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Abstract  Original Research Article 
 

This work analyses the algebraic properties of the sub-semi group of partial Isometries (𝐷𝑃𝑛) and of order preserving 

partial isometries (𝑂𝐷𝑃𝑛) of a finite chain 𝑋𝑛 = {1,2, … 𝑛}, with a symmetric inverse semigroup 𝐼𝑛 defined on it. It also 

investigates the subsemigroups 𝐷𝑃𝑛 and 𝑂𝐷𝑃𝑛 for cycle structure and shows that 𝑂𝐷𝑃𝑛 is a 0 −𝐸 − unitary inverse 

semigroup. 
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INTRODUCTION 
The algebraic theory of semigroups has been widely studied in recent time, however, it is relatively new. With the 

theory proper developing only in the second half of the twentieth century. Before this, much groundwork was laid by 

researchers arriving at the study of semigroups from the directions of both group and ring [5]. Semigroup on various 

mathematical structures with varying degrees of restrictions have been studied, See [1-4]. 

 

Preliminaries  

Let 𝑋𝑛 = {1,2, … . 𝑛} and 𝐼𝑛be the partial 1-1 transformation semigroup on 𝑋𝑛. Then 𝐼𝑛 is an inverse semigroup 

(that is, for all 𝛼 ∈ 𝐼𝑛 , there exist a unique 𝛼𝐼 ∈ 𝐼𝑛 such that 𝛼 = 𝛼𝛼1𝛼 and 𝛼1 = 𝛼1𝛼 𝛼1). Every finite inverse semigroup 𝑆 

is embeddable in 𝐼𝑛, the analogue of cayley’s theorem for finite groups, and to the regular representation of finite 

semigroups. Thus, just as the study of symmetric, alternating, and dihedral groups has made significant attribution to group 

theory, so has the study of various subsemigroups of 𝐼𝑛;  

 

A transformation 𝛼 ∈ 𝐼𝑛 is said to be order preserving (order reversing) if (∀ 𝑥, 𝑦 ∈ 𝐷𝑜𝑚𝛼)𝑥 ≤ 𝑦 ⇒ 𝑥𝛼 ≤
𝑦𝛼 (𝑥𝛼 ≥ 𝑦𝛼) and is said to be as isometry (or distance-preserving) if ∀𝑥, 𝑦 ∈ 𝐷𝑜𝑚𝛼) |𝑥 − 𝑦| = |𝑥𝛼 − 𝑦𝛼| . 

 

When X is a finite set {1,..., n}, the inverse semigroup of one-to-one partial transformations is denoted by 𝐶𝑛 and 

its elements are called charts or partial symmetries. The notion of chart generalizes the notion of permutation. The cycle 

notation of classical, group-based permutations generalizes to symmetric inverse semigroups by the addition of a notion 

called a path, which (unlike a cycle) ends when it reaches the "undefined" element; the notation thus extended is called 

path notation. The inverse of an element x of an inverse semigroup S is usually written 𝑥−1. Inverses in an inverse 

semigroup have many of the same properties as inverses in a group, for example, (ab)−1 = 𝑏−1 𝑎−1. In an inverse monoid, 

x 𝑥−1 and 𝑥−1 x are not necessarily equal to the identity, but they are both idempotent. An inverse monoid S in which x 

𝑥−1 = 1 = 𝑥−1x, for all x in S (a unipotent inverse monoid), is, of course, a group. There are a number of equivalent 

characterisations of an inverse semigroup S. Every element of S has a unique inverse, in the above sense. Every element 

of S has at least one inverse (S is a regular semigroup) and idempotents commute (that is, the idempotents of S form a 

semilattice). 

 

Every 𝐿 −class and every 𝑅-class contains precisely one idempotent, where 𝐿 𝑎𝑛𝑑 𝑅 are two of Green's relations. 

The idempotent in the 𝐿-class of s is 𝑠−1s, whilst the idempotent in the 𝑅-class of s is s 𝑠−1. There is therefore a simple 

characterisation of Green's relations in an inverse semigroup 
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𝑎𝐿𝑏 ⟺  𝑎−1𝑎 =  𝑏−1𝑏, 𝑎𝑅𝑏 ⇔ 𝑎 𝑎−1 = 𝑏 

 

Unless stated otherwise, E(S) will denote the semilattice of idempotents of an inverse semigroup S. A group is 

said to be finitely presented if it admits a presentation (X, R) with both X and R finite. 

