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Abstract  Original Research Article 
 

A forward-facing spike attached to a hemispherical body significantly alters its flow field and influences aerodynamic 

drag at high-speed flow. Consequently, the geometry, that is, the length and shape of the spike, has to be investigated in 

order to obtain a large conical recirculation region in front of the hemispherical body to get beneficial drag reduction. It 

is, therefore, a potential candidate for aerodynamic drag reduction for a future high-speed spiked hemispherical body. 

Axisymmetric compressible time-dependent Navier-Stokes equations are solved employing a finite volume 

discretization in conjunction with a multistage Runge-Kutta time stepping scheme. The effects of the spike length and 

shape, and the spike nose configuration on the reduction of drag are numerically evaluated at Mach 6 at a zero angle of 

incidence. Semi-cone angle of conical spike varied from 10o to 30o are to get the different type of flow field such as 

formation of conical shock wave, separation region and reattachment of shock wave are analyzed in conjunction with 

flat-disk spike and hemispherical disk spike attached to the hemispherical body. The bow shock distance ahead of the 

hemispherical and flat-disc is compared with the analytical solution and good agreement found between them. The 

influence of the reattachment shock wave generated from different spike shape are is used to understand the cause of 

drag reduction fluid mechanics. 

Keywords: Aerodynamic drag; Computational fluid dynamics; Viscous flow; Hypersonic flow; Shock wave. 
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

INTRODUCTION 
High-speed flow past a hemispherical body 

generates a bow shock wave which causes high surface 

pressure and as a result the development of high 

aerodynamic drag. The dynamic pressure on the surface 

of the blunt body can be significantly reduced by creating 

a low-pressure region in front of the hemispherical body 

by attaching a spike. It is advantageous to have a vehicle 

with a low drag coefficient in order to minimize the 

thrust required from the propulsive system during the 

supersonic and hypersonic regime. 

 

Experimental investigations of the flow field 

around a spiked-blunt body were started in the 1940s. 

The prime focus was with regard to drag characteristics 

where effects due to spike length, spike head geometry, 

forward body geometry and relative spike diameter have 

been explored. Most of the experimental studies on 

spiked bodies are carried out to get effects on flow field 

[1-5] at supersonic and hypersonic Mach numbers [6-9]. 

Kubota [10] has experimentally investigated the overall 

characteristics of the spiked blunt body configuration at 

hypersonic Mach numbers. Crawford [11] 

experimentally investigated the effects of the spike 

length on the nature of the flow field for a Mach 6.8 and 

Reynolds number 0.12  106 − 1.5  106 based on the 

cylinder diameter. The spike drastically changes the 

aerodynamic drag of the hemisphere body at high-

speeds. Attributed to the reattachment of the shear layer 

on the shoulder of the hemispherical body, the pressure 

near that reattachment point becomes large. Motoyama 

et al., [12] have experimentally investigated the 

aerodynamic characteristics of conical, hemispherical, 

flat-faced aerospike, and hemispherical and flat-faced 

disk attached to the aerospike for a Mach 7, Reynolds 

number 4  105/m, for L/D = 0.5 and 1.0, and angle of 

attack 0o to 8o, where L is the spike length and D is the 

cylinder diameter. They found that the aerodisk spike 

(L/D = 1.0 and aerodisk diameter of DS = 10 mm), has a 

superior drag reduction capability as compared to the 

other aerospikes. Yamauchi et al., [13] have numerically 

investigated the flow field around a spiked blunt body at 

Mach numbers of 2.01, 4.14 and 6.80 for different ratio 

of L/D. Shoemaker [14], Fujita and Kubota [15], Boyce 

et al., [16] have used a numerical approach to solve the 

compressible Navier-Stokes equations. Milicev et al., 
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[17] have experimentally investigated the influence of 

four different types of spikes attached to a hemisphere-

cylinder body at Mach 1.89, Reynolds number 0.38  106 

based on the cylinder diameter, and at an angle of 

incidence 2o. Numerical simulations [18] have been 

carried out to get the comparative studies of the flowfield 

over the spike. Axisymmetric numerical simulation [19] 

has been performed for different types of spikes attached 

to a blunt nose cone at Mach 5.0, 7.0 and 10.0 using 

commercial flow solver CFD-FASTRAN. 

 

 
 

 
Fig 1: Flow field over (a) without and with forward facing spike attached to hemisphere body (b) close-up view of 

the spike 

 

A schematic of the flow field over a hemisphere 

body, a conical and an aero-disk spiked attached to the 

hemisphere body at zero angle of attack is illustrated in 

Fig 1(a), (b) and (c), respectively. A bow shock is formed 

ahead of the hemisphere body as shown in Fig 1(a). 

Sonic line appears on the shoulder of the hemisphere 

body. Directly in front of the body an essentially normal 

shock is formed which extends around body as a curved 

oblique shock. A sufficient distance away from the body, 

the aerodynamic field is unaffected by the presence of 

the body. The strength of the shock decays continuously 

from its maximum value at the normal shock to a 

minimum strength or a Mach wave at infinity. 

 

The flow field around a conical spike and a 

hemisphere disc shape spiked attached to the hemisphere 

body appears to be more complicated and complex and 

contains a number of interesting flow phenomena and 

characteristic, which has to be analyzed as illustrated in 

Fig. 1(b) and 1(d). The re-circulating region is formed 

around the root of a spike up to the reattachment point of 

the flow at the shoulder of the hemispherical body. Due 

to the re-circulating region, the pressure at the stagnation 

region of the blunt body will decrease. The flow past the 

spike creates a conical shock wave which remains away 

from the body as depicted in Fig 1(b). One of the tools 

that has been used for study in conventional, perfect gas 

dynamics is the shock-polar diagram. Although this 

diagram can be used for quantitative analysis and 

occasionally has been so employed, it primarily serves to 

complement perfect gas flow tables by providing a 

graphical display of the velocity vectors and wave 

geometry for all of the possible oblique shock wave 

solutions pertaining to a given freestream condition. 

Flow behind the conical shock wave separates on the 

spike and create a conical shaped recirculation zone 

appears in the vicinity of the stagnation region. Due to 

the formation of the flow recirculation, the surface 
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pressure reduces in the forward-facing region of the 

hemisphere body. However, the reattachment of the 

shear layer on the shoulder of the hemispherical body 

increases surface pressure.  

 

A bow shock wave is formed ahead of the 

spherical disc spike as illustrated in Fig. 1(c). The 

reattachment shock is moved downstream as shown in 

the Fig. 1(c), which is function of the geometrical 

parameter of the spike, i.e., the hemispherical disc spike. 

Enlarged view of the flow field over the conical shape 

spike, hemisphere disc shape spike and flat-face disc 

spike are delineated in Fig 1 (d), (e) and (f), respectively. 

