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Abstract  Original Research Article 
 

This study investigated the influence of room temperature on the final prototype parts produced using the fused 

deposition modeling (FDM) technique. Real-time room temperature data was collected using a wireless sensor with a 

time series data collection method. A data-driven model called Long Short-Term Memory (LSTM) network was 

developed to predict room temperature. The model was trained using data from the wireless sensors collected during the 

experimental procedure, which involved printing prototype parts in different seasons of the year. The developed LSTM 

network demonstrated its capability to accurately predict temperature, enabling the detection of printing defects under 

various room temperature conditions. The study revealed that lower room temperatures had a more significant impact 

on the surface roughness of the printed parts compared to higher room temperatures. The effectiveness of the developed 

model was confirmed by comparing its results with the experimental data using Root Mean Square Error (RMSE). The 

developed LSTM model found an RMSE of 0.003993 for predicting cold room temperature data and an RMSE of 

0.033993 for predicting hot temperature data. The developed LSTM model offers a valuable tool for detecting printing 

defects in different room temperature conditions. It provides users with information about the room temperature 

necessary for printing high-quality parts, thereby enhancing the printing process capability and minimizing defect issues 

in the printed parts. 

Keywords: Additive manufacturing; Fused deposition modeling; Long short-term memory; Temperature prediction; 

Real-time product quality monitoring. 
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

1. INTRODUCTION 
Additive manufacturing (AM), or 3D printing, 

is a cutting-edge technique to create three-dimensional 

objects based on computer-aided design (CAD) models. 

This technology has gained significant attention and 

popularity across various industries, including 

automotive, aerospace, construction, medicine, and 

architecture [1,2]. One of the key advantages of 3D 

printing is its ability to produce complex structures that 

would be challenging to achieve using traditional 

manufacturing methods [3]. The flexibility of 3D 

printing allows the creation of unique shapes, 

geometries, and customized products tailored to specific 

requirements [4]. Another advantage of 3D printing is its 

efficiency and cost-effectiveness [5]. Unlike traditional 

manufacturing processes, which often involve multiple 

stages such as casting, molding, milling, and cutting 3D 

printing is a single-stage process [6]. This eliminates the 

need for tooling and reduces material waste, resulting in 

cost savings and improved production efficiency [7]. 

Furthermore, 3D printing offers greater design freedom 

and customization options. It allows designers and 

engineers to quickly iterate and modify designs, making 

incorporating design improvements and responding to 

customer needs easier [8]. This flexibility is particularly 

beneficial in industries where customized products are 

required. 

 

Fused Deposition Modeling (FDM), also 

referred to as Fused Filament Fabrication (FFF), is a 

widely used 3D printing technique that involves the 

extrusion of thermoplastic material to create three-

dimensional objects [9]. This method has gained 

popularity, particularly in fields such as aerospace and 

medical science, due to its simplicity in post-processing, 

a wide range of material options, and cost-effectiveness 
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compared to other additive manufacturing methods [10]. 

While FDM offers several advantages, achieving high-

quality printed parts can be challenging due to various 

factors. These factors include process parameters and the 

manufacturing environment where the printing takes 

place. The selection and optimization of these parameters 

are crucial in ensuring the desired quality and 

performance of the printed objects [11]. Process 

parameters in FDM, such as layer thickness, nozzle 

temperature, printing speed, build orientation, and 

deposition direction, directly influence the outcome of 

the printing process. The layer thickness affects the 

resolution and surface finish of the printed part [5], while 

the nozzle temperature determines the material's melting 

and extrusion properties [12]. Printing speed and build 

orientation impact the final object's printing time and 

mechanical properties [13]. Therefore, it is essential to 

carefully select and optimize these parameters based on 

the specific requirements of the printed parts. 

Additionally, the manufacturing environment can also 

impact the quality of FDM-printed parts. Room 

temperature, humidity, and air circulation can influence 

the material's cooling rate, warping, and overall 

dimensional accuracy of the FDM printed parts [11]. 

