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Abstract  Review Article 
 

This research delves into the extensive analysis of symmetric groups of various orders and degrees. We explore different 

representations of permutations, construct a Cayley table for the symmetric group of degree four, and systematically 

identify all its subgroups using Lagrange's theorem. An intriguing discovery unfolds as we demonstrate that the converse 

of the theorem countered by Sylow's theorem does not hold universally. Furthermore, we apply the concepts of 

permutations and product of disjoint cycles to address a real-world problem – the Card Trick game. This study 

amalgamates theoretical exploration with practical applications, showcasing the versatility and depth of symmetric 

group theory. 
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1. INTRODUCTION 
Symmetric groups form a cornerstone of group 

theory, providing rich insights into the algebraic 

structures of permutations. Cayley's theorem is 

fundamental in understanding group representations. It 

establishes that every group is isomorphic to a subgroup 

of a symmetric group [1]. The theorem forms the 

cornerstone for exploring structures within symmetric 

groups. Cayley tables provide visual insights into group 

operations. The construction of a Cayley table for the 

symmetric group of degree four (S4) enables a 

comprehensive exploration of the group's multiplication 

rules and internal structure [2]. Lagrange's theorem plays 

a crucial role in identifying subgroups systematically. 

The theorem, proposed by [3], establishes the order 

relationships between subgroups and the parent group, 

guiding the exploration of subgroup structures within 

symmetric groups. The research introduces an intriguing 

discovery by demonstrating that the converse of 

Lagrange's theorem, countered by Sylow's theorem, may 

not hold universally. Sylow's theorem, proposed by [4], 

addresses the existence of subgroups of prime order 

within a group. The study applies group theory concepts 

to a real-world problem, the Card Trick game. Diaconis 

and Graham [5] contributes to the mathematics of perfect 

shuffles, showcasing the practical relevance of 

symmetric group theory in solving problems beyond 

theoretical exploration. This research embarks on a 

comprehensive journey, analyzing symmetric groups of 

various orders and degrees. We delve into diverse 

representations of permutations, explore the structure of 

the symmetric group of degree four through a Cayley 

table, and systematically identify its subgroups using 

Lagrange's theorem. An intriguing exploration unfolds as 

we challenge a theorem countered by Sylow's theorem, 

demonstrating its limitations. Bridging theory and 

application, we leverage the concepts of permutations 

and disjoint cycles to solve a real-world problem – the 

Card Trick game. Also, see [6] – [13] for further studies. 

 

2. PRELIMINARY 
Symmetric Groups of Degree N (Sn) 2.1. The set of all 

permutations of X with when endowed with the binary 

operation “ ⃘” (composition) is called the symmetric 

group often denoted by Sn. 

When X = {1, 2,…, n} , then Sn, is called the symmetric 

group on n letters, or simply the symmetric group of 

degree n. The subgroup of a symmetric group is the 

permutation group. 

The elements of Sn are the permutations of X not the 

elements of X itself. Example if X = {1, 2, 3}. (i.e. 

∣X∣=3), then; S3 = {(1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 
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2), (3 2 1)} not {1, 2, 3}. For k ≥ 3, the group Sn is not 

commutative (non-abelian), so in general ƒ ∘ g ≠ g ∘ ƒ 

Lagrange Theorem 2.2. If G is a finite group of order k 

(k ∈ N, k < ∞) With H a subgroup of order m (m ∈ N, m 

<∞) then m divides n. 

Proof: 

Trivially, if H=G, the result follows. Otherwise m<n and 

∃ a ∈ G\H ∴ a ∉ H, aH ≠ H and so, aH ∩ H = ∅ if G = 

aH ∪ H, tℎe k   ⃘(G) =   ⃘(aH) +   ⃘(H) = 2   ⃘(H) 

=> the theorem holds. 

Otherwise ∃ b ∈ G\(H ∪ aH), witℎ bH ∩ H = ∅ and bH 

∩ aH = ∅ and oƒ course   ⃘(bH) =   ⃘(H). If G = bH ∪ aH 

∪ H =>   ⃘(G) = 3   ⃘(H) => tℎe tℎeorem ℎolds. 

