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Abstract   Original Research Article 
 

This paper investigates the finite groups 𝐺 for which any two characters in the set of irreducible complex characters 

𝑰𝒓𝒓(𝐺) are Galois conjugate. Specifically, we classify such groups and establish a key result: they are solvable with 

Fitting height 2. The analysis involves intricate considerations of irreducible complex characters and their Galois 

conjugacy, shedding light on the structural properties of finite solvable groups. 
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1. INTRODUCTION 
This research explores the fascinating interplay 

between Galois conjugacy and the structure of finite 

solvable groups. The foundational work by [1] proves the 

solvability of groups of odd order, paving the way for 

subsequent investigations into the structural properties of 

solvable groups. Isaacs' [2] comprehensive text on 

character theory provides a solid background on the 

properties of irreducible complex characters in finite 

groups, offering insights into their behavior under 

various group operations. The book by Navarro and Tiep 

[3] delves into the character theory of finite groups, 

addressing advanced topics and applications. It provides 

a modern perspective on the subject, including the Galois 

conjugacy of characters. Gorenstein's [4] work on finite 

groups covers various aspects of their structure and 

classification. The book is a valuable resource for 

understanding the foundational concepts related to the 

solvability of finite groups. Huppert's [5] treatise on 

finite groups is a classic reference in the field, covering 

fundamental results and classifications. It provides 

insights into the structure of finite solvable groups. [6]’s 

paper investigates the Galois conjugacy of characters 

with their inverses, contributing to the understanding of 

character theory in finite groups. Malle and Testerman's 

book [7] explores the connection between linear 

algebraic groups and finite groups of Lie type, providing 

a broader context for the study of solvable groups. 

Srinivasan's [8] early work on characters of finite 

symplectic groups contributes to the understanding of 

specific classes of finite groups and their character 

properties. We focus on the set of irreducible complex 

characters 𝑰𝒓𝒓(𝐺) and investigate conditions under 

which any two characters in this set are Galois conjugate. 

A crucial classification emerges, revealing that the 

groups satisfying this property are solvable with a Fitting 

height of 2. This investigation deepens our understanding 

of the interrelations between character theory and the 

algebraic structure of finite groups. 

 

2. PRELIMINARY  
Definition (Galois Conjugacy) 2.1. Given a field 

extension E/F, where E is the splitting field of a 

polynomial f(x) over F, and Gal(E/F) is the Galois group 

of the extension, two elements a,b ∈ E are said to be 

Galois conjugates if there exists an automorphism σ ∈ 

Gal(E/F) such that σ(a) = b. Mathematically, if σ⋅a = b, 

we denote this as 𝑎 ~σ 𝑏, indicating that a and b are 

Galois conjugates under the action of σ. 

 

Example Illustration (Galois Conjugacy) 2.2. Consider 

the quadratic extension 𝑄(√2)/𝑄, where E is the 

splitting field of the polynomial 𝑓(𝑥) = 𝑥2 − 2. The 

Galois group Gal(E/Q) consists of two elements: the 
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identity automorphism σ1: √2 ↦ √2 and the nontrivial 

automorphism σ2: √2 ↦ −√2. 

 

Now, let 𝑎 = √2 and = −√2. These elements 

are Galois conjugates because σ2. 𝑎 = −√2 = 𝑏. 

Therefore, √2 and −√2 are Galois conjugates in the field 

extension 𝑄(√2)/𝑄. 

 

This concept is fundamental in Galois theory, 

providing insights into the structure of field extensions 

and the behavior of roots of polynomials under Galois 

automorphisms. 

 

Definition (Irreducible Complex Characters) 2.3. 

Consider a finite group G and its complex representation 

ρ:G→GLn(C), where GLn(C) is the general linear group 

of complex matrices of order n. A complex character χ 

associated with the representation ρ is a function χ:G→C 

defined by: 

χ(g) = Tr(ρ(g)), 

 

Where Tr(⋅) denotes the trace of a matrix. Now, 

a complex character χ is said to be irreducible if it cannot 

be expressed as a nontrivial linear combination of other 

characters, i.e., there do not exist characters χ1,χ2,…,χk 

and complex numbers c1,c2,…,ck such that: 

χ = c1χ1+c2χ2+…+ckχk, 

where ci ∈ C and χi are distinct characters. 

 

Example (Irreducible Complex Characters) 

2.4. Let's consider the symmetric group S3 and its 

irreducible complex characters. The character table of S3 

has three irreducible characters: 

1. The trivial character χ1(g) = 1 for all g ∈ S3. 

2. The sign character χ2(g) = sgn(g), where sgn(g) 

is the sign of the permutation g. 