These variables can also impact the printed parts' 

geometry, mechanical strength, surface quality, and 

process stability [11]. So, it is essential to establish a 

reliable quality monitoring system for analyzing the 

impact of environmental factors on part quality and to 

ensure a consistent AM process with desirable quality 

outcomes [14]. Therefore, controlling and maintaining a 

stable and suitable room temperature environment is 

crucial for achieving consistent and reliable printing 

results, as it is very difficult to control the room 

temperature during 3D printing process in the third world 

country like Bangladesh. 

 

In this study, we developed a Long Short-Term 

Memory (LSTM) network to detect anomalies in the 

printing process based on fluctuations in room 

temperature. The significant contribution of our research 

lies in the effectiveness of our LSTM model in 

identifying product defects at different times of the day, 

utilizing room temperature data. This model can assist 

users in the early defect detection of product defects 

during the printing process and make informed decisions 

about whether to proceed with printing based on the 

room temperature conditions for that day. The remaining 

sections of this research paper are structured as follows: 

Section 2 covers a thorough literature assessment of 

various sensors utilized in FDM for online monitoring as 

well as pertinent machine learning techniques applied to 

FDM to forecast the quality of final products. The 

specimen, materials, and machine learning model used in 

this study are introduced in Section 3, along with the 

experiment design and created time series data collection 

experimental and simulation method. Results from 

experiments and simulations are presented in Section 4. 

Section 5 offers a conclusion and suggestions for future 

development. 

2. LITERATURE REVIEW 
To ensure the printed parts meet the desired 

specifications, extensive research, and experimentation 

are conducted to identify the optimal process parameters 

and environmental conditions for each specific 

application [15]. This optimization process involves 

iterative testing, adjustments, and validation to fine-tune 

the parameters [5, 16]. By optimizing the FDM process 

parameters and controlling the manufacturing 

environment, manufacturers can overcome the 

challenges associated with FDM printing and achieve 

high-quality, functional, and cost-effective 3D printed 

objects that meet various industries' specific 

requirements. 

 

Machine Learning has emerged as a valuable 

tool in the manufacturing industry, particularly in 

monitoring and predicting the quality of printed 

components [17–20]. By leveraging images and 

processing data, machine learning algorithms can 

analyze and predict the expected quality of printed 

objects [21–23]. Cameras and sensors capture and 

monitor on-site process data [24]. These devices record 

various parameters and variables related to the printing 

process, such as temperature, humidity, material flow, 

nozzle movement, and other relevant factors. The 

collected data serves as input for the Machine Learning 

algorithms, enabling them to learn patterns, correlations, 

and anomalies in the manufacturing process [25]. 

Artificial intelligence-based process analyses and 

computer-based learning processes are then applied to 

evaluate the recorded data [26]. Machine Learning 

algorithms are trained on historical data, allowing them 

to identify patterns and trends that can be used to predict 

future data [27]. By continuously monitoring and 

analyzing the process data in real time, the algorithms 

can provide early conclusions and insights regarding the 

printing process and the expected quality of the printed 

components [28]. Furthermore, to validate the post-

printing manufacturing results and evaluate the 

component quality, optical 3D scans are performed. 

These scans provide detailed information about the 

printed objects' geometry, dimensions, surface finish, 

and other relevant characteristics. By comparing the 

scanned data with the predicted results from the Machine 

Learning model, manufacturers can assess the accuracy 

and reliability of their predictions [11]. By combining 

data analysis, and machine learning algorithms, 

manufacturers can gain valuable insights into the 

printing process and the quality of the printed 

components. This enables them to detect potential issues 

or deviations early on, make informed decisions, and 

take corrective actions to ensure the production of high-

quality and reliable printed objects.  