Otherwise we’re back to an element c ∈ G witℎ c ∉ bH 

∪ aH ∪ H. But since G is finite, this process must 

terminate. So, G = a1H ∪ a2H ∪. . .∪ akH, say i.e ⃘(G) = 

k ⃘(H) (k ∈ N, k < ∞) i.e. n = k.m => m|n ■ 

 

Symmetric Groups of Degree Three (S3) 2.3. Let consider the symmetric group of degree three S3 given by; 

𝑆3 = {(
1 2 3
1 2 3

) , (
1 2 3
1 3 2

) , (
1 2 3
2 1 3

) , (
1 2 3
2 3 1

) , (
1 2 3
3 1 2

) , (
1 2 3
3 2 1

)} 

Show that S3 group with respect to the composition of function “ ⃘” and identify all it subgroups.  
 

SOLUTION: 

Observe that |𝑆3| = 3! = 6. We   wish to show that  𝑆3 is indeed a group, and for this purpose we form a group 

multiplication table. It is necessary to first label the elements of  𝑆3 as follows; 

𝑒 = (
1 2 3
1 2 3

) , 𝑎 = (
1 2 3
1 3 2

), b = (
1 2 3
2 1 3

) , 𝑐 = (
1 2 3
2 3 1

) , 𝑑 = (
1 2 3
3 1 2

) , 𝑓 = (
1 2 3
3 2 1

) 

 

Obviously, e is the identity element. 

 

𝑎 ∘ 𝑎 = (
1 2 3
1 3 2

) ∘ (
1 2 3
1 3 2

) = (
1 2 3
1 2 3

) = 𝑒 

 

𝑏 ∘ 𝑎 = (
1 2 3
2 1 3

) ∘ (
1 2 3
1 3 2

) = (
1 2 3
2 3 1

) = 𝑐 

 

𝑑 ∘ 𝑏 = (
1 2 3
3 1 2

) ∘ (
1 2 3
2 1 3

) = 𝑎 

 

𝑐 ∘ 𝑓 = (
1 2 3
2 3 1

) ∘ (
1 2 3
3 2 1

) = 𝑎, 𝑒𝑡𝑐 

 

Table 𝟐. 𝟑. 𝟏: Caley’s table for 𝑺𝟑 

∘ 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 

𝑎a 𝑒 𝑑 𝑓 𝑏 𝑎 𝑐 

𝑏b 𝑐 𝑒 𝑎 𝑓 𝑏 𝑑 

𝑐c 𝑏 𝑓 𝑑 𝑒 𝑐 𝑎 

𝑑d 𝑓 𝑎 𝑒 𝑐 𝑑 𝑏 

𝑓e 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

𝑒f 𝑑 𝑐 𝑏 𝑎 𝑓 𝑒 
 

From the Cayley’s table above we can see that S3 is a group with respect to. “∘” From table 2.3.1 we identify the 

inverse of each element by tracing the element on the first row that corresponds with the identity element in that coordinates 

(row and column wise). 
 

Table 2.3.2: ElementandinverseelementofS3 

ELEMENT INVERSE 

a a 

b b 

c d 

d c 

e e 

ƒ ƒ 

 

Then to find the subgroups we have in mine by 

Lagrange theorem that the order of a subgroup must 

divides the order of the group. 

We proceed by finding the factors of 6 (i.e. the order of 

∣S3∣) 
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Factors of 6 are: 1,2,3,6. Where the subgroups 

with order 1 and 6 are the two trivial subgroups of any 

group of order six. For the case of S3 the two trivial 

subgroups are (e,∘) and (S3,∘) 
 

Table 2.3.3: subgroups of S3 

Subgroups Order of the subgroup (factors of 6) 

(e,∘) 1 

({a,e},∘),({f,e},∘),({b,e},∘) 2 

({c,d,e},∘) 3 

({a,b,c,d,e,f},∘) = (S3,∘) 6 

 

Symmetric Groups of Degree Four (S4) 2.3. Let us 

look at the case of X = {1, 2, 3, 4}. From theorem 1.1 we 

know that Symmetric group of degree four (S4) has 24 

elements (i.e. n! = 24). We start by labeling the element 

of (S4). This is done in the table below; 

 

Table 2.3.1: Elements of S4 

S/N (𝒏) Labelling Two way notation Product of disjoint of cycles 

1 𝑎 (
1 2 3
1 2 3

    4
     4

) (1) = 𝑒 

2 𝑏 (
1 2 3
1 2 4

    4
    3

) (3 4) 

3 𝑐 (
1 2 3
1 3 2

    4
    4

) (2 3) 

4 𝑑 (
1 2 3
1 3 4

    4
     2

) (2 3 4) 

5 𝑓 (
1 2 3   
1 4 2

4
3

) (2 4 3) 

6 𝑔 (
1 2 3
1 4 3

    4
     2

) (2 4) 