The conical shock wave is emanating from the conical 

spike tip and impinges on the blunt body. 

 

The main focus of the present paper is to 

calculate surface pressure and skin friction distributions, 

and aerodynamic drag over a forward-facing spike of 

various shape and size at Mach 6. The present paper 

presents a numerical simulation of the flow field over a 

flat-face spike, hemispherical spike and conical spike for 

different L/D ratios. The semi-cone angle  of the conical 

spike is varied from 10o to 30o. The flow field features 

captured by the density, Mach and pressure contours are 

used to understand the mechanism of the drag reduction. 

The influence of the spike shock wave generated from 

the spike, interacting with the reattachment shock is also 

studied, to understand the cause of drag reduction. 

 

Governing Fluid dynamics Equations 

A numerical simulation of the time-dependent, 

compressible, axisymmetric Navier-Stokes equations is 

employed to numerically solve the basic fluid dynamics 

over a forward-facing spike attached to a hemisphere 

body. The governing equations can be written in the 

following strong conservation form: 

 

 
𝜕𝑼

𝜕𝑡
+

𝜕𝑭

𝜕𝑥
+

𝜕𝑮

𝜕𝑟
+ 𝑯 = [

𝜕𝑹

𝜕𝑥
+

𝜕𝑺

𝜕𝑟
] …………………………………..………….… (1)  

 

Where, 

𝑼 = 𝑟 [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑒

], 𝑭 = 𝑟 [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
(𝜌𝑒 + 𝑝)𝑢

],   𝑮 = 𝑟 [

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
(𝜌𝑒 + 𝑝)𝑣

] ……………………..… (2) 

 

Where U is conservative state and F and G are inviscid flux vectors; x and r are axial and radial coordinate system and t is 

time. The viscous flux vectors are 

𝑹 = 𝑟 [

0
𝜎𝑥𝑥

𝜏𝑥𝑟

𝑢𝜎𝑥𝑥 + 𝑣𝜏𝑥𝑟 + 𝑞𝑥

],  𝑺 = 𝑟 [

0
𝜏𝑥𝑥

𝜎𝑥𝑟

𝑢𝜏𝑥𝑟 + 𝑣𝜎𝑟𝑟 + 𝑞𝑟

],   𝑯 = [

0
0
𝜎+

0

] …………. (3) 

 

Where R and S are viscous flux vector and H is source vector,  and  are components of the stress vector, while 

q is components of the heat flux vector. Thus, the viscous terms in the equations became: 

𝜎𝑥𝑥 = −
2

3
𝜇 (𝛻 ⋅ 𝑈 + 2

𝜕𝑢

𝜕𝑥
) 

𝜎𝑟𝑟 = −
2

3
𝜇 (𝛻 ⋅ 𝑈 + 2

𝜕𝑣

𝜕𝑟
) 

𝜏𝑥𝑟 = 𝜇 (
𝜕𝑢

𝜕𝑟
+

𝜕𝑣

𝜕𝑥
) 

𝜎+ = −𝑝 − 𝜇 (
2

3
𝛻 ⋅ 𝑈 + 2

𝑣

𝑟
) ………………………………………………… (4) 

𝛻 ⋅ 𝑈 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑟
+

𝑣

𝑟
 

𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
 

𝑞𝑟 = −𝑘
𝜕𝑇

𝜕𝑟
 

 

Where k is thermal conductivity. The coefficient of molecular viscosity µ is calculated according to Sutherland’s law  

𝜇 = 1.458𝑥10−6 𝑇1.5

𝑇+110.4
 ………………………………………..….……….. (5) 

 

The temperature is related to pressure and density by perfect gas equation of state as 

𝑝 = (𝛾 − 1)𝜌 [𝑒 −
1

2
(𝑢2 + 𝑣2)] …………………………………….……… (6) 
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The ratio of the specific heat  is assumed 

constant and is equal to 1.4. The flow is assumed to be 

laminar, which is also consistent to Bogdonoff and Vas 

[1], Yamauchi et al., [13], Fujita and Kubota [15], and 

Boyce et al., [16]. 

Numerical algorithm 

To facilitate the spatial dicretization in the 

numerical scheme, the time dependent axisymmetric 

compressible Navier-Stokes equations (1) can be written 

in the in integral form over a finite volume as: 

 
𝜕

𝜕𝑡
∫ 𝑼𝑑Ω +  ∫ (𝑭𝑑𝑟 − 𝐺𝑑𝑥) =  ∫ (𝑅𝑑𝑟 − 𝑺𝑑𝑥) −  ∫ 𝑯𝑑Ω

 

Ω

 

Γ

 

Γ

 

Ω
 ………………  (7) 

 

Where  is the computational domain,  is the 

boundary of the region. The contour integration around 

the boundary of the cell is taken in the anticlockwise 

sense. The flow field simulation employs a finite volume 

discretization technique. The spatial computation 

domain was divided into a finite number of non-

overlapping quadrilateral cells. Figure 2 depicts a typical 

computational cell which has four vertices (a − d). The 

conservation variables within the computational cell are 

represented by their average values at the cell centre. The 

spatial and temporal terms are decoupled using the 

method of lines. Thus, the discretized solution to the 

governing equations results in a set of volume-averaged 

state variables for mass, momentum, and energy, which 

are in balance with their area-averaged fluxes (inviscid 

and viscous) across the cell faces [20]. The cell used for 

gradient calculations forms a second mesh that is shifted 

a half cell in the axial and radial directions in relation to 

the original computational mesh. The derivatives f/x 

and f/r at the cell vertices (a − d) can be determined 

by considering by auxiliary cells surrounding each side 

as shown in Fig. 2, where f stands for any of the primitive 

variables. The viscous flux vectors R and S are 

approximated in such a way as to preserve cell 

conservations and maintain algorithm simplicity. Figure 

2 shows a typical stencil of the computing cell which has 

four edges (a − d), four vortices and a cell-centre grid 

point A. The spatial and temporal terms are decoupled 

using the method of lines. The flux vector is divided into 

the inviscid and viscous components. A cell-centered 

scheme is used to store the flow variables. The 

discretization of inviscid fluxes is performed using the 

cell average scheme. When the integral governing Eq. (7) 

is applied separately to each cell in the computational 

domain, we obtain a set of coupled differential equations 

of the form: 

 

𝐴𝑖,𝑗

𝜕𝑈𝑖,𝑗

𝜕𝑡
+ 𝑄(𝑈𝑖,𝑗) − 𝑉(𝑈𝑖,𝑗) + 𝐷(𝑈𝑖,𝑗) + 𝐴𝑖,𝑗(𝑈𝑖,𝑗) = 0 …………….……. (8) 

 

Where Ai,j is the area of the computational cell, 

Q(Ui,j) and V(Ui,j) are inviscid and viscous fluxes 

respectively, and D(Ui,j) is the artificial dissipation flux 

added for numerical stability. 

