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Abstract  Review Article 
 

DNA methylation is the prominent chemical process in regulating gene expression, which is strongly associated with 

normal development and cell functions. DNA methyltransferases (DNMTs) serve both functions of establishing and 

maintenance of the original pattern DNA methylation. Epigenetic modifications are resulted from alterations of DNA 

methylation patterns occurring in coding strands, thus increase DNA adduct formation, somatic mutations, and 

oncogene activation. Promoter hypermethylation silences tumor-suppressor, and regulation and expression of gene due 

to DNA methylation have been mostly focused in human cancer research. But, global DNA hypomethylation 

contributing to genomic instability and cell transformation has been also shown as a cause of oncogenesis. DNA 

methylation of the promoter region for genes associated to cancer is raising as a potential marker for early detection, 

prognosis and real-time follow-up of tumor dynamics. This paper aims to review the crucial role of DNA methylation 

in gene regulation and the effect of the aberrations in DNA methylation in human cancer progression and 

development. The elucidation of aberrant DNA methylation deemed as a cancer-inducing mechanism may help the 

discovering of prognostic DNA methylation markers useful in cancer therapy. 
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INTRODUCTION 

Identification of cancer-specific epigenetic 

alterations was shown as one the fundamental element 

which may help for cancer diagnosis. Epigenetics have 

been described as occurrence of stably heritable 

phenotype in gene, which does not depend on the 

changes in the DNA sequence [1]. The major epigenetic 

mechanisms in the human genome include 

modifications of histones, which are the main protein 

components of chromatin, and methylation of the 

cytosine nucleotide in DNA [2]. DNA methylation is an 

epigenetic mechanism utilized by the cell to control 

gene expression, and is occurred by the taransfering of a 

methyl group to the cacbon-5 position of the cytosine 

ring of DNA [3] (Figure-1). It represents a relatively 

stable and conserved mark, which make it an attractive 

choice for epigenetic studies. In mammalians, DNA 

methylation occurs in the context of cytosine-

phosphate-guanosine (CpG) dinucleotides regions of 

DNA, and guanine is preceded by a cytosine nucleotide 

[3]. The estimation of methylated CpGs in mammals 

was found between 70 to 80 percent [4]. CpG islands as 

genomic regions with high frequency of CpG sites are 

typically associated with active transcription, but also 

contain largely unmethylated CpGs [5]. Approximately 

70 % of annotated genes are estimated to be associated 

with a CpG island in their promoter regions [6]. 

Currently, the researchers have been discovered up to 

four DNA methyltransferases (DNMTs) describe as key 

enzymes responsible for catalysis of DNA methylation 

mechanism including DNMT1, DNMT3a, DNMT3b and 

DNMT3L (Figure-1) [7]. DNMT1 is responsible for 

maintenance of methyl groups that are already present 

on one of the DNA strands and reproduces also DNA 

methylation patterns from hemi-methylated DNA [7]. 

The DNMT3 consists of DNMT3a and DNMT3b 

facilitates the methylation patterns early in development 

and carcinogenesis [8]. Furthermore, it has been 

reported that interaction between DNMT3L and Dnmt3a 

or Dnmt3b causes stimulation of DNA activity of those 

two DNMTs; DNMT3a and DNMT3b [9].  
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Fig-1: DNA methyltransferase (DNMT) catalyzes the methylation reaction (Modified, based on Bruce Richardson, 

2007) 

 

DNA methylation is a crucial process in 

human genome involving in regulation of gene 

expression and maintaining genome stability through 

chromatin structure modeling [10]. DNA methylation 

can either physically impede the binding of 

transcription factors, or mediate transcriptional 

repression by attracting proteins that compact 

chromatin, which suppresses gene expression [11]. 

DNA methylation has different effects depending on 

genomic regions; in gene bodies it is associated with 

transcription activity, while in promoter it is correlated 

with gene silencing [12] (Figure-2).  