 

Developing a real-time monitoring system for 

Fused Deposition Modeling (FDM) machine conditions 

is a crucial advancement in ensuring the quality and 

reliability of the printing process [29]. This system 

analyzes acoustic emission data to detect abnormal 
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conditions and potential errors during FDM printing. 

Acoustic emission data refers to the signals or vibrations 

generated by the FDM machine during operation [30]. 

These signals carry valuable information about the 

machine's performance and can be analyzed to identify 

patterns and characteristics associated with normal or 

abnormal system conditions. By monitoring and 

analyzing the acoustic emission data in real-time, the 

monitoring system can detect deviations from expected 

patterns that may indicate issues or errors in the printing 

process [31]. The real-time monitoring system employs 

a Support Vector Machine (SVM) algorithm to 

distinguish between normal and abnormal system 

conditions. SVM is a machine learning algorithm that 

excels in classification tasks by identifying decision 

boundaries between different categories based on labeled 

training data [32]. Therefore, the SVM algorithm is 

trained using acoustic emission data from known normal 

and abnormal system conditions. Once trained, the SVM 

algorithm can classify new acoustic emission data in real 

time and identify whether the FDM machine is operating 

normally or experiencing anomalies [33]. While CNN-

based image recognition systems are also available for 

error detection in the FDM printing process, their 

capabilities are limited to identifying obvious geometry 

defects [24, 34]. These systems analyze the visual 

characteristics of the printed parts to detect visible flaws 

or irregularities that are readily apparent in the images 

[30]. However, they may be unable to detect certain 

errors or abnormalities that do not manifest as obvious 

visual defects.  

 

Long Short-Term Memory (LSTM) networks 

are a commonly used machine learning technique for 

predicting time series sequential data [35–38]. To 

mitigate the risk of thermal degradation among 

manufactured products using an FDM machine, a 

shallow Long Short-Term Memory algorithm was used 

to forecast the thermal state of the extruder using data 

gathered from a temperature sensor during the normal 

printing process [12]. A new technology using multi-

sensor data has been proposed to detect FDM printers’ 

different working conditions. The technology used a 

classification LSTM network to distinguish among 

various working conditions of FDM printing based on 

the clamping force. To detect normal and faulty states of 

the printer, this method could be used over traditional 

single sensor monitoring to improve the accuracy of 

monitoring and identifying different working conditions. 

More information could be collected by using multiple 

sensors leading to significantly improved accuracy in 

detecting different working conditions of FDM 

equipment [39].  

 

Previous studies primarily focused on real-time 

monitoring of the additive manufacturing process to 

detect faults in the FDM printer and assess the thermal 

performance of the extruder. However, little attention 

has been given to predicting how environmental factors 

affect the quality of the printed parts. We investigated a 

wireless sensor-based approach to monitor and analyze 

room temperature data to bridge this research gap.  

 

3. METHODS 
3.1 Modeling Specimen  

The software Creo Parametric 6.0.4.0 was 

utilized to create the design for the ASTM D638-14 

TYPE I sampled, as depicted in Fig 1 [40]. This had been 

done to ensure consistency with previous work in 

printing and measurement [39]. The resulting STL file 

was then sliced using the software PrusaSlicer Version 

2.4.0+win64. 

 

 
Fig 1: Design (A) and STL file (B) of the printed specimen at 90° build orientation 
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(B)
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3.2 Materials, Printer, and AM Process Parameters 

Selection 

In this research, PLA material was used for 

printing the specimen parts, a type of thermoplastic 

known for its environmental friendliness [5]. It was one 

of the most used 3D printing materials due to its ease of 

use, low cost, and availability. The 3D printing process 

was carried out using a Prusa i3 MK-3 3D printer, a 

widely used FDM 3D printer, and selected process 

parameters are shown in Table 1 [42]. We used constant 

process parameters for printing to check the effect of 

temperature in all parts. The constant process parameters 

were chosen after several trials to achieve maximum 

roughness in the surface. The process of depositing 

materials in alternating directions of 0° and 90° was done 

in a crisscross pattern as successive layers for all the 

parts, as shown in Fig 2. 

