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1. INTRODUCTION 
Schweizer and Sklar [1] introduced triangular 

norms (t-norms, for short) with the neutral 1 and 

triangular conorms (t-conorms, for short) with the neutral 

0 on the unit interval [0,1] which are widely used to 

various fields, such as fuzzy set theory, fuzzy logic, 

image processing and so on (see, e.g., [2-6]). Uninorms 

on the unit interval [0,1] as a generalization of t-norms 

and t-conorms were introduced by Yager and Rybalor [7] 

which were also proved useful in many fields, such as 

fuzzy logic, fuzzy system modeling, expert systems, 

neural networks, decision-making and so on (see, e.g., 

[8-14]). Uninorms are particularly useful in the bipolar 

decision-making described in expert systems (see, e.g., 

[8, 15-17]). Besides, the fuzzy modeling inference 

process consists of an aggregation step in which the 

contributions of different rules of the fuzzy system model 

are combined, and uninorms provide a general class of 

operators to implement this step [14]. A great deal of 

study on uninorms has been done on the unit interval 

(see, e.g., [18-20]). 

 

Due to the fact that the bounded lattice is more 

general than [0,1], uninorms on bounded lattice were 

introduced by Karaçal and Mesiar [21]. Since then, 

uninorms on bounded lattices have been studied 

extensively and a great deal of construction methods 

have been given in the literature (see, e.g., [21-33]). 

 

As we see uninorms in the literature, U(r,s) = s 

for (r,s) (0,e) × Ie (resp. U(r,s) = s for (r,s) (e,1) × Ie), 

U(r,s) = 0 for (r,s)(0,e) × Ie (resp. U(r,s) = 1 for (r,s)

 (e,1) × Ie) or U(r,s) = r for (r,s) (0,e) × Ie (resp. U(r,s) 

= r for (r,s) (e,1) × Ie). However, based on the fact that 

U(r,s) ≤ s for (r,s) (0,e) × Ie (resp. s ≤ U(r,s) for (r,s)
(e,1) × Ie) in Proposition 1 of [21], we may ask a question 

that whether the values of U(r,s) can be elements 

different from 0, r and s for (r,s) (0,e) × Ie (resp. 1, r 

and s for (r,s) (e,1) × Ie). In this paper, under some 

constraints, we construct new uninorms via closure 

operators and interior operators. 

 

2. Preliminaries 

In this section, we recall some basic concepts 

and results about lattices and aggregation functions. 

 

Definition 2.1 ([34]) A lattice (L,≤) is bounded if it has 

top and bottom elements, which are written as 1 and 0, 

respectively, that is, there exist two elements 1,0L 

such that 0 ≤ r ≤ 1 for all rL. 

 

Throughout this article, unless stated otherwise, 

we denote L as a bounded lattice with the top and bottom 

elements 1 and 0, respectively. 

 

Definition 2.2 ([34]) Let L be a bounded lattice, a,bL 

with a ≤ b. A subinterval [a,b] of L is defined as [a,b] = 

{rL : a ≤ r ≤ b}. Similarly, we can define [a,b) = {r
L : a ≤ r < b},(a,b] = {rL : a < r ≤ b} and (a,b) = {r
L : a < r < b}. If a and b are incomparable, then we 

use the notation a b . 

 

https://saspublishers.com/sjpms/
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In the following, Ia denotes the set of all 

incomparable elements with a, that is, Ia = {r L | 𝑟 ∥ 𝑎 

}. 

 

Definition 2.3 ([35]) Let (L,≤,0,1) be a bounded lattice. 

An operation T : L2 → L is called a t-norm on L if it is 

commutative, associative, and increasing with respect to 

both variables, and it has the neutral element 1L, that 

is, T(1,r) = r for all rL. 

 

Definition 2.4 ([36]) Let (L,≤,0,1) be a bounded lattice. 

An operation S : L2 → L is called a t-conorm on L if it is 

commutative, associative, and increasing with respect to 

both variables, and it has the neutral element 0L, that 

is, S(0,r) = r for all rL. 

 

Definition 2.5 ([37]) Let (L,≤,0,1) be a bounded lattice. 

A mapping cl : L2 → L is said to be a closure operator on 

L if, for all r,sL, it satisfies the following three 

conditions: 

(1) r ≤ cl(r); 

(2) cl(r s) = cl(r) cl(s); 

(3) cl(cl(r)) = cl(r). 