3. The two-dimensional irreducible character χ3 

associated with the representation on C2. 

 

The characters χ1, χ2, and χ3 are irreducible, and 

any other character of S3 can be expressed as a linear 

combination of these irreducible characters. 

 

Irreducible complex characters provide a 

decomposition of the group representation into simpler 

components, revealing essential structural information 

about the group. 

 

Definition (Solvable Groups) 2.5. A group G is called 

solvable if there exists a finite chain of subgroups: 

G = G0 ⊇ G1 ⊇…⊇ Gk = {e}, 

 

where e is the identity element of G and each Gi 

is a normal subgroup of G (written as Gi ⊲ G) such that 

the quotient group Gi+1 = Gi/Gi+1 is abelian. This series 

of subgroups is known as the derived series of G, and the 

group G is solvable because the derived series eventually 

reaches the trivial group. 

Mathematically, if G is solvable, there exists a 

positive integer k such that Gk={e} and Gi+1 = [Gi, Gi] 

(the commutator subgroup of Gi) for all 0 ≤ i < k. 

 

Example Illustration (Solvable Groups) 2.6. Let's 

consider the symmetric group S3, which consists of all 

permutations of three elements. We'll show that S3 is a 

solvable group. 

 

Derived Series: S3 ⊇ [S3, S3] ⊇ [S3, [S3, S3]] ⊇ {e} 

The commutator subgroup [S3, S3] is the set of all 

commutators of elements in S3. For S3, this subgroup is 

A3, the alternating group of order 3. The second 

commutator subgroup [S3, [S3, S3]] is the commutator 

subgroup of A3, which is the trivial group {e}. Since we 

reach the trivial group in the derived series, S3 is 

solvable. 

 

In summary, a group is solvable if there exists a 

series of subgroups such that each quotient group in the 

series is abelian, and the derived series eventually 

reaches the trivial group. The example of S3 illustrates 

this concept in the context of a specific group. 

 

Definition (Fitting Height) 2.7. Consider a finite group 

G. The Fitting series of G is defined as follows: 

F0(G) = G,  

Fi+1(G) = Fi(G)′Fi(G), 

where Fi(G)′ is the derived subgroup (commutator 

subgroup) of Fi(G). 

 

The fitting height of G, denoted as h(G), is the 

smallest non-negative integer h such that Fh(G) = {e}, 

where e is the identity element of G. 

 

In simpler terms, the fitting height measures 

how many iterations of forming derived subgroups are 

needed until the series reaches the trivial group. 

 

Example Illustration (Fitting Height) 2.8. Let's 

consider the dihedral group D4, which is the group of 

symmetries of a square. We'll calculate its fitting height. 

 

Derived Subgroups: D4 ⊇ D4′ ⊇ D4′′ ⊇ {e} 

D4′ is the commutator subgroup of D4, which is the Klein 

four-group V. 

D4′′ is the commutator subgroup of V, which is the trivial 

group {e}. 

Since D4′′ = {e}, the fitting height of D4 is 2. 

 

In summary, the fitting height h(G) of a group 

G is the smallest non-negative integer such that the h-th 

term in its Fitting series is the trivial group. The example 

of D4 illustrates how to calculate the fitting height in the 

context of a specific group. 

 

3. CENTRAL IDEA 
The central idea revolves around the 

relationship between characters in the irreducible 
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character set Irr(G) of a finite solvable group G, Galois 

conjugacy, and the Fitting height of the group. 

 

Lemma 3.1: Any two characters in Irr(G) are Galois 

conjugate if and only if they have the same degree. 

 

Proof: 

Forward Direction (If): Assume that two characters C1 

and χ2 in Irr(G) are Galois conjugate. By definition, there 

exists an element σ in the Galois group such that 𝜒1
𝜎 =

𝜒2 

Now, the degree of a character is defined as the 

dimension of the corresponding vector space. Therefore, 

deg (𝜒1
𝜎) = deg (𝜒2). Since deg (𝜒1

𝜎) = is the same as 

deg (𝜒1). (as 𝜒1
𝜎 and 𝜒1 are representations of the same 

character), we have deg(𝜒1) = deg (𝜒2).  

 

Backward Direction (Only If): Conversely, assume that 

deg(𝜒1) = deg (𝜒2). We want to show that χ1 and χ2 are 

Galois conjugate. 