 

Artificial Dissipation 

In cell-centered spatial discretization schemes, 

such as above which is non-dissipative, therefore, 

artificial are added to Eq. (8). The approach of Jameson 

et al., [21] is adapted to construct the dissipative function 

Di,j consisting of a blend of second and fourth differences 

of the vector conserved variables Ui,j. Fourth differences 

are added everywhere in the flow domain where the 

solution is smooth, but are ‘switched-off’ in the region of 

shock waves. A term involving second differences is 

then ‘switch-on’ to damp oscillations in the vicinity of 

shock waves. This switching is achieved by means of a 

shock sensor based on the local second differences of 

pressure. Since the computational domain is having 

structured grids, the cell centers are defined by two 

indices (i,j) in these coordinate directions. The 

dissipation term is written in terms of differences of cell-

edge values as 

𝐷𝑖,𝑗 =
𝛥𝐴𝑖,𝑗(𝑑𝐴𝐵−𝑑𝐶𝐷+𝑑𝐵𝐶−𝑑𝐷𝐴)

𝛥𝑡𝑖,𝑗
 …………………. (9) 

 

Where ti,j is the local cell-centre time step. The 

cell-edge components of the artificial dissipation terms 

are composed of first and second differences of 

dependent variables, e.g. 

 

𝑑𝐴𝐵 = 𝑑𝐴𝐵
(2)

− 𝑑𝐴𝐵
(4)

 

 

with  

𝑑𝐴𝐵
(2)

= 𝜀2
(2)(𝑈𝑖+1,j − 𝑈i,j) 

 

𝑑𝐴𝐵
(4)

= 𝜀2
(4)(𝑈𝑖+2,j − 3𝑈𝑖+1,j + 3𝑈i,j − 𝑈i-1,j) 

 

The adaptive coefficients 

𝜀2
(2)

= 𝜅(2) 𝑚𝑎𝑥(𝜐𝑖+1, 𝜐𝑖,𝑗) 

 

𝜀2
(4)

= 𝑚𝑎𝑥(0, 𝜅(4) − 𝜀2
(2)) 

 

are switched on or off by use of the shock wave sensor ν, 

with 

𝜐𝑖,𝑗 = |
𝑝𝑖+1,𝑗−2𝑝𝑖,𝑗+𝑝𝑖−1,𝑗

𝑝𝑖+1,𝑗+2𝑝𝑖,𝑗+𝑝𝑖−1,𝑗
| ……………………... (10) 

 

Where κ(2) and κ(4) are constants, taken equal to 

1/4 and 1/256 respectively. The scaling quantity 

[(Ai,j)/(ti,j)] in Eq. (9) confirms the inclusion of the cell 

volume in the dependent variable. The blend of second 

and fourth differences provides third-order background 

dissipation in smooth regions of the flow and first-order 

dissipation at shock waves. 

 

The spatial discretization can be summarized 

here which is employed in numerical simulations. The 
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convective terms are nonlinear, hyperbolic and grid 

dependent. A structured non-overlapping quadrilateral 

cell is used in the numerical simulations. The diffusive 

terms are quasi-linear, elliptic, grid independent, cell 

centered use of dual control volume for evaluating the 

gradients at a given location. Thus, the discretized 

solution to the governing equations results in a set of 

volume-averaged state variables of mass, momentum, 

and energy which are balance with their area-averaged 

fluxes (inviscid and viscous) across the cell faces. The 

finite volume code constructed in this manner reduces to 

a central difference scheme and is second-order accurate 

provided that the mesh is smooth enough. The cell-

centered spatial discretization scheme is non-dissipative; 

therefore, artificial dissipation terms are included as a 

blend of a Laplacian and biharmonic operator in a 

manner analogous to the second and fourth difference. 

The artificial dissipation term was added explicitly to 

prevent numerical oscillations near the shock waves to 

damp high-frequency modes. 

 

Multi-stage Time-Stepping Scheme 

The spatial discretiztion described above 

reduces the governing flow equations to semi-discrete 

ordinary differential equations. The integration is 

performed employing an efficient multi-stage scheme. 

The following three-stage, time-stepping scheme is used 

for the numerical simulation (for clarity, the subscripts i 

and j are neglected here): 

 

𝑈(0) = 𝑈𝑛 

𝑈(1) = 𝑈𝑛 − 0.6𝛥𝑡(𝑅(0) − 𝐷(0)) 

𝑈(2) = 𝑈𝑛 − 0.6𝛥𝑡(𝑅(1) − 𝐷(0)) ………………(11) 

𝑈(3) = 𝑈𝑛 − 1.0𝛥𝑡(𝑅(2) − 𝐷(0)) 

𝑈𝑛+1 = 𝑈(3) 

 

Where n is the current time level, n + 1 is the 

new time level, and residual R is the sum of the inviscid 

and viscous fluxes. The multi-stages time-stepping 

scheme has been proved to be second-order accurate in 

time for a linear system of one-dimensional equation. 

The artificial dissipation is evaluated only at the first 

stage. The permissible time step of an explicit scheme is 

limited by the Courant-Friedrichs-Lewy condition, 

which states that a difference scheme cannot be 

convergent and stable approximation unless its domain 

of dependence contains the domain of dependence of the 

corresponding differential equation. A conservative 

choice of the Courant number is made in the simulation 

to achieve a stable numerical solution. A global time-step 

is used rather than the grid-varying time-step to 

numerically simulate a time-accurate solution and is 

computed using following expression: 

 

( )
( ) ( )

1

22,

1
−















+
++=

rx
c

r

v

x

u
mint ji


 .… (12) 

 

Where grid points i, j are grid point as shown in Fig 2. 

 

 
Fig 2: Computational stencil employed in flow solver 

 

Initial and boundary conditions 

Conditions corresponding to a Mach 6 were 

given as initial conditions. On the surface, no slip 

condition is considered. An isothermal wall condition 

was prescribed for the surface of the model, that is, a wall 

temperature of 300o K. The symmetric conditions were 
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applied on the centerline. For supersonic flow, all the 

flow variables are extrapolated at the outflow from the 

vector of conservative vector, U. 

 

 
(a) 

 
(b) 

 
(c) 

Fig 3: Dimensions of the (a) conical spike (b) flat-face disc spike (c) hemispherical cap spike attached to the 

hemispherical blunt body 

 

Spike Geometry 

The dimensions of the spiked hemisphere body 

considered in the present analysis are shown in Fig 3. The 

model is axisymmetric, the main body has a 

hemispherical-cylinder nose, and diameter D is 4.0  10-

2 m. The spike consists of an aerodisc part and a 

cylindrical part. The diameter of the cylinder of the spike 

is 0.1D. Spike having a hemispherical cap of radius 0.1D 

attached with a sting of diameter of 0.1D.  