 

 
Fig 2: Infill angle (A) 0° and (B) 90° for rectilinear infill pattern [5] 

 

Table 1: Process parameters selection for printing specimen parts 

Process Parameters Value 

Layer thickness 0.3 mm 

Infill density 50% 

Infill pattern Rectilinear 

Infill angle 0° 

Extrusion speed 80 mm/s 

Nozzle temperature 220°C 

Build orientation 90° 

 

3.3 Experimental Procedure 

This study aimed to determine how the room's 

temperature impacted the final quality of the printed 

items. To achieve this goal, the experiment was 

conducted in a hot and cold room. The data on extremely 

cold room temperatures were gathered on February 1, 

2023, during the winter in Cullowhee, North Carolina, 

USA, while the data on extremely hot room temperatures 

were gathered on July 23, 2022, during the summer at the 

same place. To precisely measure the room temperature, 

the heater in the winter and the air conditioner in the 

summer were switched off at the maker space at the Belk 

building of Western Carolina University. A wireless 

sensor called Wit Motion was used to measure the 

temperature, providing the time series data on room 

temperature.  

 

Two prototype parts, in the shape of dog bones, 

were printed to examine the defects caused by extreme 

and cold room temperatures during the printing process. 

Each prototype took up to 1494 seconds to print, having 

63 layers. A high-performance Lenovo laptop computer 

with a core i7 processor was utilized to collect real-time 

temperature data. The SPI Portable Roughness Tester II 

was used to measure the surface roughness of the printed 

parts to analyze the effect of temperatures on surface 

roughness. The Roughness tester used a stylus with a tip 

radius of .0002 inches to scan across the surface of the 

material to determine the surface roughness of the final 

parts. 

 

3.4 Intelligence System Selection Process 

The main goal of this study was to develop an 

optimal machine learning model for data-driven time 

series room temperature prediction in fused deposition 

modeling (FDM). A particular type of RNN known as 

Long Short-Term Memory (LSTM) was developed to 

solve the difficulties posed by long-term dependencies in 

recurrent neural networks (RNNs) [43]. A Lenovo laptop 

with an 11th Gen Intel(R) Core (TM) i7-11800H CPU 

and 16GB RAM was used to conduct the simulations and 

training of the LSTM model. These hardware 

specifications gave the model training process enough 

memory and processing capability. The Python module 

0°
90°

(A) (B)
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Keras made implementing the LSTM model for 

predicting room temperature easier. It is an appropriate 

option for creating and optimizing the LSTM model in 

this study due to its simplicity. 

 

 
Fig 3: Intelligence system selection procedure 

 

The various procedures involved in choosing 

the final LSTM model are shown in Fig 3. These 

procedures covered the many phases of model 

development, evaluation, and optimization. They 

covered activities including model data preprocessing, 

hyperparameter tuning, and performance assessment. 

The proposed framework is shown visually in Fig 4. 

These procedures act as a roadmap to guarantee a 

methodical and efficient model-building process, 

enabling researchers to make well-informed decisions 

and maximize the effectiveness of the LSTM model for 

room temperature prediction. The possibility of creating 

an optimal model that correctly forecasts future room 

temperature data in the context of FDM increases 

because of this methodical approach. 

 

 
Fig 4: Proposed framework for LSTM modeling 

 

3.5 LSTM Modeling 

The LSTM approach emerged in 1997 to 

address the standard recurrent neural network's 

vanishing gradient issue [44]. A long short-term memory 

(LSTM) network that uses an input layer, one hidden 

layer of LSTM units, and an output layer to predict the 

future from sequential data is known as an LSTM 

network. The feedback connections in LSTMs set them 

apart from conventional feed-forward neural networks. 