 

 
Fig-2: The typical CpG Island of a tumor suppressor gene is represented in a normal and a tumor cell (Modified, 

based on Thuy et al.; 2017) 
 

For its implication in genes regulating 

developmental process, DNA methylation has important 

roles for proper biological development and 

functioning. It is essential for genomic imprinting [13], 

X-chromosome inactivation [14] and differentiation, 

and maintenance of cellular identity [15]. Furthermore, 

DNA methylation alterations have been indicated as 

promising targets in cancer treatment through the 

development of powerful diagnostic, prognostic, and 

predictive biomarkers, that can be used for the 

treatment of cancer patients to a new level [16]. DNA 

methylation markers are more advantages than other 

molecular markers depending on their chemically and 

biologically stability which are high compared to  RNA 

or most proteins [17]. Alterations in DNA methylation 

was identified to affect regulation of gene expression, 

thus plays a crucial role for changes in cellular growth 

and division leading to serious diseases including 

cancer. Particularly, it causes tumor suppressor genes to 

contribute to tumor initiation and progression. Cancer 

researchers have difficulties of getting required 

information on the association between altered DNA 

methylation and gene regulation. This paper identifies 

some effect of altered DNA methylation on gene 

expression and cancer development, which may help for 

developing more effective cancer therapies. 
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Hypomethylation in the regulation of gene 

expression 

Hypomethylation is one of  the DNA 

methylation process caused by the loss of a methyl 

group or the unmethylated state of the most CpG sites 

in a specific sequence that is normally methylated in 

somatic tissues [18]. In general, hypomethylation of the 

genome and of specific genes was reported in human 

tumors [19]. Interestingly, enough evidence was 

provided by research study showing the association 

between hypomethylation of specific genes and 

transcriptional activity [20]. Transcription activation of 

repeated sequences was reported to be influenced by 

hypomethylation of repeated DNA sequences [21]. 

Besides, hypomethylation is also associated with gene 

expression. DNA hypomethylation was found to play 

important role in B cell differentiation and gene 

overexpression. Moreover, it was suggested that DNA 

hypomethylation correlated with gene expression, may 

influence plasma cell division and differentiation [22]. 

Interestingly, global hypomethylation was shown as 

crucial factor involved not only in regulation of 

programmed death-ligand 1 (PD-L1), but also causes its 

constitutive expression [23]. In addition, overexpression 

of the ER-α gene correlated with aberrant DNA 

hypomethylation in its promoter region in uterine 

leiomyoma, which might be caused by the reduced level 

of DNMT-3 [24]. Hypomethylation at later site of 5'-

region of the calcitonin was also reported to associate 

with over-expression of the calcitonin gene in 

medullary thyroid carcinoma [25]. The research showed 

the hypomethylation of ST6GALNAC1 gene at 2 base 

pair upstream of the transcription start site in ER−/PR− 

breast cancer, and that might induce gene expression by 

activating transcription due to the location of the 

methylation site near the promoter sequence [26]. 

Body-hypomethylated genes occupying a unique 

epigenetic niche within the human genome not only 

strongly influence expression, but also cause disruption 

on regulatory function [27]. Currently, researchers 

reported the association between DNA hypomethylation 

with over-expression tumor-related genes, such as 

maspin [28] and synuclein γ [29] and cancer/testis 

antigens including melanoma [30], and that was found 

in various human cancer. 

 

Hypermethylation in the regulation of gene 

expression 

Many studies have been described DNA 

hypermethylation as one of the key factor influencing 

gene expression. CpG island hypermethylation is a 

common mechanism occurred in the tumor suppressor 

gene, and essentially involved in the inactivation of 

those genes in human cancers [31]. Interestingly, 

hypermethylation was firstly discovered in a promoter 

region of calcitonin gene [25]. Aberrant 

hypermethylation occurring in promoter region causes 

the silencing of tumor suppressor genes and represent 

an alternative inactivating mechanism to mutations 

(Figure-2). Aberrant hypermethylation in the promoter 

region has been described for several tumor suppressor 

genes in breast cancer including CDH1, RASSF1A, and 

BRCA1. Promoter hypermethylation of BRCA1 was 

shown to cause inactivation BRCA1 expression, and that 

resulted breast tumorigenesis, and it is proposed to be a 

potential biomarker utilized for prognostic assessment 

[32, 33]. In addition, de novo methylation of CpG 

islands in gene promoter or enhancer regions has been 

reported as an important factor which can influence loss 

of gene expression [34]. However, hypermethylation of 

CpG-rich regions within gene body regions may 

involve in silencing of one of two or more alternative 

promoters of a gene altering expression of particular 

transcript gene isoforms [35, 36]. Hypermethylation of 

gene body or transcribed regions was also reported to 

be associated with higher gene expression levels [12], 

and transcription running across the CpG island [37]. 

Interestingly, hypermethylation of the CpG island-

promoter is associated with genes, which are essential 

in various cellular pathways such as cell cycle, DNA 

repair, carcinogen metabolism, cell adherence, 

apoptosis, cell growth, etc [38].  