 

Investigating the Cycle Structure of Partial Isometrics 

Let  

(1) 𝐷𝑃𝑛 = {𝛼 ∈ 𝐼𝑛: (∀𝑥, 𝑦 ∈ 𝑋𝑛)|𝑥 − 𝑦|=|||𝑥𝛼 − 𝑦𝛼|} be the subsemigroup of 𝐼𝑛  consisting of all partial isometrics of 

𝑋𝑛. Also let  

(2) 𝑂𝐷𝑃𝑛 = {𝛼 ∈ 𝐷𝑃𝑛: (∀𝑥, 𝑦 ∈ 𝑋𝑛)𝑥 ≤ 𝑦 ⇒ 𝑥𝛼 ≤ 𝑦𝛼} be the subsemigroup of 𝐷𝑃𝑛 consisting of all order preserving 

partial isometries of 𝑋𝑛. It is clear that if 𝛼 ∈ 𝐷𝑃𝑛 (𝛼 ∈ 𝑂𝐷𝑃𝑛) then 𝛼−1 ∈ 𝐷𝑃𝑛(𝛼−1 ∈ 𝑂𝐷𝑃𝑛) also then we have the 

following results. 

Lemma 1 𝐷𝑃𝑛 and 𝑂𝐷𝑃𝑛 are inverse of 𝐼𝑛. 

Next we prove a sequence of lemma, which helps our understanding of the cycle structure of partial isometries. 

Let 𝛼 in be in 𝐼𝑛. Then the height of 𝛼 is ℎ|𝛼| = |𝐼𝑚𝛼| waist of 𝛼 is 𝜛+(∝) = 𝑚𝑎𝑥 (𝐼𝑚𝛼)[𝜛(𝑥)(𝐼𝑚𝛼)] the right [left] 

shoulder of (𝛼) is 𝜛+(𝛼) =max (𝐷𝑜𝑚𝛼)[𝜛−(𝛼) = (1) 𝑜𝑚𝑑)] and 𝑓𝛼 of 𝛼 is denoted by 𝑓(𝛼), and defined by 

 𝑓(𝛼) = |𝑓(𝛼), | where 

 𝑓(𝛼) = {𝑥 ∈ 𝑋𝑛 𝑥𝛼 = 𝑥} 

Lemma 2 Let 𝛼 ∈ 𝐷𝑃𝑛 𝑏𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ(𝛼) = 𝑃 

Then 𝑓(𝛼) = 𝑂 𝑜𝑟 1 𝑜𝑟 𝑃 

Proof : Suppose 𝑥, 𝑦 ∈ 𝐹(𝛼). The 𝑥 − 𝑥𝛼 and 𝑦 = 𝑦𝑥 

Let 𝑍 ∈ 𝐷𝑜𝑚 where we may without loss of generality assume that 𝑥 < 𝑦 < 𝑧. 

We consider two cases essentially: 

Case I: 𝑦 < Ƶ 𝛼 

Case II: 𝑥 <  Ƶ𝛼 < 𝑦 

In case 𝑃1 we see that  

 Ƶ − 𝑦 = |Ƶ𝛼 − 𝑦𝛼| = |Ƶ𝛼 − 𝑦|Ƶ𝛼 − 𝑦 ⇒ Ƶ𝛼 = Ƶ𝛼 

Case II, we see that 

 Ƶ − 𝑥 ≠ |Ƶ𝛼 −  𝑥𝛼| = |Ƶ𝛼 − 𝑥| = Ƶ𝛼 − 𝑥 ⇒ Ƶ = Ƶ𝛼 

However, note that 

 𝛼 = (2 3 1 2 …  𝑃 + 1 …  𝑃 ) 

 𝛽 = (… …  𝑖 − 1 𝑖 + 1 𝑖 𝑖 𝑖 + 1 𝑖 − 1 … … ), 
Are nonidempotent partial isometries with 𝑓(𝛼) = 0 and 𝑓(𝛽) = 1 

Corollary 1 Let 𝛼 ∈ 𝐷𝑃𝑛. If 𝑓(𝛼) = 𝑃 > 1 

Then 𝑓(𝛼) = ℎ(𝛼). Equivalently, if 𝑓(𝛼) > 1, then ∝ is idempotent. 

Lemma 3 

Let 𝛼 ∈ 𝐷𝑃𝑛 if 1∈ 𝐹(𝛼) or 𝑛 ∈ 𝐹(𝛼) then for all 𝑥 ∈ 𝐷𝑜𝑚𝛼, we have 𝑥𝛼 = 𝑥 equirality,  

If 1 ∈ 𝐹(𝛼) or 𝑛 ∈ 𝐹(𝛼), then (𝛼), then 𝛼 is a partial identity. 