With this feature, LSTM can handle a time series of data 
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as its whole rather than independently processing each 

data point. By proceeding this way, LSTM gathers 

essential data about prior data points in the series to 

forecast subsequent data sets. The LSTM model has thus 

been used to resolve challenging machine learning 

issues. LSTM networks with memory blocks are 

connected throughout the hidden layer in place of 

neurons. Memory blocks can update the data depending 

on the time series of sequential data. Because of this, 

memory blocks rather than neurons are used in LSTM's 

hidden layers [45]. 

 

 
Fig 5: Forget, input and output gate in a cell of the LSTM network [46, 47] 

 

The current cell state, the output of the previous 

hidden state, and the input data at the current time state 

all influence the LSTM network's output. A memory 

block in an LSTM network is made up of three gates: an 

output gate, an input gate, and a forget gate. Fig 5 depicts 

the network topology within a memory block. An input 

gate and an input node (new memory network) comprise 

the input gate. The forget gate determines which 

elements of the current data point and the prior hidden 

state in the sequence are given more or less weight. That 

is why it receives the previously hidden form and new 

input data; this network generates a vector in the range 

from 0 to 1 using the sigmoid activation function. 

Finally, the network in the forget gate receives the 

information when it is closer to 1 and vanishes the 

irrelevant information closer to 0. The goal of the input 

gate is to add new information to the network’s long-

term memory. After combining the previous hidden state 

and unknown input data, the input node generates a new 

memory update vector network with the help of tan ℎ 

activation function, which contains the essential 

information. The input node is not capable of 

remembering new information. That is why the input 

gate comes up with a sigmoid activated, which works as 

a filter and makes the new memory update vector 

network worth retaining. So, the resulting information 

should be input gate regulated. After pointwise 

multiplication of the vectors generated from the input 

gate and input node (6), the resulting vector is added to 

cell state (5) to update the long-term memory of the 

network (7). The output gate uses updated cell state, 

previous hidden state, and new input data to generate a 

new hidden state. The output gate uses sigmoid activated 

neural network to store the relevant information. The 

output gate generates a filter vector from the previous 

hidden state and current input. Finally, pass the updated 

cell state to the tan ℎ to force information to store 

between -1 to 1 [48]. Apply the filter vector to the 

updated cell. state as a pointwise multiplication to 

generate a new hidden state as output (8). 

𝑓𝑡 = 𝜎[(𝑤𝑓ℎℎ𝑡−1) + (𝑤𝑓𝑥ℎ𝑡−1) +  𝑏𝑓  ……....… (1) 

𝑖𝑡 = 𝜎[(𝑤𝑖ℎℎ𝑡−1) + (𝑤𝑖𝑥ℎ𝑡−1) +  𝑏𝑖 …...…...… (2) 

𝑔𝑡 = tan ℎ [(𝑤𝑔ℎℎ𝑡−1) + (𝑤𝑔𝑥ℎ𝑡−1)+ 𝑏𝑔 …….. (3) 

𝑜𝑡 = 𝜎[(𝑤𝑜ℎℎ𝑡−1) + (𝑤𝑜𝑥ℎ𝑡−1) +  𝑏𝑜 ………… (4) 

𝐶𝑡
𝑓

= 𝑓𝑡𝐶𝑡−1 ……..…………….……….……… (5) 

𝐶𝑡
𝑖 = 𝑖𝑡𝑔𝑡 ……..………………………..……… (6) 

𝐶𝑡 = 𝐶𝑡
𝑖 + 𝐶𝑡

𝑓
 ……..…………………………… (7) 

ℎ𝑡 = tan ℎ (𝐶𝑡)𝑜𝑡 ………………...…………… (8) 

 

Every gate inside a memory block is controlled 

by a sigmoid activation network but the input node used 

the tan ℎ activation unit. Each block receives the 

previous hidden state and current data as input 

sequences. The result of forget gate, input gate, input 

node, and output gate are shown in (1)-(4) respectively. 