 

Definition 2.6 ([29]) Let (L,≤,0,1) be a bounded lattice. 

A mapping int : L2 → L is said to be an interior operator 

on L if, for all r,sL, it satisfies the following three 

conditions: 

(1) int(r) ≤ r; 

(2) int(r s) = int(r) int(s); 

(3) int(int(r)) = int(r). 

 

Definition 2.7 ([21]) Let (L,≤,0,1) be a bounded lattice. 

An operation U : L2 → L is called a uninorm on L (a 

uninorm if L is fixed) if it is commutative, associative, 

and increasing with respect to both variables, and it has 

the neutral element eL, that is, U(e,r) = r for all rL. 

 

Definition 2.8 ([36]) Let L be a bounded lattice and U 

be a uninorm with the neutral element eL \ {0,1} on 

L. 

(1) An element rL is called an idempotent element of 

U if U(r,r) = r. 

(2) U is called an idempotent uninorm whenever U(r,r) 

= r for all rL. 

 

Definition 2.9 ([36]) Let L be a bounded lattice and U 

be a uninorm with the neutral element eL \ {0,1} on 

L. 

(1) U is called conjunctive uninorm if U(0,1) = 0. 

(2) U is called disjunctive uninorm if U(0,1) = 1. 

 

Proposition 2.1 ([28]) Let S be a nonempty set and 

A1,A2,...,An be subsets of S. Let H be a commutative 

binary operation on S, then H is associative on 

A1∪A2∪...∪An if and only if all of the following 

statements hold: 

(i) for every combination {i,j,k} of size 3 chosen from 

{1,2,...,n}, H(r,H(s,t)) = H(H(r,s),t) = H(s,H(r,t)) for 

all rAi, sAj, tAk; 

(ii) for every combination {i,j} of size 2 chosen from 

{1,2,...,n}, H(r,H(s,t)) = H(H(r,s),t) for all rAi, s

Ai, tAj; 

(iii) for every combination {i,j} of size 2 chosen from 

{1,2,...,n}, H(r,H(s,t)) = H(H(r,s),t) for all rAi, s

Aj, tAj; 

(iv) for every i ∈ {1,2,...,n}, H(r,H(s,t)) = H(H(r,s),t) for 

all r,s,tAi. 

 

Theorem 2.1 ([21]) Let (L,≤,0,1) be a bounded lattice 

and eL \ {0,1}. If Te is a t-norm on [0,e], then the 

uninorm Ut : L2 → L defined as follows: 
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Theorem 2.2 ([21]) Let (L,≤,0,1) be a bounded lattice 

and eL \ {0,1}. If Se is a t-conorm on [e,1], then the 

uninorm Us : L2 → L defined as follows: 
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3. New methods to construct uninorms on bounded 

lattices 

In this section, based on closure operators and 

interior operators, we propose new methods to construct 

uninorms on bounded lattices. 

 

Theorem 3.1 Let (L,≤,0,1) be a bounded lattice with e
L \ {0,1}, T be a t-norm on [0,e] and int be an interior 

operator on L. Let UIe,1 : L2 → L be a function defined as 

follows: 
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(1) If r e < int(r) for all rIe, then UIe,1 is a uninorm 

on L with the neutral element eL. 

(2) If T is an idempotent t-norm, then UIe,1 is a uninorm 

on L with the neutral element eL iff r e < int(r) 

for all rIe. 

 

Proof. (1) Obviously, UIe,1 is commutative and e is the 

neutral element. Hence, we only need to prove the 

increasingness and the associativity of UIe,1. 

 

I. Increasingness: We prove that if r ≤ s, then UIe,1(r,t) ≤ 

UIe,1(s,t) for all tL. It is obvious that UIe,1(r,t) ≤ UIe,1(s,t) 

if both r and s belong to one of the intervals [0,e),{e},Ie 

or (e,1] for all tL. The residual proof can be split into 

all possible cases. 