 

DNA hypermethylation represses transcription 

activity of gene through several mechanisms such as 

inhibition of transcription factors like AP-2, c-

Myc/Myn, E2F, NF-κB to their binding sites within 

promoter regions. The other mechanism consists of the 

binding of proteins specific for m5CpG dinucleotides to 

methylated DNA. For instance, some essential binding 

proteins such as methyl-CpG binding proteins (MeCP1 

and MeCP2), and methyl-CpG binding domain MBD 

proteins (MBD1-4) were reported to be recruited during 

the process [39]. As a common mechanism for large 

number genes, methylation in the promoter region 

leading to inactivation of estrogen receptor gene alpha 

(ER α) is associated with aging in some tissues of the 

cardiovascular system, and that is essential in 

atherogenesis [40]. Moreover, higher levels of DNA 

methylation in promoter region of some identified 

genes have been shown to be associated with hormone 

receptor positive status of breast tumors [41]. On the 

other hand, aberrant hypermethylation is associated 

with inactivation of both estrogen (ER α) gene 

and progesterone receptor (PR) gene [40, 42]. 

Currently, aberrant promoter hypermethylation is 

considered as the core mechanism leading 

transcriptional inactivation. 

 

DNA methylation and cancer 
DNA methylation  was reported in many 

studies as epigenetic marks essential in cancer genome 

[43]. DNA methylation was shown to involve 

significantly in cancer development due to the reason 

that methylation causes silencing of tumor suppressor 

genes within the promoter regions (Figure-2), and can 

also cause mutation in the gene itself [44]. Abnormal 

DNA methylation of imprinted loci was reported in 

various types of human cancer, including colon, breast, 

liver, bladder, Wilms, ovarian, esophageal, prostate, and 
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bone cancers. In addition, current studies on the 

applications of omics technologies have shown that 

there are numerous differential DNA methylations 

associated to cancers, including hepatocellular 

carcinoma, glioblastoma, breast cancer, squamous cell 

lung cancer, thyroid carcinoma, and leukemia [45-54]. 

Several types of aberration were shown in both DNA 

methylation and the proteins involving in DNA 

methylation during cancer development, and those 

include not only hypermethylation of tumor suppressor 

genes and abnormal expression of DNA 

methyltransferases, but also DNA hypomethylation of 

unique genes and repetitive sequences was found in 

carcinogenesis [55-57]. The loss of DNA methylation 

was reported in 1983, as the first-described epigenetic 

changes linked to human cancer, and also genes of 

cancer cell showed the significant hypomethylation than 

normal tissue [58]. In addition, DNA hypomethylation 

was found to contribute to genomic instability and the 

initiation of intestinal cancer [59]. It was shown that the 

global DNA hypomethylation in breast cancer was 

linked to repressive chromatin domains formation and 

silencing of tumor suppressor genes [60].  

 

Expression of imprinted genes are another type 

of genes reported to be influence by abnormal DNA 

methylation, as the loss of imprinting insulin-like 

growth factor-2 (IGF2) gene, and the tightly-linked H19 

were found to favor tumorigenesis in various cancer 

types due to the overexpression and global chromatin 

instability [61]. Interestingly, detecting a loss of 

imprinting in IGF2 gene was suggested to be a 

powerful tool for the diagnosis of human cancer. DNA 

hypermethylation was identified as the most promising 

biomarker that can be used as an effective diagnostic 

tool for human cancers detection, especially in lung 

cancer treatment [62]. It was reported that DNA 

methylation can lead to inactivation of X-chromosome 

(XCI) [63], and that has been shown to occur in breast 

and ovarian cancer patients, in BRCA1 and 

possibly BRCA2 mutation carriers in comparison to 

control subjects. Therefore, it is correlated with a 

significant increase in the age of diagnosis of those 

women’s cancer; breast and ovarian cancer [64]. In 

addition, DNA methylation might provide a potential, 

tumor-specific marker as showed to plays a key role in 

PR gene silencing in leukemia [42]. Promoter 

hypermethylation causes silencing of expression of very 

important transcription factors and the associated 

component such as TGF-β signaling and human runt-

related transcription factor 3 (Runx3), involving in 

various roles in control of cell proliferation and 

differentiation therefore, leads to the development 

numerous human cancer, including gastric cancer [65], 

cholangiocarcinoma [66], pancreatic cancer [67], and 

esophageal squamous cell carcinoma [68]. Moreover, 

suppression of expression TGF-β and its receptors due 

to aberrant DNA hypermethylation was also reported in  

renal carcinoma [69], lung cancer and prostate cancer 

[70]. DNA hypermethylation significantly occurs in 

many genes involving in biochemical pathways 

associated with tumor development or progression. 