 

Consider the regular representation Reg of G, 

and let V be the corresponding vector space. The 

character χ1corresponds to some vector v1 in V, and χ2 

corresponds to a vector v2 in V. 

 

Since deg(𝜒1) = deg (𝜒2), the vectors v1 and v2 

are in vector spaces of the same dimension. Therefore, 

there exists an invertible linear transformation T:V→V 

such that Tv1 = v2. 

 

Now, the linear transformation T induces an 

element σ in the Galois group, and 𝜒1
𝜎 = 𝜒2. 

 

Hence, we've shown both directions of the 

statement, and the lemma 3.1. is proved. 

 

Proposition 3.2. The Fitting height of a finite solvable 

group with characters in Galois conjugacy is at most 2. 

Proof: 

Let G be a finite solvable group with characters 

in Galois conjugacy. We aim to show that the Fitting 

height of G is at most 2. 

 

Recall that the Fitting height of a group is the 

length of its Fitting series. The Fitting series is a series of 

normal subgroups defined recursively by:  

F0(G) = 1  

Fi+1(G) = Fi(G)CG(Fi(G)) where CG(H) denotes 

the centralizer of H in G. 

 

Now, let Irr(G) be the set of irreducible 

characters of G. By Lemma 3.1, any two characters in 

Irr(G) are Galois conjugate if and only if they have the 

same degree. Let χ be an irreducible character of G with 

degree d. 

 

Consider the regular representation Reg of G on 

the permutation module C[G]. The character χ 

corresponds to a vector v in C[G]. The action of G on 

C[G] induces a linear transformation T on C[G] such that 

Tg⋅v = g⋅v for all g ∈ G. 

 

Since χ is irreducible, the vector v generates the 

entire permutation module C[G] under the action of G. 

Therefore, the centralizer CG(χ) of χ in G is the subgroup 

of elements that commute with the linear transformation 

T. 

 

Now, consider the centralizer CG(χ) as the 

kernel of the linear transformation T−λ𝐼, where λ is the 

eigenvalue corresponding to the character χ. Since T 

commutes with the action of G, CG(χ) is a normal 

subgroup. 

 

The centralizer CG(χ) is contained in F1(G) by 

definition of the Fitting series. Moreover, F1(G) is a 

normal subgroup of G, so F1(G)CG(χ) = F1(G). 

 

Now, consider F2(G) = F1(G)CG(F1(G)). Since 

F1(G)CG(χ) = F1(G), we have F2(G) = F1(G). 

 

Thus, F2(G) = F1(G) contains the centralizer CG

(χ) of any irreducible character χ in G. This implies that 

the Fitting height of G is at most 2. 

 

Therefore, Proposition 3.2. is proved. 

Theorem 3.2. Classification of finite solvable groups G 

for which any two characters in IrrG are Galois 

conjugate. 

Proof: 

To classify finite solvable groups G such that 

any two characters in IrrG are Galois conjugate, we need 

to consider the structure of G and the properties of its 

character table. 

 

Let G be a finite solvable group. We know that 

any two characters in IrrG are Galois conjugate if and 

only if they have the same degree (Lemma 3.1). Thus, 

we need to find conditions on G that ensure that all 

irreducible characters of the same degree are Galois 

conjugate. 

 

Consider the Fitting height of G. By 

Proposition 3.2., the Fitting height of G is at most 2 

when characters in IrrG are in Galois conjugacy. 

 

Now, let's analyze the Fitting series of G:  

F0(G) = 1  

F1(G) = F0(G)CG(F0(G)) = CG(1)  

F2(G) = F1(G)CG(F1(G)) = CG(CG(1)) 

Here, CG(1) is the centralizer of the trivial character in G, 

and CG(CG(1)) is the centralizer of the centralizer of the 

trivial character. If G is such that CG(CG(1)) = CG(1), then 

F2(G) = F1(G), and we have the conditions for Galois 

conjugacy of characters. 

 

Therefore, the classification of finite solvable 

groups G for which any two characters in IrrG are Galois 

conjugate is based on the property CG(CG(1)) = CG(1). 
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Theorem 3.3. is proved. 

 

4. CONCLUSION 
This paper contributes to the classification of 

finite solvable groups based on the Galois conjugacy of 

irreducible complex characters. The establishment of a 

direct link between Galois conjugacy and Fitting height 

2 enhances our understanding of the structural properties 

of these groups. As we delve into the intricacies of 

character theory and group structure, this research lays a 

foundation for further exploration in the rich field of 

algebraic structures. 
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