Proof: Suppose 1 ∈ 𝐹(𝛼) then for all 𝑥 ∈ 𝐷𝑜𝑚𝛼, 𝑥 − 1 = 𝑥𝛼 ⇒ 𝑥 = 𝑥𝛼. 
Similarly, if 𝑛 ∈ 𝐹(𝛼) then for all 𝑥 ∈ 𝐷𝑜𝑚𝛼, 𝑛 − 𝑥 = 𝑛 − 𝑑𝛼 = 𝑛 − 𝑥𝛼 ⇒ 𝑥 = 𝑥𝛼. 
Lemma 4: Let 𝛼 ∈ 𝑂𝐷𝑃𝑛 and 𝑛 ∈ 𝐷𝑜𝑚𝛼 𝑛 𝐼𝑚 𝛼.  

Then 𝑛𝛼 = 𝑛 

Proof: Since 𝑛 = 𝑚𝑎𝑥(𝐷𝑜𝑚𝛼) and 𝑛 = 𝑚𝑎𝑥(𝐼𝑚𝛼), and 𝛼 is order preserving, then 𝑛 𝛼 = 𝑛 

However, note that in 𝐷𝑃𝑛 we have 𝛼 = (1 𝑛 𝑛 1 ) where 𝑛 ∈ 𝐷𝑜𝑚𝛼 ∩ Ȋ𝑚𝛼 but 𝑛 𝛼 ≠ 𝑛 

Lemma 5: Let 𝛼 ∈ 𝑂𝐷𝑃𝑛 and 𝑓(𝛼) ≥ 1. Then 𝛼 is an idempotent 

Proof: Let 𝑥 be a fixed part of 𝛼 and suppose 𝑦 ∈ 𝐷𝑜𝑚𝛼. If 𝑥 < 𝑦 the by the order preserving and isometry proportion, 

we see that 𝑦 = 𝑥 = 𝑦𝛼 = 𝑥𝛼 = 𝑦 𝛼 − 𝑥 ⇒ 𝑦 = 𝑦𝛼. 

The case of 𝑦 < 𝑥 is similar. However, note that on 𝐷𝑃𝑛, we have 𝛼 = (1 2 3 2 ), where 𝑓(𝛼) = 1 

But 𝛼2 ≠ 𝛼. 
Lemma 6: Let S = 𝑂𝐷𝑃𝑛. Then 𝐹(𝑛, 𝑝1) = 𝐹(𝑛, 1) = 𝑛2 and 𝐹(𝑛, 𝑝𝑛) = 𝐹(𝑛, 𝑛 = 1) for all 𝑛 ≥ 2  
Proof: Since all partial injections of height 1 are vacuously partial isometries, the first statement of the lemma follows 

immediately. For the second statement, it is not difficult to see that there is exactly one partial isometry of height 
(1 2 1 2 …  𝑛 …  𝑛 ) (the identity). 

Lemma 7: Let S = 𝑂𝐷𝑃𝑛, Then 𝐹(𝑛, 𝑝2) = 𝐹(𝑛; 2) =
1

6
𝑛(𝑛 − 1)(2𝑛 − 1), for all n ≥ 2. 

Proof: First, we say that 2-subsets of 𝑋𝑛 (that is, subsets of size 2) say, A={𝑎1, 𝑎2, }and B={𝑏1, 𝑏2}are of the same type if 

|𝑎1 −  𝑎2 = |𝑏1, 𝑏2|, Now observe that if then there are 𝑛 − 𝑖 subsets of this type. However, for partial order-preserving 

isometries once we choose a 2-subset as a domain then the possible image sets must be of the same type and there is only 
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one possible order-preserving bijection between any two 2-subsets of the same type. It is now clear that 𝐹(𝑛; 2) =

∑ 𝑛 − 1 𝑖 = 1 (𝑛 − 𝑖)2 =
1

6
(𝑛 − 1), as required.  

Lemma 8: Let S = 𝑂𝐷𝑃𝑛. Then 𝐹(𝑛; 𝑝)  =  𝐹(𝑛 − 1;  𝑝 − 1) +  𝐹(𝑛 − 1; 𝑝), for all ≥ 𝑝 ≥ 3 