 

The spike consists of a conical part and a 

cylindrical part as shown in Fig. 3(a). The diameter of 

the cylinder of the spike is 0.1 D. The angle of the semi-

cone cone is δ = 15o for the conical spike as shown in 

Fig. 3(c). Figure 3(b) shows the flat-face aerodisc. The 

spike length L = 0.5 is simulated numerically. The 

aerodisc type spike configuration utilizes a disc on its 

nose of radius 0.1D as shown in Fig. 3(c). The radius of 

the hemisphere aerodisk is 0.05D. The diameter of the 

hemisphere aerodisk attached to the spike is that of the 

diameter of the spike-stem. In the numerical simulations, 

semi-cone angle δ was varied from 10o to 30o. The spike 

lengths L = 0.5, 1.0 and 2.0 D are simulated numerically. 
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(a) 

 
(b) 

 
(c) 

Fig 4: Enlarged view of computational grid over (a) conical spike (b) flat-face disk spike and (c) hemispherical 

disk spike attached to the hemispherical blunt bod 

 

 
 = 10o 

 
 = 15o 

 
 = 20o 

 
 = 30o 

Fig 5: Enlarged view of computational grid over a conical spike at semi-cone angle  = 10o, 15o, 20o and 30o 

attached to a hemispherical blunt body 
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Grid Generation 

One of the controlling factors for the numerical 

simulation is the proper grid arrangement. The grid 

points are generated by a homotopy scheme [22]. The 

spiked hemisphere body is defined by a number of grid 

points in the cylindrical coordinate system. Using these 

surface points as the reference nodes, the normal 

coordinate is then described by the exponentially 

structured field points, (xi,j, ri,j) extending outwards up to 

an outer computational boundary. Sufficient grid points 

are allotted in the shoulder region of the capsule. The 

stretching of grid points in the normal direction is 

obtained using the following expression. One of the 

controlling factors for the numerical simulation is the 

proper grid arrangement. Using these surface points as 

the reference nodes, the normal coordinate is then 

described by the exponentially structured field points, 

(xi,j, ri,j) extending outwards up to an outer computational 

boundary. Sufficient grid points are allotted in the 

shoulder region of the capsule. The stretching of grid 

points in the normal direction is obtained using the 

following expression: 

𝑥𝑖,𝑗 = 𝑥𝑖,0 [
𝑒

(𝑗−1)𝛽
𝑛𝑟−1 −1

𝑒𝛽−1
] + 𝑥𝑖,𝑤 [

𝑒
(𝑗−1)𝛽
𝑛𝑟−1 −1

𝑒𝛽−1
] ………. (13) 

𝑟𝑖,𝑗 = 𝑟𝑖,0 [
𝑒

(𝑗−1)𝛽
𝑛𝑟−1 −1

𝑒𝛽−1
] + 𝑟𝑖,𝑤 [

𝑒
(𝑗−1)𝛽
𝑛𝑟−1 −1

𝑒𝛽−1
]       

nr ..,… 3, 2, 1, = j

nx ..,… 3, 2, 1, = i

  
 

Where ri,w and ri,0 are the wall and outer surface 

points, respectively, and β is a stretching factor. nx and 

nr are the total number of grid points in the x and r 

directions, respectively. Grid independent tests were 

carried out, taking into consideration the effect of the 

computational domain, the stretching factor to control 

the grid intensity near the wall, and the number of grid 

points in the axial and normal directions. The outer 

boundary of the computational domain is varied from 2.5 

to 3.0 times the cylinder diameter D and the grid-

stretching factor in the radial direction is varied from 1.5 

to 5. These stretched grids are generated in an orderly 

manner. To verify the chosen grid delivers an accurate 

solution, the number of grid cells was increased until a 

steady state solution occurred, that is, the resulting axial 

force on the investigated shape did not change anymore. 

Several test runs were made with a total doubled grid cell 

number. Therefore, the grid was highly refined in both 

directions. Grids are chosen with the number of grid 

points in the i-direction ranging from 187 for the shortest 

blunt spike to up to 220 for the longest spike 

configuration, and the number in the j direction ranging 

from 52 to 82. The present numerical analysis was 

performed on 187  62 grid points. The downstream 

boundary of the computational domain is maintained at 

4 to 6 times the cylinder diameter. This grid arrangement 

is found to give a relative difference of about 1.5% for 

the drag coefficient. The convergence criterion less than 

the 10-5 is based on the difference in the density values at 

any grid point between two successive iterations. The 

minimum spacing for the fine mesh is dependent upon 

the Reynolds number and is calculated by Δr = 

(⅔)D√ReD. The finer mesh near the wall helps to resolve 

the viscous effects. The finer mesh near the wall helps to 

resolve the viscous effects. 

 

A close-up view of the computational grid over 

the hemispherical, the conical, and the flat-faced 

aerospike is shown in Fig 4. An enlarged view of 

computational grid over the conical spike of different 

semi-cone angle δ = 10o to 30o is depicted in Fig. 5. The 

structured grid generation and the mono block is suitable 

to accommodate spike shape. As seen in the figures, 

these types of grids use quadrilateral cells in 2-

dimensional in the computational array. The 

quadrilateral cells, which are very efficient at filling 

space, support a high amount of skew and stretching 

before the solution will be significantly affected. 

Additionally, the grid can be aligned with the flow, 

thereby yielding greater accuracy within the solver. 

 

RESULTS AND DISCUSSION 
The numerical procedure described in the 

previous section is here applied to compute flow field 

over the forward-facing spike attached to blunt body for 

Mach 6.0. Characteristic features of the flow field around 

the conical, hemispherical and flat-disc aero-spike 

attached to blunt body at high speeds are investigated 

with the help of velocity vector, density, pressure and 

Mach contours plots. 
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(a) 

 
(b) 

 
(c) 

Fig 6: Enlarged view of vector plot over a conical spike at semi-cone angle  = 10o (a) L/D = 0.5, (b) L/D = 1.5 and 

(c) L/D = 2.0 attached to the hemispherical blunt body 
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(a) 

 
(b) 

 
(c) 

Fig 7: Enlarged view of vector plot over a hemispherical disk spike at a L/D = 0.5, 1.5 and 2.0 attached to the 

hemispherical blunt body 
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(a) 

 
(b) 

 
(c) 

Fig 8: Enlarged view of vector plot over a flat-faced disk spike at (a) L/D = 0.5, (b) L/D = 1.5 and (c) L/D = 2.0 

attached to the hemispherical blunt body 

 

4.1 Flow Characteristics  

Figures 6 - 8 depict the velocity vector plots 

over the conical spike, the hemispherical aerospike, and 

the flat-disk aerospike for L/D = 0.5, 1.0, and 2.0 at Mach 

6. It can be visualized from the vector plots that all the 

significant flow field features such as conical shock 

wave, shear layer, reattachment shock and formation of 

the bow shock wave over the blunt body. Characteristic 

features of the flow field around the hemispherical body 

at Mach 6, such as bow shock wave ahead of the forward-
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facing spike attached to the hemispherical and flat-disk 

aerospike are investigated with the help of velocity 

vector. The bow shock wave follows the aerospike 

contour and the fore-body is entirely subsonic up to the 

corner tangency point of the flat-faced and hemispherical 

aerospike where the sonic line is located. The effects of 

the sonic line on the aerodynamic design parameters 

have been investigated using the vector plots. A low 

pressure is formed immediately downstream of the base 

of spike hemispherical disc which is characterized by a 

low-speed recirculating flow region which can be 

attributed to the filling up of the growing space between 

the shock wave and the body.  