7 ℎ (
1 2 3
2 1 3

   4
    4

) 
(1 2) 

8 𝑖 (
1 2 3
2 1 4

    4
      3

) (1 2)(3 4) 

9 𝑗 (
1 2 3    
2 3 1

4
 4

) (1 2 3) 

10 𝑘 (
1 2 3
2 3 4

   4
   1

) (1 2 3 4) 

11 𝑙 (
1 2 3
2 4 1

   4
   3

) 
(1 2 4 3) 

12 𝑚 (
1 2 3
2 4 3

   4
    1

) (1 2 4) 

13 𝑛 (
1 2 3   
3 1 2

 4
  4

) (1 3 2) 

14 𝑝 (
1 2 3
3 1 4

   4
    2

) (1 3 4 2) 

15 𝑞 (
1 2 3
3 2 1

   4
   4

) 
(1 3) 

16 𝑟 (
1 2 3
3 2 4

   4
   1

) (1 3 4) 

17 𝑠 (
1 2 3
3 4 1

   4
    2

) (1 3)(2 4) 

18 𝑡 (
1 2 3
3 4 2

   4
   1

) (1 3 2 4) 

19 𝑢 (
1 2 3   
4 1 2

4
3

) (1 4 3 2) 

20 𝑣 (
1 2 3
4 1 3

   4
    2

) (1 4 2) 

21 𝑤 (
1 2 3
4 2 1

   4
   3

) (1 4 3) 

22 𝑥 (
1 2 3
4 2 3

   4
    1

) (1 4) 

23 𝑦 (
1 2 3
4 3 1

   4
    2

) 
(1 4 2 3) 

24 𝑧 (
1 2 3
4 3 2

   4
   1

) (1 4)(2 3) 

 

We now construct a Caley table to show that the element of S4 form a group with composition of function (′o′) as 

the binary operation. 
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Table 2.3.2. Cayley’ stable for symmetric group of degree 4 (S4) 

⃘ a b c d ƒ g ℎ i j k l m k p q r s t u v w x y z 

a e b c d ƒ g ℎ i j k l m k p q r s t u v w x y z 

b b e ƒ g c d i ℎ l m j k u v w x y z k p q r s t 

c c d e b g ƒ k p q r s t ℎ i j k l m v u y z w x 

d d c g ƒ e b p k s t q r v u y z w x ℎ i j k l m 

ƒ ƒ g b e d c u v w x y z i ℎ l m j k p k s t q r 

g g ƒ d c b e v u y z w x p k s t q r i ℎ l m j k 

ℎ ℎ i j k l m e b c d ƒ g q r k p t s w x u v z y 

i i ℎ m l j k b e ƒ g c d w x u v z y q r k p t s 

j j k ℎ i m l q r k p t s e b c d ƒ g x w z y u v 

k k j m l ℎ i r q t s k p x w z y u v e b c d ƒ g 

l l m i ℎ k j w x u v z y b e ƒ g c d r q t s k p 

m m l k j i ℎ x w z y u v r q t s k p b e ƒ g c d 

k k p q r s t c d e b g ƒ j k ℎ i m l y z v u x w 

p p k s t q r d c g ƒ e b y z v u x w j k ℎ i m l 

q q r k p t s j k ℎ i m l c d e b g ƒ z y x w v u 

r r q t s k p k j m l ℎ i z y x w v u c d e b g ƒ 

s s t p k r q y z v u x w d c g ƒ e b k j m l ℎ i 

t t s r q p k z y x w v u k j m l ℎ i d c g ƒ e b 

u u v w x y z ƒ g b e d c l m i ℎ k j s t p k r q 

v v u y z w x g ƒ d c b e s t p k r q l m i ℎ k j 

w w x u v z y l m i ℎ k j ƒ g b e d c t s r q p k 

x x w z y u v m l k j i ℎ t s r q p k ƒ g b e d c 

y y z v u x w s t p k r q g ƒ d c b e m l k j i ℎ 

z z y x w v u t s r q p k m l k j i ℎ g ƒ d c b e 

 

From table 2.3.2. above we see that 

∗S4 = {a = e,b,c,d,ƒ,g,ℎ,i,j,k,l,,m,k,p,q,r,s,t,u,v,w,x,y,z,} is close under “⃘” i.e. compositions of functions. 