Proof: Let α∈ 𝑂𝐷𝑃𝑛 and ℎ(𝛼) =  𝑝. Then it is clear that 𝐹(𝑛; 𝑝) = |𝐴| + |𝐵|, where A={α∈ 𝑂𝐷𝑃𝑛: ℎ(𝛼)  =  𝑝 𝑎𝑛𝑑 𝑛 ∉∈
𝐷𝑜𝑚 𝛼 ∪ 𝐼 𝑚 𝛼}𝑎𝑛𝑑 𝐵 = {𝛼 ∈  𝑂𝐷𝑃 ∶ ℎ(𝛼)  =  𝑝 and 𝑛 ∉ 𝐷𝑜𝑚 𝛼 ∪ 𝐼𝑚 𝛼}. Define a map 𝜃: {𝛼 ∈  𝑂𝐷𝑃𝑛 − 1: ℎ(𝛼) =
 𝑝} →  𝐴 by (𝛼)𝜃 =  𝛼′ where 𝑥𝛼′ = 𝑥𝛼 (𝑥 ∈  𝐷𝑜𝑚 𝛼. This is clearly a bijection since 𝑛 ∉ 𝐷𝑜𝑚 𝛼 ∪ 𝐼 𝑚 𝛼. Next, recall 

the definitions of 𝜛̟+(𝛼)and 𝜛+(𝛼) from the chapter1. Now, define a map 𝛷 ∶  {𝛼 ∈  𝑂𝐷𝑃𝑛−1: ℎ(𝑎) = 𝑝 − 1} → 𝐵 by 
(𝛼)𝛷 =  𝛼′ 

where  

(i) 𝑥𝛼′ = 𝑥𝛼 (𝑥 ∈  𝐷𝑜𝑚 𝛼) and 𝑛𝛼′ = 𝑛(𝑖𝑓 𝜛+(𝛼)  =  𝜔+(𝛼) ); 
(ii) 𝑥𝛼′ = 𝑥𝛼 (𝑥 ∈ 𝐷𝑜𝑚 𝛼) and n𝛼′ =  𝑛 −  𝜛+(𝛼)  + 𝜔+(𝛼)  <  𝑛 (𝑖𝑓 𝜛+(𝛼)  >  𝜔+ (𝛼);  
(iii) x(𝛼′)−1 = 𝑥𝛼−1(𝑥 ∈ 𝐼𝑚 𝛼) and 𝑛(𝛼′)−1 =  𝑛 − 𝜛+ (𝛼 )−1 +  𝜔+ (𝑎−1)  <  𝑛 (if 𝜛+(𝑎)  <  𝜔+(𝛼)). 

 

In all cases ℎ(𝛼′)  =  𝑝, and case (i) coincides with 𝑛 ∈ 𝐷𝑜𝑚 𝛼′ ∩ 𝐼𝑚 𝛼′;case (ii) coincides with 𝑛 ∈  𝐷𝑜𝑚 𝛼′\𝐼 𝑚 𝛼′; 
case (iii) coincides with 𝑛 ∈  𝐼𝑚 𝛼′\𝐷𝑜𝑚 𝛼′. Thus 𝛷 is onto. Moreover, it is not difficult to see that ∅ is one-to-one. Hence 

𝛷 is a bijection, as required. This establishes the statement of the lemma.  

Proposition 1: Let 𝑆 = 𝑂𝐷𝑃𝑛 and 𝐹(𝑛; 𝑝) have their usual definitions, respectively. Then (𝑛; 𝑝)  = 
(2𝑛−𝑝+1)

𝑝+1 
(𝑛 𝑝 ), where 

𝑛 ≥  𝑝 ≥  2. 
Proof. (The proof is by induction).  

Basis step: First, note that 𝐹(𝑛;  1), 𝐹(𝑛; 𝑛) and 𝐹(𝑛;  2) are true by Lemmas 1 and 2. 

Inductive step: Suppose 𝐹(𝑛 − 1;  𝑝) is true for all 𝑛 − 1 ≥ 𝑝. (This is the induction hypothesis.) Now using Lemma 3, we 

see that 𝐹(𝑛; 𝑝) =  𝐹(𝑛 − 1;  𝑝 − 1) +  𝐹(𝑛 − 1;  𝑝) 

=
(2𝑛−𝑝)

𝑝 𝑛−1;𝑝
(𝑛 −  1 𝑝 −  1 ) +

(2𝑛−𝑝−1)

𝑝+1
(𝑛 − 1 𝑝 ) (by ind. hyp.)  

 = 
(2𝑛−𝑝)

𝑝

𝑝

𝑛
(𝑛 𝑝 ) +  

+(2𝑛−𝑝−1)

𝑝+1
 
(𝑛−𝑝)

𝑛
(𝑛 𝑝 ) 

= 
(2𝑛−𝑝(𝑝+1)+(2𝑛−𝑝−1))𝑛−𝑝)

𝑛(𝑝+1)
(𝑛 𝑝 ) 

 
(2𝑛2−𝑛𝑝+𝑛)

𝑛(𝑝+1)
(𝑛 𝑝 ) =

(2𝑛−𝑝+1)

(𝑝+1)
(𝑛 𝑝 ); 

as required. 