 

In Fig 6, interaction between the conical oblique 

shock wave starting from the tip of the spike and the 

reattachment shock wave of the blunt body can be 

visualized. The reflected reattachment wave and the 

shear layer from the interaction are seen behind the 

reattachment shock wave. A large separated region is 

observed in front of the blunt body and the shear layer; 

and the boundary of the separated region is clearly 

observed in Figs. 6 to 8. The separation zone depends on 

the shape of the spike and L/D ratio. Similar flow field 

features for the conical spike were observed by 

Yamauchi et al., [13].  

 

Figure 7 shows the velocity vector plots over 

the hemispherical aerospike for L/D = 0.5, 1.0 and 2.0 at 

M = 6. The spiked body is completely enveloped within 

the recirculation region. Interaction between the conical 

oblique shock wave starting from the tip of the spike and 

the reattachment shock wave of the blunt body can be 

visualized in Fig. 7. The reflected reattachment wave and 

the shear layer from the interaction are seen behind the 

reattachment shock wave. A large separated region is 

observed in front of the hemispherical body and the shear 

layer; and the boundary of the separated region is clearly 

observed in the vector plots. Similar flow field features 

for the conical spike were observed by Yamauchi et al., 

[13]. The bow shock wave interacts with the 

reattachment shock generated by the blunt body. The 

interaction of the shock wave produced by the 

hemispherical aerospike differs significantly with the 

conical spike. The flow separation on the spike and 

recirculation zone formed on the blunt body cap depends 

on shape of the spike. The contour plots explain the cause 

of the drag reduction due to increase of the separation 

region over the spike.  

 

Figure 8 displays the zoomed region of the 

vector plot on the flat-disc aerospike configurations. The 

bow shock wave follows the aerospike contour and the 

fore body is entirely subsonic up to the corner tangency 

point of the flat-faced and hemispherical aerospike 

where the sonic line is located. The effects of the 

subsonic flow on the hemispherical and flat disk bodies 

have been investigated by Truitt [23].  

 

Figure 9 shows enlarged view of vector plot 

over a conical spike at conical spike at various value of 

 = 20o, 25o and 30o for L/D = 0.5, 1.5, 2.5. The effects 

of semi-cone angle are seen in the formation of conical 

oblique shock. The oblique shock angle and the 

reattachment shock on the hemispherical body depends 

on the semi-cone angle of the spike. The flow 

recirculation region with free shear layer and formation 

of the vortex flow in over the spike is captured well in 

the velocity vector plots. The variation of the semi-cone 

angle of 10o, 15o, 20o and 30o over the field does not show 

significant variation. The interaction between the conical 

oblique shock wave starting from the tip of the spike and 

the reattachment shock wave of the blunt body remains 

almost unchanged though the value of the δ has been 

different. A large separated region is found in front of the 

blunt body and the shear layer; the boundary of the 

separated region is clearly visible in Fig 9. 

 

 
(a) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 9: Enlarged view of vector plot over a conical spike at (a)  = 15o, L/D = 1.5 (b)  = 15o, L/D = 2.0 (c)  = 20o, 

L/D = 1.5 (d)  = 20o, L/D = 2.0 (e)  = 25o, L/D = 1.5 (f)  = 25o, L/D = 2.0 attached to the hemispherical blunt body 

 

Figures 10 – 13 show Mach contours of the flow 

field around the hemispherical body with attached 

conical aerospike, the hemispherical aerodisc and the 

flat-faced aerodisc with L/D = 0.5, 1.0 and 2.0. The flow 

fields are having significant differences between the 

aerospike of the hemispherical aerodisc, flat-faced 

aerodisc and the conical spike as seen in the contour 

plots. 

 

Figure 10 shows close-up view of Mach contour 

over a conical spike at semi-cone angle  = 10o and L/D 

= 0.5, L/D = 1.5 and L/D = 2.0 attached to the 

hemispherical body. The conical shock wave is emanated 

from the spike nose. The separated shear layer and the 

recompression shock from the reattachment point on the 

shoulder of the hemispherical body are visible. Flow 

patterns for L/D = 1.0 and 2.0 are identical to that of L/D 

= 0.5. However, when the spike length is large, the angle 

of the oblique shock wave from the spike tip decreases, 

and the flow separation occurs slightly downstream. 

Because the reattachment point moves aft and the spike 

is relatively long, the length of the separated region 

extends. The angle of the conical shock wave depends on 

the angle of the shear layer, which gives an effective 

body shape to the outer freestream. Figure 10 shows the 

effects of the L/D ratio on the flow field. The conical 

shock wave moves further away from the blunted body 

as compared to L/D = 0.5 and 2.0 and the increase of L/D 

ratio increases the recirculation zone.  

 

Figure 11 shows close-up view of Mach 

contours over a hemispherical disk spike at L/D = 0.5, 

L/D = 1.5 and L/D = 2.0 attached to the hemispherical 

blunt body. Figure 12 shows close-up view of vector plot 

over a flat-faced disk spike at L/D = 0.5, L/D = 1.5 and 

L/D = 2.0 attached to the hemispherical blunt body In Fig 

7(a), and (b), the interaction between the bow shock 

wave starting from the aero-disc of the spike and the 

reattachment shock wave of the blunt body is observed. 