𝜎 is a sigmoid and tan ℎ is a tan activation function. 

𝑤𝑓ℎ , 𝑤𝑖ℎ , 𝑤𝑔ℎ𝑎𝑛𝑑 𝑤𝑜ℎ are the weights for hidden state 

and 𝑤𝑓𝑥 , 𝑤𝑖𝑥 , 𝑤𝑔𝑥𝑎𝑛𝑑 𝑤𝑜𝑥 are the weights for input of 

the respective gates, ℎ𝑡−1 is the output at time step (𝑡 – 

1) of the previous hidden state of LSTM block, 

𝑏𝑓, 𝑏𝑖 , 𝑏𝑔𝑎𝑛𝑑 𝑏𝑜 are biases for the respective gates and 

input is denoted by 𝑥𝑡 at the current time step. 

 

4. RESULTS DISCUSSION 
4.1 LSTM Model Development Procedure 

In our study, we concentrated on gathering time 

series data on room temperature under two different 

climates: cold and warm. The temperature information 

was an important consideration because it can have a 

impact on the quality of FDM produced parts. We 

developed a Long Short-Term Memory (LSTM) model 

to examine the connection between temperature and 
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printing results. Then, two sets—a training set and a 

testing set—of the gathered temperature data were 

created. The temperature measurements taken from the 

first forty-two layers of the FDM produced parts made 

up the training set, which made up 66.67% of the total 

temperature data. The remaining 33.33% of the data from 

layers forty-third to sixty-third made up the testing set. 

1494 datapoints in total were gathered over the course of 

the experiment for the time series data. The first 996 of 

these datapoints were utilized to train the LSTM model, 

which helped it discover trends and connections between 

temperature and printing results. The remaining 498 data 

points were used to assess the model's performance and 

measure its precision as shown in Fig 6. 

 

 
Fig 6: Sequential flow of training and testing data in the LSTM network 

 

We tested the predicted temperature values 

against the actual temperature values in the testing 

dataset to see how accurately the LSTM model's 

predictions performed. The outcomes demonstrated that 

the model had good accuracy, especially over a lengthy 

training phase. This indicates that the LSTM model was 

successful in identifying the fundamental patterns and 

trends in the temperature data, which allowed it to 

produce accurate forecasts. Forecasting temperature 

variations and figuring out their effects on the printing 

results are made possible with the help of the LSTM 

model. To guarantee the best performance based on the 

available dataset, a neural network's hyperparameters 

must be adjusted. In our study, we emphasized the 

significance of optimizing the hyperparameters for our 

Long Short-Term Memory (LSTM) network, which was 

employed for estimating room temperature in a setting of 

FDM printing. Variations in training and testing datasets 

distribution allowed us to adjust the LSTM network's 

design. Using a variety of data distributions, our method 

led to the decision to divide the data so that training 

would receive two-thirds of the total. A third was set 

aside for testing at the same time.  

 

We looked at several choices for choosing 

optimizers for the LSTM network. Due to the Adam 

optimizer's success in enhancing intricate neural network 

topologies, we decided it after careful consideration. 

Several tests involving various optimizer candidates 

formed the basis for the choice. To establish the ideal 

learning rate for training the LSTM network, we ran tests 

utilizing a range of learning rate values. We arrived at a 

learning rate of 0.001 after extensive study, indicating 

optimal convergence and performance throughout 

training. 

 

We also investigated how to set up batch sizes 

and the number of epochs needed to train the LSTM 

model with sequential data. After a thorough analysis, we 

determined that a batch size of 32 and 1000 epochs 

produced the greatest outcomes in terms of model 

generalization and optimization. Hyperparameters that 

were adjusted and listed in Table 2 included the structure 

and configuration of the LSTM network. Specifically, 

the network consisted of one input layer, one hidden 

layer, and one output layer. To receive the input data and 

prepare it for further processing, the input layer was 

essential. The LSTM network's input layer received a 

three-dimensional array as input. Different elements of 

the incoming data were represented by dimensions of this 

array. The batch size, which controls how many samples 

are processed during each training cycle, was represented 

by the first dimension. The second dimension was the 

time step, which represents the length of the sequence, or 

the number of prior time steps considered for prediction. 