1.r [0,e) 

1.1. s{e} 

1.1.1. t[0,e] 

UIe,1(r,t) = T(r,t) ≤ T(s,t) = UIe,1(s,t) 

1.1.2. tIe 

UIe,1(r,t) = int(t) ≤ t = UIe,1(s,t) 

1.1.3. t(e,1] 

UIe,1(r,t) = t = UIe,1(s,t) 

1.2. sIe 

1.2.1. t[0,e) 

UIe,1(r,t) = T(r,t) ≤ r < int(s) = UIe,1(s,t) 

1.2.2. t{e} 

UIe,1(r,t) = r < s = UIe,1(s,t) 

1.2.3. tIe 

UIe,1(r,t) = int(t) < 1 = UIe,1(s,t) 

1.2.4. t (e,1] 

UIe,1(r,t) = t ≤ 1 = UIe,1(s,t) 

1.3. s (e,1] 

1.3.1. t [0,e] 

UIe,1(r,t) = T(r,t) ≤ r < s = UIe,1(s,t) 

1.3.2. t Ie 

UIe,1(r,t) = int(t) < 1 = UIe,1(s,t) 

1.3.3. t (e,1] 

UIe,1(r,t) = t ≤ 1 = UIe,1(s,t) 

2.r{e}, s (e,1] 

2.1. t [0,e] 

UIe,1(r,t) = T(r,t) = t < s = UIe,1(s,t) 

2.2. t Ie ∪(e,1] 

UIe,1(r,t) = t ≤ 1 = UIe,1(s,t) 

3.r Ie, s (e,1] 

3.1. t [0,e) 

UIe,1(r,t) = int(r) < s = UIe,1(s,t) 

3.2. t{e} 

UIe,1(r,t) = r < s = UIe,1(s,t) 

3.3. t Ie ∪(e,1] 

UIe,1(r,t) = 1 = UIe,1(s,t) 

 

II. Associativity: It can be shown that UIe,1(r,UIe,1 (s,t)) = 

UIe,1(UIe,1(r,s),t) for all r,s,tL. It is obvious that if at 

least one of r,s,t belongs to {e}, then UIe,1(r,UIe,1(s,t)) = 

UIe,1(UIe,1(r,s),t) for all r,s,tL. By Proposition 2.1, we 

need to verify the following cases. 

 

1. If r,s,t[0,e), then UIe,1(r,UIe,1(s,t)) = UIe,1(r,T(s,t)) = T(r,T(s,t)) = T(T(r,s),t) = UIe,1(T(r,s),t) = UIe,1(UIe,1(r,s),t). 

2. If r,s,tIe, then UIe,1(r,UIe,1(s,t)) = UIe,1(r,1) = 1 = UIe,1(1,t) = UIe,1(UIe,1(r,s),t). 

3. If r,s,t(e,1], then UIe,1(r,UIe,1(s,t)) = UIe,1(r,1) = 1 = UIe,1(1,t) = UIe,1(UIe,1(r,s),t). 

4. If r,s [0,e) and tIe, then UIe,1(r,UIe,1(s,t)) = UIe,1(r,int(t)) = int(int(t)) = int(t) = UIe,1(T(r,s),t) = UIe,1(UIe,1(r,s),t). 

5. If r,s[0,e) and t (e,1], then UIe,1(r,UIe,1 (s,t)) = UIe,1(r,t) = t = UIe,1(T(r,s),t) = UIe,1(UIe,1(r,s),t). 

6. If r,sIe and t (e,1], then UIe,1(r,UIe,1(s,t)) = UIe,1(r,1) = 1 = UIe,1(1,t) = UIe,1(UIe,1(r,s),t). 

7. If r[0,e) and s,t Ie, then UIe,1(r,UIe,1(s,t)) = UIe,1(r,1) = 1 = UIe,1(int(s),t) = UIe,1(UIe,1 (r,s),t). 

8. If r[0,e) and s,t (e,1], then UIe,1(r,UIe,1 (s,t)) = UIe,1(r,1) = 1 = UIe,1(s,t) = UIe,1(UIe,1 (r,s),t). 

9. If rIe and s,t (e,1], then UIe,1(r,UIe,1(s,t)) = UIe,1(r,1) = 1 = UIe,1(1,t) = UIe,1(UIe,1(r,s),t). 

10. If r[0,e), sIe and t (e,1], then UIe,1(r,UIe,1(s,t)) = UIe,1(r,1) = 1 = UIe,1(int(s), t) = UIe,1(UIe,1(r,s),t) and 

UIe,1(s,UIe,1(r,t)) = UIe,1(s,t) = 1. Thus UIe,1(r,UIe,1(s,t)) = UIe,1 (UIe,1(r,s),t) = UIe,1(s,UIe,1(r,t)). 