The reflected reattachment wave and shear layer from the 

interaction are shown behind the reattachment shock 

wave. A large separated region is observed in front of the 

blunt body and the shear layer; the boundary of the 

separated region is clearly seen in Figs 11 and 12. In the 

aerodisk case as depicted in Figs. 11 and 12, the bow 

shock wave is emanating far from the hemispherical 

body. The bow shock wave generated from the aerodisk 

is affected by the L/D ratio. The body is completely 

enveloped within the recirculation region, which is 

separated from the inviscid flow within the bow shock 

wave by a separation shock. The bow shock interacts 

with the reattachment shock generated by the blunt body. 
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The interaction of the shock wave produced by the 

hemispherical aerospike differs significantly with the 

conical spike. The flow separation on the spike and 

recirculation zone formed on the blunt body cap depends 

on shape of the spike. The contour plots explain the cause 

of the drag reduction due to increase of the separation 

region over the aerodisk type of spike. The normal shock 

wave in front of the spike cap will reduce the drag as 

compared to without the spike. In the fore region of the 

aerodisk, the fluid decelerates through the bow shock 

wave. At the shoulder of the aerodisk or hemispherical 

cap, the flow turns and expands rapidly, the boundary 

layer detaches, forming a free shear layer that separates 

the inner recirculating flow region behind the base from 

the outer flow field. The corner expansion over aerodisk 

process is a modified Prandtl-Mayer pattern distorted by 

the presence of the approaching boundary layer. 

 

Figure 13 shows close-up view of Mach 

contours over a conical spike at  = 15o, 20o, and 25o, L/D 

= 1.5 and 2.0 attached to the hemispherical blunt body. 

The conical shock angle can be calculated using the 

shock polar. In the downstream of the shock consists of 

recirculation area, which differs as compared to the 

formation of conical shock over the isolated cone. The 

shock wave in front of the spike cap will reduce the drag 

as compared to without the spike. 
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(c) 

Fig 10: Close-up view of Mach contour over a conical spike at semi-cone angle  = 10o (a) L/D = 0.5, (b) L/D = 1.5 

and (c) L/D = 2.0 attached to the hemispherical blunt body 

 

 
(a) 

 
(b) 

 
(c) 

Fig 11: Close-up view of Mach contours over a hemispherical disk spike at (a) L/D = 0.5, (b) L/D = 1.5 and (c) L/D 

= 2.0 attached to the hemispherical blunt body 
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(a) 

 
(b) 

 
(c) 

Fig 12: Close-up view of vector plot over a flat-faced disk spike at (a) L/D = 0.5, (b) L/D = 1.5 and (c) L/D = 2.0 

attached to the hemispherical blunt body 
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4.2 Surface Pressure Distribution 

Figures 14 – 16 show the pressure variation 

(p/pa) along the surface of the spiked hemispherical body 

for different semi-cone angle of the spike. The wall 

pressure p is normalized by free stream pressure pa. The 

x/R = 0 location is the spike/nose tip junction as shown 

in figure, where R is radius of the blunt body. Figures 14 

-16 show the pressure variation along the spherical, the 

flat-disk and the conical spike, respectively, for the L/D 

= 0.5, 1.0 and 2.0. The pressure variation shows that the 

peak pressure falls as the L/D ratio increases. The relative 

behavior of the pressure distribution for L/D = 0.5, 1.0 

and 2.0 is shown in Figs 14 - 16. Pressure distribution 

shows the influence of the spike shape. It is interesting to 

note that the maximum pressure is found on the same 

location on the hemispherical body. A wavy pressure 

distribution is observed on the spike, which may be 

attributed to the numerical algorithm. The maximum as 

well as the global pressure level remain same. The 

location of the maximum pressure point remains same 

for all the cases. The maximum as well as the local 

pressure level decreases when L/D increases.  

 

Figures 17 – 19 show the pressure distribution 

over the conical spike for various values of semi-cone 

angle 10o to 30o. It is important to mention here the effect 

of semi-cone angle and L/D ratio is not significant. The 

location of the maximum pressure on the surface of the 

spiked attached to hemisphere body is at a body angle of 

about 40o for all δ. This location corresponds to the 

reattachment point. 

 

4.3 Skin Friction Coefficient 

Figures 20 - 22 show skin friction coefficient Cf 

variation over the conical spike, flat-face disc and 

hemispherical cap spikes for different L/D ratios and 

semi-cone angle of conical spike varied from 10o to 30o. 

The numerical simulation gives the effects of the 

subsonic region over the spike. The present work 

contains numerical studies for different spike 

geometries, L/D ratios and a semi-cone angle of 10o at 

Mach 6. Negative skin friction can be seen on the spike, 

which is due to the flow separation. The separation zone 

is found to be a function of the spike length as well as the 

shape of the spike. The region of the separation zone can 

be compared with the velocity vector plots as shown in 

Figs 6 - 10. A sharp and sudden rise of skin friction and 

heat flux is found very close to the conical spike tip, 

which is attributed to flow stagnation.  

 

Figures 24 and 25 show the variation of skin 

friction coefficient Cf along the surface of the spike blunt 

body for various values of δ. Negative skin friction can 

be seen on the spike, which is due to the ow separation. 

The separation zone is found to be a function of δ. A 

sharp and sudden rise of skin friction is found very close 

to the spike tip, which is due to the flow stagnation. The 

secondary peak is observed at about the reattachment 

point. 

 

Oblique shock wave 

Directly in front of the body an essentially 

normal shock is formed which extends around body as a 

oblique shock. A sufficient distance away from the body, 

the aerodynamic field is unaffected by the presence of 

the body. The strength of the shock decays continuously 

from its maximum value at the normal shock to a 

minimum strength or a Mach wave at infinity.  

 

Although this diagram can be used for 

quantitative analysis and occasionally has been so 

employed, it primarily serves to complement perfect gas 

flow tables by providing a graphical display of the 

velocity vectors and wave geometry for all of the 

possible oblique shock wave solutions pertaining to a 

given freestream condition.  

 

For high-speed flow past a cone at zero angle of 

attack, the shock wave angle  depends on the M and 

the cone angle . The numerical analysis shows the shock 

wave angle is about 140. The hodograph method is a 

powerful mathematical approach of two-dimensional 

flows which are either subsonic or mixed subsonic-

supersonic [24, 25]. The change in variables is linear, 

thus allowing complex solutions to be formed by linear 

superposition of elementary solutions. Flow quantities 

on a circular cone with attached shock wave are constant 

on all concentric conical surfaces laying between the 

shock wave and the body, and so depend upon only one 

space variable. For high-speed flow past a cone at zero 

angle of attack, the shock wave angle δ depends on the 

upstream Mach and the semi-cone angle δ. The shock 

wave angle, the pressure coefficient, and the Mach 

number of the inviscid flow at the surface of the cone are 

given in Ref. [26] as a function of semi-cone angle δ and 

oblique shock wave angle θ. Fig. 1(a) has shown 

schematic sketch of supersonic flow over a cone. An 

approximate solution for axially symmetric ow over cone 

with attached shock is presented by Hord [27]. Zumwalt 

and Tang [28] have developed the approximate 

expression: relating the shock wave angle θ to incoming 

Mach number M and the semi-cone angle δ, for the 

axially symmetric flow past a cone with an attached 

shock wave.  