*Associativity holds 

*There exist identity element e ∈ S4 

*Each element has a unique inverse  

Hence (S4, ⃘) ≡ a group 
 

Table 2.3.3: Element and inverse element of S4 

Element  (Inverse) 

a=e a=e 

b b 

c c 

d ƒ 

ƒ d 

g g 

ℎ ℎ 

i i 

j k 

k u 

l p 

m v 

k j 

p l 

q q 

r w 

s s 

t y 

u k 

v m 

w r 

x x 

y t 

z z 
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We compute the subgroups of (S4  ,⃘) using Lagrange theorem. 

 

Lagrange theorem states that the order of a subgroup divides the order of the group. So we start by finding the 

factors of 24 (4! = 24) and examining table 2.3.3 for closure of any element to be consider as a member of the subgroup. 

 

Table 2.3.4: Subgroups of S4 

Elements Divisors of 24(order) 

{e} 1 

{e,x},{e,c},{e,q},{e,g},{e,ℎ},{e,b},{e,i},{e,s},{e,z} 2 

{e,j,k},{e,m,v},{e,r,w},{e,d,ƒ} 3 

{e,i,s, z},{e, i,t,y}, {e,s, k,u},{e,z, l,p},{e,ℎ,i,b},{e,x, z,c},{e, q,s, q} 4 

{e,ℎ,q,c,j,k},{e,ℎ,x,g,m,v},{e,q,x,b,r,w},{e,c,g,b,d,ƒ} 6 

{e,ℎ,i,s,z,b,t,y},{e,i,s,x,z,c,l,p},{e,i,s,z,g,k,u,q} 8 

{e,i,s,z,j,m,k,r,w,d,ƒ,v} 12 

{e,b,c,d,ƒ,g,ℎ,i,j,k,l,m,k,p,q,r,s,t,u,v,w,x,y,z,} 24 

 

Table 2.3.5.: Caley’s table for ({e,i,s,z,j,m,k,r,w,d,ƒ,v}, ⃘) 
⃘ e d ƒ i j m k r s v w z 

e e d ƒ i j m k r s v w z 

d d ƒ e k s r v z w i j m 

ƒ ƒ e d v w z i m j k s r 

i i m j e ƒ d w v z r k s 

j j i m r k s e d ƒ w z v 

m m j i w z v r s k e ƒ d 

k k r s d e ƒ j i m z v w 

r r s k j m i z w v d e ƒ 

s s k r z v w d ƒ e j m i 

v v z w ƒ d e s k r m i j 

w w v z m i j ƒ e d s r k 

z z w v s r k m j l ƒ d e 

 

From table 2.3.5. above we see that 

({e,i,s,z,j,m,k,r,w,d,ƒ,v}, ⃘) ≡ a group We then apply 

Lagrange theorem to find the associate subgroups 

 

3. APPLICATION OF SYMMETRIC GROUP IN 

INVESTICATING THE CONVERSE OF 

LAGRANGE THEOREM. 

Lagrange theorem state that If G is a finite 

group of order k (k∈N, k<∞) With H a subgroup of order 

m (m∈N, m<∞) then m divides n. Then, is the converse 

true? (i.e is every divisor of the order of a group the order 

of some subgroup?). 

 

Let us look at the subgroups of the group ({e,i,s,z,j,m, 

k,r,w,d,ƒ,v}, ⃘) 

Considertable4.1below; 

 

Table 3.1: Subgroups of the group ({e,i,s,z,j,m,k,r,w,d,ƒ,v}, ⃘) 
Subgroups Divisors of 12 (order of subgroup) 

 ({e,},)⃘     1 

({e,i,}, ),({e,s,},),({e,z,},)⃘ 2 

({e,j,k,},),({e,d,ƒ,}),({e,r,w,}, ),({e,m,v,},⃘) 3 

({e,i,s,v},)⃘ 4 

none 6 

({e,i,s,z,j,m,k,r,w,d,ƒ,v} ,⃘) 12 

 

We see that 6 is a divisor of 12 but there is no 

subgroup of ({e, i, s, z, j, m, k, r, w, d, ƒ,v},  ⃘) that has 

order 6, hence from symmetric group of degree four we 

can show that the converse of the Lagrange theorem does 

not hold in general. 

 

 

 

 

4. APPLICATION OF SYMMETRIC GROUP TO 

CARD TRICK 

One of the interesting applications of 

permutation groups is card tricks. This project work only 

touches on a couple different card tricks that were 

explained in the article titled “Invariants Under Group 

Actions to Amaze Your Friends” written by Douglas E. 

Ensley (1999). The basic idea behind these card tricks is 

to make the audience feel as if the cards are being mixed, 
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when the moves are actually designed. The cards are 

basically the permutation group and the tricks involve 

certain rotations such that a desired outcome may be 

achieved. 