The third dimension, which referred to the features or 

variables included in the input data, represented the 

quantity of units in the input sequence. 

 

Table 2: LSTM model parameters setting 

Hyperparameters Value 

Train to total data ratio 66.67% 

Test to total data ratio 33.33% 

Optimizer ADAM 

Learning rate 0.001 

Batch size 32 

Number of epochs 1000 

Amount of test data prediction 498 

Amount of total data 1494 
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The input layer was able to manage and analyze 

the time series dataset efficiently by employing a three-

dimensional array as input. To accurately anticipate 

room temperature for the FDM printing process, the 

network must be able to recognize the temporal 

correlations and patterns inherent in the data. Eight 

LSTM cells in hidden layer were also set up in the 

developed LSTM network. The capacity of the network 

to learn and represent complicated relationships in the 

data depends on the number of LSTM cells in the hidden 

layer.  

To assess the pattern learning capability of our 

LSTM network, we examined the validation loss and 

root mean square error (RMSE) metrics. These measures 

shed light on the efficacy and precision of our algorithm 

in predicting room temperature under various 

circumstances. After investigation, we noticed that our 

LSTM model's validation loss was 0.0019. The 

difference between the predicted values and the actual 

values of the validation dataset is represented by the 

validation loss. Our LSTM network has successfully 

learned the patterns and correlations in the room 

temperature time series data because there was a 

decreased validation loss, which denotes a better fit of 

the model to the data.  

 

 
Fig 7: First 100 training datasets (A) with its prediction (B) at hot temperatures 

 

 
Fig 8: First 100 testing datasets (A) with its prediction (B) at hot temperatures 

 

The accuracy of the model is demonstrated by 

the RMSE, which calculates the average discrepancy 

between the predicted values and the actual values. The 

RMSE was determined to be 0.033993 for the data points 

from the testing for severe temperatures. This number 

represents the typical discrepancy between expected and 

observed temperatures under extreme conditions. On the 

other hand, for the cold temperature testing data points, 

the RMSE was 0.003993, indicating a lower average 

error compared to the extreme temperature case. These 

findings suggest that our LSTM model was more precise 

in predicting room temperatures during cold temperature 

conditions compared to extreme temperature conditions. 

The lower RMSE for the cold temperature data points 

indicates that the model's predictions aligned closely 

with the actual temperature values, demonstrating its 

effectiveness in capturing the patterns and variations in 

cold temperature conditions.  
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Fig 9: First 100 training datasets (A) with its prediction (B) at cold temperatures 

 

 
Fig 10: First 100 testing datasets (A) with its prediction (B) at cold temperatures 

 

The measures, including the validation loss and 

root mean square error (RMSE), gave us important 

information about how well our LSTM model correctly 

predicted data for room temperature. These 

measurements demonstrated how well the algorithm was 

able to learn from the data and spot trends. Based on the 

outcomes of our research, we found that the LSTM 

model correctly predicted the data for room temperature, 

as shown in Figures 7-10. To illustrate the accuracy of 

the predictions, we specifically focused on the first 100 

predicted data points from both the training and testing 

datasets. These subsets were chosen to provide a 

representative sample of the model's performance. Fig. 7 

and 8 depict the predicted values for the first 100 extreme 

temperature data points from the training and testing 

datasets, respectively. By comparing the predicted values 

with the actual values, we can visually assess the 

accuracy of the model's predictions for extreme 

temperature conditions. Similarly, Figures 9 and 10 

present the predicted values for the first 100 cold 

temperature data points from the training and testing 

datasets. These figures allow us to evaluate the accuracy 

of the model's predictions in capturing the patterns and 

variations in cold temperature conditions. 