 

Flow quantities on a circular cone with attached 

shock wave are constant on all concentric conical surface 

laying between the shock wave and the body, and so 

depend upon only one space variable. For high-speed 

flow past a cone at zero angle of attack, the shock wave 

(half) angle  depends on the upstream Mach and the 

semi-cone angle . The shock wave angle, the pressure 

coefficient, and the Mach number of the inviscid flow at 

the surface of the cone are given in Ref. [26] as a function 

of  and . Fig 1(d) shows schematic sketch of 

supersonic flow over a cone. 
tan(δ−θ)

tan δ
=

(γ−1)M1
2 sin2 δ+1

(γ+1)M1
2 sin2 δ

 ……………… (14) 
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Table 1 shows the variation of the semi-cone 

angle of cone with the conical shock wave angle. The 

conical shock wave angles are estimated using the 

velocity vector plots. It is difficult to calculate very 

accurately due to formation of shear layer and separated 

flow region over the spiked blunt body. 

 

Table 1: Conical shock wave angle 

Semi-cone angle Oblique shock wave angle 

10o 14.5o 

15o 19.0o 

20o 24.0o 

30o 35.0o 

 

The hodograph method is a powerful 

mathematical approach of two-dimensional flows which 

are either subsonic or mixed subsonic-supersonic [23]. 

The change in variables is linear, thus allowing complex 

solutions to be formed by linear superposition of 

elementary solutions. The flows over the cone are 

described in a coordinate system which is at rest with 

respect to the shock. The upstream conditions are known 

and the solutions at the downstream are required to 

know. Flows on the two sides of the surface of 

discontinuity (shock) are related by the conservation of 

mass, momentum, and energy on the surface. These 

conservation laws need the respective fluxes to be 

continuous. 

 

The change in variables is linear, thus allowing 

complex solutions to be formed by linear superposition 

of elementary solutions. The flows over the cone are 

described in a coordinate system which is at rest with 

respect to the shock. The upstream conditions are known 

and the solutions at the downstream are required to 

know. Flows on the two sides of the surface of 

discontinuity (shock) are related by the conservation of 

mass, momentum, and energy on the surface. These 

conservation laws need the respective fluxes to be 

continuous. 

 

 
(a) 

 
(b) 
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(e) 

 

 

   
(f) 

Fig 13: Close-up view of Mach contours over a conical spike at (a)  = 15o, L/D = 1.5 (b)  = 15o, L/D = 2.0 (c)  = 

20o, L/D = 1.5 (d)  = 20o, L/D = 2.0 (e)  = 25o, L/D = 1.5 (f)  = 25o, L/D = 2.0 attached to the hemispherical blunt 

body 

 

Flow properties on stagnation point of hemispherical 

disc and flat-face disc 

Flow field at the stagnation point of the 

hemispherical disc and the flat-face disc as well as 

hemispherical body (without spike). The gas is assumed 

thermally perfect, p = ρRT and calorically perfect h = cpT. 

the ratio of the flow properties across the normal shock 

wave can be written as a function of freestream Mach 

number M∞ and the ratio of specific heats γ, the relations 

are: 
𝜌2

𝜌∞
=

(𝛾+1)𝑀∞
2

(𝛾−1)𝑀∞
2 +2

  

 

𝜌𝑒

𝜌∞
=

(𝛾+1)𝑀∞
2

(𝛾−1)𝑀∞
2 +2

[1 +
𝛾−1

2

(𝛾−1)𝑀∞
2 +2

2𝛾𝑀∞
2 −𝛾+1

]
1 (𝛾−1)⁄

……… (15) 

𝑝𝑒

𝑝∞
= [

(𝛾+1)𝑀∞
2

2
]

𝛾 (𝜆−1)⁄

[
𝛾+1

2𝛾𝑀∞
2 +(𝛾−1)

]
1 (𝜆−1)⁄

  

 

The freestream flow passes through the normal 

portion of the shock wave reaching state 2 and then 

decelerates isentropically to boundary layer edge e as 

shown in Fig 1(a) which constitutes the edge condition 

for the thermal boundary layer at the stagnation point.  

 

If one assumes that the flow decelerates 

isentropically from the conditions at the stagnation point 

outside of the thermal boundary layer.  
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Fig 14: Surface Pressure distribution over conical spike, flat-face disk spike and hemispherical disk spike attached 

to the hemispherical blunt body for L/D = 0.5 

 

 
Fig 15: Surface Pressure distribution over conical spike, flat-face disk spike and hemispherical disk spike attached 

to the hemispherical blunt body for L/D = 1.5 
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Fig 16: Surface Pressure distribution over conical spike, flat-face disk spike and hemispherical disk spike attached 

to the hemispherical blunt body for L/D = 3.0 

 

 
Fig 17: Surface Pressure distribution over conical spike for different semi-cone angle attached to blunt body for 

L/D = 1.0 

 



 
 

 

 

 

 

 

R. C. Mehta, Sch J Eng Tech, Jul, 2024; 12(7): 192-219 

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          213 

 

 

 

 

 
Fig 18: Surface Pressure distribution over conical spike for different semi-cone angle attached to blunt body for 

L/D = 1.5 

 

 
Fig 19: Surface Pressure distribution over conical spike for different semi-cone angle attached to blunt body for 

L/D = 1.0 
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Fig 20: Surface Pressure distribution over conical spike for different semi-cone angle attached to blunt body for 

L/D = 3.0 

 

 
Fig 21: Skin friction distribution over conical spike for semi-cone angle of 10o attached to a blunt body for L/D = 

0.5, 1.0 and 2.0 
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Fig 22: Skin friction distribution over flat-face disk spike attached to a blunt body for L/D = 0.5, 1.0 and 2.0 

 

 
Fig 23: Skin friction distribution over hemispherical disk spike attached to a hemispherical body for L/D = 0.5, 1.0 

and 2.0 
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Fig 24: Skin friction distribution over conical spike for different semi-cone angle attached to hemispherical body 

for L/D = 1.0 

 

 
Fig 25: Skin friction distribution over conical spike for different semi-cone angle attached to blunt body for L/D = 

1.0 
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Shock distance for hemispherical disc and flat-face 

disc 

Shock distance on the hemispherical shape 

spike and flat-face spike is shown in Fig. 1(e) and (f), 

respectively. The flow fields differ between the 

hemispherical shape spike and the flat-faced are 

illustrated in schematic sketch in Fig 1. In the flat-face 

region of the aerodisk, the fluid decelerates through the 

bow shock wave. At the shoulder of the aerodisk or 

hemispherical cap, the flow turns and expands rapidly, 

the boundary layer detaches, forming a free shear layer 

that separates the inner recirculating flow region behind 

the base from the outer flow field. The corner expansion 

over aerodisk process is a modified Prandtl-Mayer 

pattern distorted by the presence of the approaching 

boundary layer. 