These genes play important role in function of 

numerous cellular processes such as cell cycle, DNA 

repair, apoptosis, metastasis, detoxification, hormone 

response, Ras signaling, and Wnt signaling [71]. 

 

It was reported that aberrant promotor 

hypermethylation of tumor suppressor genes and cancer 

related genes occurs at the early stage of ovarian cancer 

development, and that was found for numerous genes 

include OPCML, BRCA1, p16 and TMS1 [72, 73]. DNA 

methylation of tumor suppressor gene specific to cancer 

cells provides opportunities for novel, noninvasive early 

detection strategies for various human cancers. For 

instance, detection of methylated tumor suppressor 

genes in sputum may be utilized to detect lung cancer, 

and in urine for bladder cancer [74, 75]. Interestingly, it 

was suggested that high-density CG islands and CpG 

island shores are associated with differential 

methylation in cancers. Shores correlated with 

hypomethylation and gene overexpression in cancer 

have been found for genes involving in the cell cycle. 

That suggests an important role for shores region for 

involving in the unregulated growth, which is a 

characteristic for cancer development [76]. Numerous 

studies have been focused on DNA methylation of 

tumor suppressor genes for the purpose of identifying 

DNA methylation biomarkers of cancer. However, 

hypomethylation is also essential, because critical genes 

for cancer growth and metastasis are associated with 

hypomethylation in cancer [77-79]. DNA demethylation 

is essential in cancer through activation of several pro-

metastatic genes, including the heparanase gene [77], 

MMP2 encoding matrix metalloproteinase-2 [78], and 

uPA which activates urokinase plasminogen activator 

[79]. Utilizing functional biocomputational analysis, the 

hypomethylated genes were hypothesized to be 

correlated with cell growth, invasion, and metastasis 

functions, which are mainly associated with 

cancer development and metastasis [80]. In addition, 

dissimilarity in epigenetic reprogramming was 

identified between primary tumor and distant 

metastases in the identical patient [81], however, driver 

mutations were not identified among the metastases 

[82]. Therefore, epigenetic dysregulation was suggested 

to play an important role in tumor development and 

metastasis, and also indicate its potential application in 

cancer diagnosis [83, 84], prognosis [85] and treatment 

[86, 87]. Furthermore, the discovery of novel 

epigenetically inactivated tumor suppressor genes can 

provide knowledge on tumorigenesis in depth, and give 

a basis for further research for the discovery and 

development of new targeted therapies like 

demethylating agents. 

 

CONCLUSION AND PERSPECTIVES 

DNA methylation is involved in normal 

development of mammals in different process, 

including proper growth, cell adhesion, and genetic 
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transmission, but defects in DNA methylation cause 

diseases. Dysregulation of the DNA methyltransferases 

leads to aberrant methylation as shown in various type 

of human cancers. Furthermore, altered DNA 

methylation involved in inactivation of tumor 

suppressor genes and that plays crucial role in the 

control of cell proliferation and transformation, 

therefore, may initiate or cause progression of cancer. 

Given the prominent roles recognized for DNA 

methylation in clinical studies, increasing efforts have 

been devoted to targeting oncogenic DNA 

methyltransferase genes and proteins. Moreover, the 

genetic and epigenetic may have synergistic effect 

contributing to cancer development. Aberrant DNA 

methylation changes, that are stable and inherited 

through multiple cell division, occur early in 

carcinogenesis, thus it could be utilized as a 

noninvasive biomarker for cancer early detection and 

prognosis. In addition, methylation biomarkers can be 

utilized for predicting response or resistance to 

chemotherapy. Reversibility of DNA methylation is 

another feature which plays a key role in discovering 

epigenetic drugs currently in use for the treatment of 

patients with hematological malignancies. However, the 

utilization of methylation markers in the treatment of 

different types of human cancer is still inadequate due 

to certain factors such as our incomplete knowledge 

about patterns of DNA methylation, various detection 

methods, specimens type (tissue, stool, and blood), and 

cancer heterogeneity. Therefore, there is still a pressing 

need for further randomized clinical trials and large-

scale investigations, especially in different populations 

in order to identify specific, sensitive, and cost-effective 

methylation biomarkers for human cancers. Better 

understanding the effect of DNA methylation on gene 

regulation and human cancer initiation and progression 

has certainly helped in the discovery and development 

of promising tools useful for cancer treatment. 
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