −𝛼−𝜆

) = 0 ⇒ (−λ)(−α − λ) − −τ2 = 0  

 αλ + λ2 + τ2 = 0 

𝜆2 + 𝛼𝜆 + 𝜏2 = 0  

λ =
−α±√b2−4ac

2a
  

λ(α) =
−α±√∝2−4τ2

2
  

 

Consider ∝ such that |∝| < 2 

In this case 
−∝

2
+

i√∝2−4τ2

2
  

imλ(α) ≠ 0, 

Where λ(α) =
−α±√∝2−4τ2

2
= 

−∝

2
+

i√∝2−4τ2

2
  

Furthermore, for −2 <∝< 0, Re λ(α) < 0  

and for ∝= 0, Re λ(α) = 0 and for 2>∝> 0,  

Re λ(α) > 0 and  
𝑑(𝑅𝑒 𝜆(𝛼))

𝑑∝
|

∝=0
= −

1

2
  

 

Therefore the Hopf bifurcation theorem applies and we 

conclude that there is one parameter family of closed 

orbits of x=(𝑥𝛼 , 0) in a neighbourhood of (0,0,0) 

To find out if these orbits are stable and if they occur 

for α > 0, we look at  

 𝑋0(𝑥,y)=(𝑦, −𝜏2𝑥 +  𝛽𝑥3 + 𝐹𝑠𝑖𝑛𝑤𝑡). 

𝑑𝑥0(0,0) = ( 0 1
−𝜏2 0

) and λ(0) = τi 

 

Recall that to use the stability formular in we must 

choose coordinate so that  

𝑑𝑥𝛼(0,0) = ( 0 𝐼𝑚(𝜆0)
−𝐼𝑚(𝜆0) −𝛼

)=( 0 𝜏
−𝜏 0

) 

 

Which is not in the required form. We must make a 

change of coordinates so that  

𝑑𝑥0(0,0) becomes ( 0 1
−1 0

) that is we must find vectors 𝑒1̂ 

and 𝑒2̂ so that 𝑑𝑥0(0,0)𝑒1̂ = −𝑒2̂ and 𝑑𝑥0(0,0)𝑒2̂ = 𝑒1̂  

The vectors 𝑒1̂ = (1, −1) and 𝑒2̂ = (0,1) will do. 

 

A procedure for finding 𝑒1̂ and 𝑒2̂ is to find ∝  and ∝̅ 

the complex eigenvectors. We may then take 𝑒1̂ =∝ +∝̅ 

and 𝑒2̂ = 𝑖(∝ −∝̅) 

𝑋0(𝑥𝑒1̂ + 𝑦𝑒1̂) = 𝑋0(𝑥, 𝑦 − 𝑥)  

= (y, −∝ (y − x) − τ2x + βx3 + Fsinωt)  

= (y𝑒1̂, −∝ (y − x) + τ2x + βx3 + Fsinωt)𝑒2̂  

∴∴∴ 𝑋0(𝑥, 𝑦) = (𝑦, −∝ (y − x) + τ2x + βx3 +
Fsinωt)  

𝜕𝑛𝑥1

𝜕𝑥𝑗𝜕𝑦𝑛−𝑗 (0,0)=0 for every n> 1 

∴  x1(x, y) = y  

 𝑋2(𝑥, 𝑦) = −∝ (y − x) + τ2x + βx3 + Fsinωt 

∴  
𝜕2𝑥2

𝜕𝑦2  (0,0)=0 , 
𝜕2𝑥2

𝜕𝑥𝜕𝑦
 (0,0)=0 

𝜕3𝑥2

𝜕𝑥3  (0,0)=6β, 
𝜕3𝑥2

𝜕𝑥2𝜕𝑦
 (0,0)=0 

𝜕3𝑥2

𝜕𝑥𝜕𝑦2 (0,0)=0, 
𝜕3𝑥2

𝜕𝑦3 (0,0)=0 

∴  v⃛(0) =
3π

4|λ(0)|
(6β)  
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The orbits are unstable and bifurcation takes 

place below criticality. The orbits occur for μ < μ0 and 

are repelling on the center manifold, and so are unstable 

by general. 

 

CONCLUSION 
We have fixed the parameters α, β, τ2 and 

studied the behaviour for different values of we 

obtained the Hopf bifurcation diagram for 0.1< f < 15., 
secondly we have obtained the phase portrait and 

poincare section in this regard, thirdly we have shown x 

vs t graph for our model within same range of 

parameters, fourthly, we observed the behaviour of the 

strange attractors, how they vary with driving force and 

damping factor. Lastly we observed the Homoclinic 

behaviour of the Oscillator when damping coefficient is 

taken as zero.  
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