By examining these figures, we can observe 

how closely the predicted values align with the actual 

values. If the predicted values closely match the actual 

values, it indicates that the LSTM model successfully 

learned and captured the underlying patterns in the room 

temperature data. Overall, these visual representations of 

the predicted values provide a clear demonstration of the 

accuracy of our LSTM model in predicting room 

temperature. The close alignment between the predicted 

and actual values in Figs. 8-11 supports the effectiveness 

of the model in capturing and forecasting the temperature 

patterns, both in extreme temperature conditions and 

cold temperature conditions. 

 

4.2 Effect of Temperatures on Product Quality 

In our study, we observed that the quality of the 

printed parts was significantly impacted by the severe 

room temperatures. The heat from the built plate 

disappeared quickly when the room temperature was too 

low, causing a drop in temperature below the desired 

level. Due to this, some of the print pulled away during 

printing since the material did not cling to the build plate 

properly. As a result, our printed prototype had an upper 

surface that was rough, with a roughness measurement 

(A) (B)

(º
C

)

(º
C

)

(A) (B)

(º
C

)

(º
C

)



 
 

 

 

 

 

 

Md Emon Ahmed et al, Sch J Eng Tech, Jul, 2024; 12(7): 230-241 

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          239 

 

 

 

 

of 4.001 μm. On the other hand, when the environment 

was too warm, the materials adhered to the build plate 

excessively due to the high temperatures. This made it 

challenging to remove the printed parts out of the build 

plate after they were produced. Our printed items have a 

surface roughness of 3.473 μm because of the high 

adherence. These results emphasize the need of 

preserving an ideal ambient temperature throughout the 

FDM printing procedure. The quality and adhesion of 

printed items can suffer under extreme temperatures.  

 

In summary, the results of our investigation led 

to the following conclusions: the most accurate 

prediction on time series data for room temperature was 

made by the LSTM network, which had one input layer, 

one hidden layer with eight LSTM blocks, and one 

output layer. Our findings showed that the LSTM model 

was able to accurately reproduce the data on actual room 

temperature. As a result, it can be inferred that the model 

accurately depicted the patterns and trends in the 

temperature variations experienced during the FDM 

printing process. The ability to predict the room 

temperature accurately is useful because it gives 

information about the thermal conditions that can have 

an impact on the output quality of printed materials. By 

utilizing the developed LSTM network, an individual 

user could identify the quality of products during the 

printing process through surface roughness in the printed 

parts. The highest surface roughness was observed in 

measuring the prototype parts printed in cold room 

temperature environment than extreme room 

temperature. 

 

5. CONCLUSION 
In our study, we investigated the influence of 

time series room temperature data on the quality of 

products in FDM printing. To gain insights into this 

relationship, we developed a Long Short-Term Memory 

(LSTM) neural network model. This model was trained 

to forecast room temperature data based on the 

experimental time series data collected during the 

printing process. By training the LSTM model on the 

available room temperature data, we enabled it to learn 

the underlying patterns and relationships in the 

temperature fluctuations over time. To evaluate the 

accuracy of the LSTM model's predictions, we used the 

Root Mean Square Error (RMSE) metric. By 

understanding and predicting room temperature 

variations, manufacturers can take proactive measures to 

optimize the printing conditions and minimize the 

potential negative impacts on product quality. The 

LSTM model offers a data-driven approach to forecast 

room temperature, enabling users to make informed 

decisions and adjustments to ensure the desired printing 

outcomes. Future research should be focused on 

developing a time series room temperature prediction 

model based on various process parameter levels to 

provide the user more control in product quality 

prediction. Moreover, similar models can potentially be 

applied to time series room temperature data prediction 

in other additive manufacturing technologies. 
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