 

Lemma 9: For integers n, p such that 𝑛 ≥ 𝑝 ≥ 2, we have ∑
(2𝑛−𝑝+1)

(𝑝+1)

𝑛
1 𝑛 𝑝 = 2 

2𝑛−𝑝+1

𝑝+1
(𝑛 𝑝 ) = 3. 2𝑛 − 𝑛2 − 2𝑛 − 3. 

Proof. It is enough to observe that 2𝑛 − 𝑝 +  1 =  (2𝑛 − 2𝑝)  +  (𝑝 +  1).  

Theorem 1: Let 𝑂𝐷𝑃𝑛 be as defined in (2). Then| |𝑂𝐷𝑃𝑛 = 3. 2𝑛 = 2(𝑛 + 1). | 
Proof. It follows from Proposition 1 and Lemma 5, and some algebraic manipulation.  

 Let 𝑆 = 𝑂𝐷𝑃𝑛. Then 𝐹(𝑛; 𝑚) = (𝑛 𝑚 ) for all 𝑛 ≥ 𝑚 ≥ 1. 

Proof. It follows directly from Lemma 6.  

Proposition 2: Let S = 𝑂𝐷𝑃𝑛 and 𝐹(𝑛; 𝑚) be as defined in (2) and (6), respectively. Then 𝐹(𝑛;  0)  =  2𝑛 + 1 − (2𝑛 +
 1).  
Proof. It follows from Theorem 6, Lemma 7 and the fact that | 𝑂𝐷𝑃𝑛| = 𝑃𝑛𝑚 = 0 𝐹(𝑛; 𝑚). For some computed values of 

𝐹(𝑛; 𝑝) and 𝐹(𝑛; 𝑚) in 𝑂𝐷𝑃𝑛, see Tables 1 and 2. 

 

Table 1 

𝑛\𝑚 0 1 2 3 4 5 6 7 ∑𝐹(𝑛; 𝑚) = 𝑂𝐷𝑃𝑛 

0 1        1 

1 1 1       2 

2 1 4 1      6 

3 1 9 5 1     16 

4 1 16 14 6     38 

5 1 25 30 20 7 1   84 

6 1 36 55 50 27 8 1  178 

7 1 49 91 105 77 35 9 1 308 
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Table 2 

𝑛\𝑚 0 1 2 3 4 5 6 7 ∑𝐹(𝑛; 𝑚) = 𝑂𝐷𝑃𝑛 

0 1        1 

1 1 1       2 

2 3 2 1      6 

3 9 3 3 1     16 

4 23 4 6 4 1    38 

5 53 25 30 20 7 1   84 

6 115 6 15 20 15 6 1  178 

7 241 7 21 35 35 21 7 1 368 

 

Remark: For p= 0,1 the concepts of order-preserving and order-reversing coincide but distinct otherwise. However, there 

is a bijection between the two sets for 𝑝 ≥ 2. 

 

Lemma 10: Let 𝛼 ∈  𝑂𝐷𝑃𝑛. Then α is either order-preserving or order-reversing. 

 

Proof. If ℎ(𝛼) = 2 then the result is obvious. However, if ℎ(𝛼) > 2 wemust consider cases. First suppose that {𝑎1𝑎2𝑎3} ⊆
 𝐷𝑜𝑚𝛼, where 𝑎𝑖𝛼 = 𝑏𝑖(𝑖 =  1,2,3) and 1 ≤ 𝑎𝑖 <  𝑎2 <  𝑎3 ≤ 𝑛. There are four cases to consider if α is neither order-

preserving or order-reversing: 𝑏1 <  𝑏3 <  𝑏2, 𝑏2 <  𝑏1 <  𝑏3, 𝑏2 <  𝑏3 < 𝑏1 𝑎𝑛𝑑 𝑏3 <  𝑏1 <  𝑏2. In the first case, note that 

𝑏2 − 𝑏1 = (𝑏2 − 𝑏3) + (𝑏3 − 𝑏1). But 𝑎3 − 𝑎1 =  (𝑎3 − 𝑎2) + (𝑎2 − 𝑎1) = |𝑎3 − 𝑎2| + |𝑎2 − 𝑎1| = |𝑏3 − 𝑏3| + |𝑏2 −
𝑏1| = |𝑏3 − 𝑏2| + |𝑏2 − 𝑏3| + |𝑏3 − 𝑏1| =  2 |𝑏3 − 𝑏2| + 𝑏3𝛼−1 − 𝑏1𝑎−1| =  2 |𝑏3 − 𝑏2| + |𝑎𝑎3 − 𝑎1| =  2 |𝑏3 − 𝑏2| +
𝑎3 − 𝑎1, whichimplies that |𝑏3 − 𝑏2| =  0 ⇔ 𝑏3 = 𝑏2. This is a contradiction. The otherthree cases are similar. We now 

use Remark above and Lemma 9 to deduce corresponding results for 𝐷𝑃𝑛 from those of 𝑂𝐷𝑃𝑛 above. 