 

For the case of flat-nosed spike flying at 

hypersonic speeds, a detached bow wave is formed in 

front of the nose which is practically normal at the body 

axis. Since the flow behind the normal shock is always 

subsonic, simple continuity considerations show that the 

shock-detachment distance and stagnation-velocity 

gradient are essentially a function of the density ratio 

across the shock. The shock-detachment distance 

becomes smaller with increasing density ratio. For the 

case of flat-nosed spike flying at hypersonic speeds, a 

detached bow wave is formed in front of the nose which 

is practically normal at the body axis. Since the flow 

behind the normal shock is always subsonic, simple 

continuity considerations show that the shock-

detachment distance and stagnation-velocity gradient are 

essentially a function of the density ratio across the 

shock. The shock-detachment distance becomes smaller 

with increasing density ratio. Probstein [29] gives 

expression for the shock detachment distance ∆F with 

diameter of the flat-disk DS ratio as: 

∆𝐹

𝐷𝑆
= 2.8√

𝜌∞

𝜌0
 ……………………………. (16) 

 

Where the density ratio across the normal shock [24] is: 

 𝜖 =  
𝜌∞

𝜌0
=  
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The ratio of shock stand-off distance ∆S with 

hemispherical spike of diameter, DS is: 
∆𝑆

𝐷𝑆
=  

2𝜖

1+√
8𝜖

3

 ………………………….… (18) 

 

The values of ∆F and ∆S are found 0.1898 and 

0.1109, respectively. The numerical values of the ratio of 

shock stand-off to spike cap diameter are calculated from 

the velocity vector and pressure contour plot and they are 

0.19 and 0.11 which show good agreement with the 

analytical values. 

 

 

Wave drag 

The contour plots reveal the flow field behavior 

over the spike and also the drag reduction mechanism 

due to interaction of the shock waves, which is 

influenced by the spike configurations as observed in the 

velocity vector plots. As the spike nose becomes large 

from a conical nose to a flat-faced nose, the wave drag 

decreases.  

 

The effects of the geometrical parameters on the 

aerodynamic drag are investigated. The flow field was 

computed for Mach 6 and for L/D = 0.5, 1.0 and 2.0. The 

main purpose of the numerical simulation is to find out 

the effects of the subsonic region over the spike.  

 𝐶𝐷 =
∫ 𝐹𝑥𝑑𝑆𝑆

1

2
𝜌∞𝑉∞

2 𝑆0
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Where Fx is the axial pressure component, dS is 

the area of the segment and reference surface area is So = 

0.25πD2. The aerodynamic drag is computed for 

different spike geometries, L/D ratio and semi-cone 

angle at Mach 6. As the curvature radius of the spike nose 

becomes large from a conical nose to a flat-faced nose, 

the wave drag decreases. From the flow field point of 

view, the aerodisk with L/D = 2.0 has the potential for 

the greatest drag reduction in this computational result. 

It was found by them that the aerodisk spike has shown 

a better drag reduction capability in comparison to the 

other types of aerospike configurations. Table 1 gives the 

computed value of the drag coefficient for the three 

different spike configurations. The comparisons of the 

drag on each of the spiked blunt body. The contour plots 

reveal the flow field behavior over the spike and also the 

drag reduction mechanism due to interaction of the shock 

waves, which is influenced by the spike configurations 

as observed in the velocity vector plots. As the spike nose 

becomes large from a conical nose to a flat-faced nose, 

the wave drag decreases.  

 

Table 2 shows the computed value of the drag 

coefficient for the three different spike configurations. 

The comparisons of the drag on each of the spiked blunt 

body configuration (conical, disk and flat-face) can be 

observed. The aerodynamic drag coefficient of 

hemisphere-cylinder without spike is 0.91. Therefore, it 

is worth to mention here that forward-facing spike 

attached to a hemisphere-cylinder is advantageous for 

drag reduction. Table 3 shows the aerodynamic drag for 

the conical spike for different semi-cone angle of cone. 

This is also noticed in the above flow field visualizations. 

The drag on a cone is smaller than that on a blunt body 

without the spike. As expected, the drag of the blunt body 

is There is marginal effect on the drag due to change of 

conical angle remarkably influenced by the spike length 

and spike shape. Thus, the drag is reduced because of the 

existence of the separated region created by the spike on 

the nose. With an increase in the length, the separated 

flow at the nose is extended.  
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Table 2: Aerodynamic Drag over the spike 

Spike geometry L/D = 0.5 L/D = 1.0 L/D = 2.0 

Conical spike 0.868  0.582 0.384 

Hemisphere disc 0.576 0.317 0.231 

Flat Face disc 0.458 0.309 0.277 

 

Table 3: Aerodynamic Drag over the conical spike for different semi-cone angle 

  = 10o  = 15o   = 20o  = 25o 

L/D = 0.5 .70762E+00 .71153E+00 .70196E+00 .69650E+00 

L/D = 1.5 .67886E+00 -⎯ -⎯ -⎯ 

L/D = 2.0 60743E+00 .65278E+00 65179E+00 .64744E+00 

 

It is important to note that the spike is 

advantageous for drag reduction. This is also noticed in 

the above flow field visualizations. The drag on a cone is 

smaller than that on a blunt body without the spike. As 

expected, the drag of the blunt body is remarkably 

influenced by the spike length and spike shape. Thus, the 

drag is reduced because of the existence of the separated 

region created by the spike on the nose. With an increase 

in the length, the separated flow at the nose is extended. 

 

CONCLUSION 
The flow field over a spiked blunt body of 

axisymmetric configuration is studied numerically by 

solving time-dependent compressible Navier-Stokes 

equations at Mach 6. The governing fluid flow equations 

are discretized in spatial coordinates employing a finite 

volume approach which reduces the equations to semi-

discretized ordinary differential equations. Temporal 

integration is performed using the two-stage Runge-

Kutta time stepping scheme. Flow field around the 

conical spiked blunt body have been calculated for 

different semi-cone angle of the spike. The essential flow 

field features around the spike are captured. The effects 

of different spike cone angle have been numerically 

investigated which will be useful for understanding flow 

field in conjunction with shock polar. The influence of 

the shape of the spike and length to diameter ratios, flow 

visualizations were performed using the velocity vector 

and contour plots. The reduction in the pressure ahead of 

the blunt body gives the drag reduction. The 

reattachment point can be moved backward or removed, 

which depends on the spike length or the nose 

configuration. However, because of the reattachment of 

the shear layer on the shoulder of the hemispherical 

body, the pressure near that point becomes large. The 

ratio of the spike length to spike diameter influences the 

aerodynamic drag reduction mechanism.  
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