 

(2) Next we just prove that if T is an idempotent 

uninorm, then the condition r e < int(r) for all r Ie is 

necessary. 

 

By the definition of interior operators, we obtain 

that r e < int(r), int(r) ≤ r e or int(r) ∥ r e for r Ie. 

First, we prove that r e < int(r) or int(r) ∥ r e for all 

r ∈ Ie. Assume that there exists r Ie such that int(r) ≤ r

 e. Then UIe,1(UIe,1(r e,r),r) = UIe,1(int(r),r) = int(r) 

and UIe,1(r e,UIe,1(r,r)) = UIe,1(r e,1) = 1. Since int(r)
 1, the associativity of UIe,1 is violated. Next, we prove 

that int(r) is comparable with  r e for all r Ie. Assume 

that there exists r ∈ Ie such that int(r) ∥ r e. Then UIe,1(r

 e,r) = int(r) and UIe,1(r e,r e) = T(r e,r e) = r

 e. Since int(r) ∥ r e, the increasingness of UIe,1 is 

violated. 

 

Therefore, if T is an idempotent uninorm, then the 

condition r e < int(r) for all r Ie is necessary. 

 

Remark 3.1 Let (L,≤,0,1) be a bounded lattice. If we put 

int(r) = r for all r Ie in Theorem 3.1, then r e < r = 

int(r) for all r Ie and Theorem 3.1(1) is exactly 

Theorem 2.1. 

Remark 3.2 Let UIe,1 be a uninorm defined by Theorem 

3.1. 

(1) UIe,1 is not idempotent, in general. More precisely, 

if there exists r Ie, then UIe,1(r,r) = 1 r 

(2) UIe,1 is disjunctive, i.e., UIe,1(0,1) = 0 1 = 1. 

 

Theorem 3.2 Let (L,≤,0,1) be a bounded lattice with e
L \ {0,1}, S be a t-conorm on [e,1] and cl be a closure 

operator on L. Let UIe,2 : L2 → L be a function defined as 

follows: 
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(1) If cl(r) < r e for all r Ie, then UIe,2 is a 

uninorm on L with the neutral element eL. 

(2) If S is an idempotent t-conorm, then UIe,2 is a 

uninorm on L with the neutral element eL iff cl(r) < r
 e for all rIe. 

 

Proof. It can be proved with the proof of Theorem 3.1 in 

a similar way.  

 

Remark 3.3 Let (L,≤,0,1) be a bounded lattice. If we put 

cl(r) = r for all r Ie in Theorem 3.2, then cl(r) = r < r

 e for all rIe and Theorem 3.2(1) is exactly Theorem 

2.2. 

 

Remark 3.4 Let UIe,2 be a uninorm defined by Theorem 

3.2. 

(1) UIe,2 is not idempotent, in general. More precisely, 

if there exists rIe, then UIe,2(r,r)   = 0 r. 

(2) UIe,2 is conjunctive, i.e., UIe,2(0,1) = 0 1 = 0. 

 

In Theorem 3.1, we know that UIe,1(r,s) = int(s) 

for (r,s) (0,e) × Ie and the values of UIe,1(r,s) for (r,s)
(0,e) × Ie can be elements which are different from 0, r 

and s. Moreover, the values of UIe,1(r,s) for (r,s) (0,e) 

× Ie can differ for different interior operators int on L. 

 

Similarly, in Theorem 3.2, UIe,2(r,s) = cl(s) for 

(r,s)(e,1) × Ie and then this construction method differs 

from those in the literature. The values of UIe,2(r,s) for 

(r,s)(e,1) × Ie can be elements different from 1, r and 

s. Moreover, the values of UIe,2(r,s) for (r,s) (e,1) × Ie 

can differ for different closure operators on L. 

 

4. CONCLUSION 
In this paper, we give new methods to construct 

uninorms on bounded lattices via closure operators and 

interior operators, by expending the values of U(r,s) for 

all (r,s)  (0,e) × Ie or U(r,s) for all (r,s) (e,1) × Ie. 

Then we obtain some new uninorms on bounded lattices, 

which generalized the methods presented in the 

literature. 
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