 

Lemma 11: Let S=𝐷𝑃𝑛. Then 𝐹(𝑛; 𝑝1)  =  𝐹(𝑛;  1) = 𝑛2) and 𝐹(𝑛; 𝑝𝑛)  = 𝐹(𝑛; 𝑛)  =  2, for all 𝑛 ≥ 2. 

 

Lemma 12: Let 𝑆 = 𝐷𝑃𝑛 . 𝑇ℎ𝑒𝑛 𝐹(𝑛; 𝑝2 ) =  𝐹(𝑛;  2) =  
1

3
𝑛 (𝑛 − 1)(2𝑛 − 1), for all 𝑛 ≥ 2. 

 

Lemma 13: Let 𝑆 = 𝐷𝑃𝑛. Then 𝐹(𝑛; 𝑝)  =  𝐹(𝑛 − 1;  𝑝 − 1) +  𝐹(𝑛 − 1;  𝑝), for all 𝑛 ≥ 𝑝 ≥ 3. 

 

Proposition 3 Let S=𝐷𝑃𝑛 and 𝐹(𝑛; 𝑝) be as defined in (1) and (5), respectively. Then 𝐹(𝑛; 𝑝) =  
2(2𝑛−𝑝+1)

𝑝+1
 (𝑛 𝑝 ) , where 

𝑛 ≥ 𝑝 ≥ 2. 

 

Theorem 2: Let 𝐷𝑃𝑛 be as defined in (1). Then | 𝐷𝑃𝑛 | =  3 · 2𝑛+1 − (𝑛 +  2)2 − 1. Proof. It follows from Proposition 3, 

Lemma 5 and some algebraic manipulation.  

 

Lemma 14: Let 𝛼 ∈  𝐷𝑃𝑛 . For 1 <  𝑖 <  𝑛, if 𝐹(𝛼)  =  {𝑖} then for all 𝑥 ∈ 𝐷𝑜𝑚 𝛼 we have that +𝑥𝛼 =  2𝑖. 
 

Proof. Let 𝐹(𝛼)  =  {𝑖} and suppose 𝑥 ∈ 𝐷𝑜𝑚 𝛼. Obviously, 𝑖 + 𝑖𝛼 = 𝑖 + 𝑖 = 2𝑖. If 𝑥 <  𝑖 then 𝑥𝛼 >  𝑖, for otherwise 

we would have 𝑖 − 𝑥 = |𝑖𝛼 − 𝑥𝛼 | = |𝑖 − 𝑥𝛼 | = 𝑖 − 𝑥𝛼 = ⇒ 𝑥 = 𝑥𝛼, which is a contradiction. Thus, 𝑖 − 𝑥 = |𝑖𝛼 −
𝑥𝛼 | = |𝑖 − 𝑥𝛼 | = |𝑥𝛼 − 𝑖| = 𝑥𝛼 − 𝑖 ⇒ 𝑥 + 𝑥𝛼 =  2𝑖. The case 𝑥 > I is similar. 

 

Lemma 15: Let S=𝐷𝑃𝑛. Then F(n;m) = (𝑛 𝑚 ), for all 𝑛 ≥ 𝑚 ≥ 2. 

 

Proposition 4 Let S=𝐷𝑃𝑛. Then 𝐹(2𝑛; 𝑚1)  =  𝐹(2𝑛;  1)  =  2(22𝑛 − 1)3 and 𝐹(2𝑛 − 1;  𝑚1)  =  𝐹(2𝑛 − 1;  1)  =

 
2(22𝑛−2−1)

3
+  

22𝑛−2

3
, for all 𝑛 ≥ 1. 

 

Proof. Let 𝐹(𝛼)  =  {𝑖}. Then by Lemma 15, for any 𝑥 ∈ 𝐷𝑜𝑚 𝛼 we have 𝑥 + 𝑥𝛼 =  2𝑖. Thus there 2𝑖 − 2 possible 

elements for 𝐷𝑜𝑚 𝛼 ∶  (𝑥, 𝑥𝛼) ∈ {(1,2𝑖 − 1), (2,2𝑖 − 2),· · ·  (2𝑖 − 1,1)}.  
However, (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 (𝑖, 𝑖)) we see that there are ∑ (𝑛, 𝑚)𝑛