 

The first card trick is very simple. Have a 

volunteer to pick out any card from a standard 52-card 

deck. They must remember the card and place it on top 

of the deck. This is followed by cutting the cards as many 

times as they wish. The dealer then takes the deck and 

fans it out face up and picks out the volunteer’s card. The 

logic behind this is that the top card and the bottom card 

will be side-by-side beginning once the deck is cut once. 

As long as the dealer knows what the bottom card is, 

he/she can identify the volunteer’s card as the card next 

to the former bottom card. This card trick is directly 

related to permutation groups since a permutation group 

is a cycle that can be written starting with any 

permutation as long as the arrangement of permutations 

stays the same. In his article, Ensley (1999) showed that 

since this card trick only allows cutting the deck, the 

arrangement of cards will always remain the same, just 

with different starting numbers, which allows the dealer 

to know the volunteer’s card will always be next to the 

former bottom card. S52 represents the deck of cards and 

each card is assigned a number 1 - 52 such that S52 = (1 

2 3 4 … 50 51 52). 

 

The next card trick seems simple on the surface; 

however, it is somewhat complicated. The dealer hands 

the volunteer four aces (any card will work as long as 

they are each of a different suit), and gives the following 

instructions: 

i. Stack the four cards face-up with the diamond at the 

bottom, then the club, then the heart, and finally the 

spade. 

 
ii. Turn the spade (the uppermost card) face down. 

 
iii. Perform any of the following three operations as 

many times and in any order that you wish: 

1. Cut any number of cards from the top to the 

bottom. 

2. Turn the top two cards over as one. 

3. Either turn the entire stack over or do not – your 

choice. 

 
iv. Finish the rearrangement of cards by turning the 

topmost card over, then the top two cards over as one, 

and then the top three cards over as one. 

 

All of the previous operations are to be 

performed with the dealer having his back turned. 

 

After the volunteer has performed steps 1-4, the 

dealer can now say with confidence that the ace of clubs 

is the only card facing in the opposite direction from the 

other three aces. So while the volunteer thinks that they 

are mixing up the cards, they are essentially maintaining 

the 4 properties that the dealer has set up. 

 

In order to understand this card trick, one must 

understand the permutation that is assigned to this group. 

In order for this trick to work, Ensley (1999) stated that 

we need to let the ace of spades be 1, the ace of hearts be 

2, the ace of clubs be 3, and the ace of diamonds be 4. 

Also, let an underlined number be a face-down card. 

Now, using these definitions, we can determine the 

orientation and position of each card. Listed below is one 

example of how a person could go about the trick. Since 

the cards are to be placed in a certain order, the original 

four aces will be represented as 1,2,3,4. 

 

• The original deck 1,2,3,4 

• Turning the spade (the uppermost card) face down 1,2,3,4 

• Cutting two cards from the top to the bottom 3,4,1,2 

• Turning the top two cards over as one 4,3,1,2 

• Cutting three cards from the top to the bottom 2,4,3,1 

• Turning the top two cards over as one 4,2,3,1 

• Turning the entire stack over 1,3,2,4 

• Turning the topmost card over 1,3,2,4 

• Turning the top two cards over as one 3,1,2,4 

• Turning the top three cards over as one 2,1,3,4 

 

As you can see, we are left with 2,1,3,4, which 

shows that card #3 is facing the opposite way of the rest 

of the cards. As defined earlier, card #3 is the ace of clubs 

which means that the trick worked. It can be shown that 

no matter what choices you make when mixing the cards, 

the ace of clubs will always be facing the opposite way 

of the rest of the cards after the final move as long as the 

directions were followed. The trick seems to be fair but 

it is not because every permutation cannot be represented 

using the set of rules given above. 
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5. CONCLUSION 
This research has delved into a thorough 

analysis of symmetric groups, spanning various orders 

and degrees. We navigated through different 

representations of permutations, constructed a Cayley 

table for the symmetric group of degree four, and 

methodically identified all its subgroups employing 

Lagrange's theorem. An intriguing revelation emerged as 

we demonstrated that the universal applicability of the 

converse of Lagrange's theorem is challenged by 

Sylow's. This paper seamlessly blended theoretical 

exploration with practical applications by utilizing 

fundamental concepts of permutations and the product of 

disjoint cycles to tackle a real-world problem—the Card 

Trick game. This seamless integration exemplifies the 

versatility and profound depth of symmetric group 

theory, highlighting its relevance not only in abstract 

mathematical realms but also in addressing practical 

challenges. 
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