1 2𝑖 − 2 𝑗 = 0 (2𝑖 − 2 𝑗 ) = 22𝑖−2, possible partial isometries 

with 𝐹(𝛼)  =  {𝑖}, where 2𝑖 − 1 ≤ 𝑛 ⇐⇒  𝑖 ≤ (𝑛 +  1)/2. Moreover, by symmetry we see that 𝐹(𝛼)  =  {𝑖} 𝑎𝑛𝑑 𝐹(𝛼)  =
 {𝑛 − 𝑖 +  1} give rise to equal number of partialisometries. Note that if n is odd the equation 𝑖 = 𝑛 − 𝑖 +  1 has one 

solution. Hence, if 𝑛 =  2𝑎 − 𝑎 − 1 ∑ 𝑖 = 1 22𝑖−2 + 22𝑎−2 = 2
22𝑎−2−1

3
+ 22𝑎−2 

partial isometries with exactly one fixed point; if n= 2a we have 𝑎 2 ∑  𝑖 = 1 22𝑖−2 = 2
22𝑎−1

3
 

partial isometries with exactly one fixed point.  
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Proposition 5 Let 𝑆 = 𝐷𝑃𝑛. Then 𝐹(𝑛; 0)  =  𝐹(𝑛;  0)  =  𝑛 ≥ 0 if 𝑛 is even) and 𝐹(𝑛; 𝑚0)  =  𝐹(𝑛;  0)  =  25 · 2𝑛 −
1 − (3𝑛2 + 9𝑛 + 10)3, (𝑛 ≥ 1,if nis odd).  

Proof. It follows from Theorem 3.16, Lemma 3.18, Proposition 3.19 and the fact that |𝐷𝑃𝑛| = ∑ 𝑛 𝑚 = 0 𝐹(𝑛; 𝑚).  
 

Remark : For some computed values of 𝐹(𝑛; 𝑝)and 𝐹(𝑛; 𝑚)𝑖𝑛 𝐷𝑃𝑛, see Tables 3 and 4. 

 

Table 3 

𝑛\𝑚 0 1 2 3 4 5 6 7 ∑𝐹(𝑛; 𝑝) = 𝑂𝐷𝑃𝑛 

0 1        1 

1 1 1       2 

2 4 4 2      7 

3 1 9 10 2     22 

4 1 16 28 12 2    59 

5 1 25 60 40 14 2   142 

6 1 36 110 100 54 16 2  319 

7 1 49 182 210 154 70 18 2 686 

 

Table 4 

𝑛\𝑚 0 1 2 3 4 5 6 7 ∑𝐹(𝑛; 𝑚) = 𝑂𝐷𝑃𝑛 

0 1        1 

1 1 1       2 

2 4 2 1      7 

3 12 6 3 1     22 

4 28 10 6 4 1    59 

5 90 26 10 10 5 1   142 

6 220 42 15 20 15 6 1  319 

7 460 106 21 35 35 21 7 1 686 

 

Findings on the Cycle Structure 

The study defines a cyclic semigroup as one generated by a single element.  

Given 𝐼𝑛 as a symmetric inverse semigroup. 

Let 𝐷𝑃𝑛 = {𝛼 ∈ 𝐼𝑛: (∀𝑥, 𝑦 ∈ 𝑋𝑛)|𝑥 − 𝑦| = |𝑥𝛼 − 𝑦𝛼|} be subsemigroup of 𝐼𝑛 consisting of all partial isomatries of 𝑋𝑛, 

and  

Let 𝑂𝐷𝑃𝑛 = {𝛼 ∈ 𝐷𝑃𝑛: ∀𝑥, 𝑦 ∈ 𝑋𝑛)𝑥 ≤ 𝑦 ⇒ 𝑥𝛼 ≤ 𝑦𝛼} 

Be the subsemigroup 𝐷𝑃𝑛 consisting of all order preserving partial isometries of 𝑋𝑛. It in clear that if 𝛼 ∈ 𝐷𝑃𝑛(𝛼 ∈ 𝑂𝐷𝑃𝑛), 

Then 𝛼−1 ∈ 𝐷𝑃𝑛(𝑥−1𝑂𝐷𝑃𝑛) also. Thus 𝐷𝑃𝑛 and 𝑂𝐷𝑃𝑛 are inverse subsemigroups of 𝐼𝑛. 

Supporting Lemmas show that the transformation 𝛼 ∈ 𝐷𝑃𝑛(𝛼 ∈ 𝑂𝑃𝑛) is idempotent wherever𝑓(𝑥) ≤ 1. 

Hence 𝐷𝑃𝑛 and 𝑂𝐷𝑃𝑛 are cyclic or monogenic since they have a single generator. 

 

Findings on 𝑂 − 𝐸 − Unitary Inverse Semigroup 

The study defines a semigroup 𝑆 to be 𝑂 − 𝐸 − unitary if (∀𝑒 ∈ 𝐸1)(∀𝑠𝑒𝑆), 
 𝑒𝑠 ∈ 𝐸1 ⇒ 𝑠 ∈ 𝐸. 

 

That is, an inverse semigroup is 𝑂 − 𝐸 − unitary when any element above a non-zore idempotent in the natural order is 

itself an idempotent. 

 

Theorem 3 shows clearly that 𝑂𝐷𝑃𝑛 is 𝑂 − 𝐸 − unitary given that 𝛽, an element of 𝑂𝐷𝑃𝑛 naturally above the non-zero 

idempotent 𝜖 is also idempotent. 

 

The paper shows a strong connectedness between the components of the L and classes. Further, the L, R, and J 

relation define three preorders ≤1≤𝑅≤𝐻 where 𝛼 ≤𝐻 𝛽 holds for two elements a and b of 𝑆 whenever the ideal generated 

by a is included in that of 𝑏, 𝑖. 𝑒 𝑆1𝑎 𝑆1 ≤ 𝑆1𝑏 𝑆1  

 

The study shows that the subsemigroup of 𝐼𝑛 , that is 𝐷𝑃𝑛 and 𝑂𝐷𝑃𝑛 are inverse subsemigroups because for every 

𝛼 ∈ 𝐷𝑃𝑛 (𝛼 ∈ 𝑂𝐷𝑃𝑛), there is 𝛼1 ∈ 𝐷𝑃𝑛(𝛼−1 𝑂𝐷𝑃𝑛) also. For 𝛼 ∈ 𝐼, with height ℎ(𝛼) and fix (𝛼) = |𝐹(𝛼)|, where 

𝐹(𝛼) = {𝑥 ∈ 𝑋𝑛: 𝑥𝛼 = 𝑥}, supporting lemma in the study shows that whenever 𝑓(𝛼) > 1, then 𝛼 is idempotent. 𝛼 being 

idempotent show that 𝑂𝑃𝑛 and 𝑂𝐷𝑃𝑛 have circular structure. 
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The Green’s equivalences on 𝑂𝑃𝑛 and 𝑂𝐷𝑃𝑛 shows strong connectedness between the subsemigroups and their 

elements generate the same principal ideals. 

 

On 𝑂 − 𝐸 −Unitary Inverse Semigroup, a semigroup is 𝑂−∈ − unitary if (∀𝑒 ∈ 𝐸1) (∀𝑠 ∈ 𝑆)𝑒𝑠 ∈ 𝐸1 ⇒ 𝑠 ∈ 𝐸1 

where 𝐸1 = 𝐸\𝑂.  

 

It is clear that 𝑂𝐷𝑃𝑛 is 𝑂 − 𝐸 − unitary since it satisfies the above condition as shown in theorem 3 implying that 

𝑂𝐷𝑃𝑛 has an element 𝛽 above a non-zero idempotent 𝜃 which is itself idempotent. 

 

CONCLUSION  
The study shows that the subsemigroup of 𝐼𝑛 , that is 𝐷𝑃𝑛 and 𝑂𝐷𝑃𝑛 are inverse subsemigroups because for every 

𝛼 ∈ 𝐷𝑃𝑛 (𝛼 ∈ 𝑂𝐷𝑃𝑛), there is 𝛼1 ∈ 𝐷𝑃𝑛(𝛼−1 𝑂𝐷𝑃𝑛) also. For 𝛼 ∈ 𝐼, with height ℎ(𝛼) and fix (𝛼) = |𝐹(𝛼)|, where 

𝐹(𝛼) = {𝑥 ∈ 𝑋𝑛: 𝑥𝛼 = 𝑥}, supporting lemmas in the study shows that whenever 𝑓(𝛼) > 1, then 𝛼 is idempotent. 𝛼 being 

idempotent show that 𝑂𝑃𝑛 and 𝑂𝐷𝑃𝑛 have circular structure. 

 

The Green’s equivalences on 𝑂𝑃𝑛 and 𝑂𝐷𝑃𝑛 shows strong connectedness between the subsemigroups and their 

elements generate the same principal ideals. 

 

On 𝑂 − 𝐸 −Unitary Inverse Semigroup, a semigroup is 𝑂−∈ − unitary if (∀𝑒 ∈ 𝐸1) (∀𝑠 ∈ 𝑆)𝑒𝑠 ∈ 𝐸1 ⇒ 𝑠 ∈ 𝐸1 

where 𝐸1 = 𝐸\𝑂.  
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