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Abstract  Original Research Article 
 

Introduces a flood risk prediction algorithm based on the Analytic Hierarchy Process (AHP), a robust decision-making 

methodology known for its simplicity and effectiveness in systematically evaluating and prioritizing multiple criteria. 

Utilizing the Analytic Hierarchy Process (AHP) entails the development of a hierarchical framework encompassing 

standards and options. It involves assigning numerical values to individual criteria and employing Comparisons 

conducted in pairs to ascertain their concerning other factors or comparison to a reference point significance. In the 

specific context of flood risk prediction, four crucial factors within the Analytic Hierarchy Process are considered: 

rainfall patterns, vertical elevation, proximity to the river, and Land Use/Land Cover (LULC). These factors, closely 

linked to floods, are essential considerations in flood risk analysis. After conducting a comprehensive analysis of 

different elements, the proposed method categorizes flood risk into five levels: the smallest level, small level, middle 

level, high level, and highest level. The flood risk prediction algorithm begins by constructing a pairwise comparison 

matrix to quantify the significance of each variable concerning flooding occurrences. Subsequently, leveraging this 

matrix along with data on rainfall patterns, vertical elevation, river distance, and the utilization and composition of land 

(Land Use/Land Cover - LULC), The algorithm computes and evaluates the level of risk associated with flooding. This 

methodical approach improves the precision and reliability of flood risk predictions, offering valuable insights for 

developing proactive flood risk management strategies. 

Keywords: Flood Forecasting, Remote Sensing, AHP, GIS. 
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 
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I. INTRODUCTION 
The Model-Based Flood Forecasting Method 

provides a predictive approach using mathematical 

models to predict the likelihood and severity of floods in 

a specific area. This approach involves developing and 

applying hydraulic hydrological and meteorological 

models to replicate water movements across a river 

basin, facilitating forecasting of potential inundation. 

Utilizing the model-based flood prediction approach 

follows a systematic process that involves collecting 

thorough data concerning the river basin, such as 

topography, soil composition, land utilization, and 

hydrological circumstances. Integrating the Analytical 

Hierarchy Process (AHP) within the Model-Based Flood 

Forecasting Method enhances its effectiveness in 

predicting floods by offering a systematic and 

comprehensive framework for decision-making. This 

approach integrates expert insight and adjusts to 

changing circumstances, enabling more informed 

decision-making, enhancing capabilities for emergency 

response, and reducing societal and environmental 

effects linked to flooding. This model-based flood 

forecasting method provides precise and timely insights 

into potential flooding, enabling authorities to implement 

appropriate measures to mitigate its impact. 

Additionally, it is invaluable for planning and emergency 

preparedness, as it identifies high-risk flood zones and 

helps prioritize mitigation strategies. In summary, the 

model-based flood forecasting method is a highly 

effective tool for predicting and managing floods. It 

delivers early warnings and facilitates preparations that 

significantly reduce damage and loss of life. The 

Analytical Hierarchy Process (AHP) technique 

effectively identified the elements influencing flood risk, 

enhancing the understanding of the mechanisms driving 

flood vulnerability. The method of evaluating multi-

criteria indices is widely utilized in assessing flood risk 

assessment [1]. Within this methodology, assigning 

weights to indices is a crucial aspect [2]. Several 

techniques, such as the Analytic Hierarchy Process 

(AHP) [3], fuzzy reasoning [4], and Principal 

Component Analysis (PCA) [5], are commonly used to 

https://orcid.org/0009-0005-1188-1717


 
 

 

 

 

 

 

Phonekham Hansana, Sch J Eng Tech, Aug, 2024; 12(8): 251-262 

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          252 

 

 

 

 

establish the importance coefficients for these indicators. 

The Analytic Hierarchy Process (AHP) is widely used 

for its computational simplicity, although it does involve 

a notable level of subjectivity influenced by the expertise 

and experience of the experts. Researchers have made 

efforts to mitigate this subjective nature. Gigovic et al [6] 

applied two improved AHP techniques, namely, interval 

approximate value (IR-AHP) and vagueness (F-AHP) 

are used in evaluating flood risk. The IR-AHP method 

produced results with the greatest consistency with 

historical data. In another instance, Lyu and colleagues 

[7] utilized both the Analytic Hierarchy Process (AHP) 

technique and the Interval Analytic Hierarchy Process (I-

AHP) method to assess the potential flooding in 

Guangzhou's metro system. The findings indicated that 

the Interval Analytic Hierarchy Process (I-AHP) 

approach identified a broader high-risk area. In a 

separate study, Cai and colleagues [8] Selected 11 

criteria for evaluating flood risk in mountainous urban 

areas, determining the weights assigned to indices 

through the AHP method using triangular fuzzy numbers 

(TFN-AHP). The results showed that the approach using 

triangular fuzzy numbers (TFN-AHP) surpassed 

traditional AHP in effectively assessing flood risk in 

mountainous urban areas. 

 

Urban flooding is a significant and recurring 

natural disaster in cities. Rapid urbanization has 

concentrated populations and economic activities in 

urban areas, amplifying the social and economic damage 

caused by floods to pre-urbanization times. Mitigating 

the negative impacts of urban flooding has become a top 

priority in urban disaster management strategies. An 

effective approach to addressing this concern is urban 

flood risk assessment, which is a valuable tool for 

identifying risk levels and the primary factors 

contributing to flooding in various areas. This 

assessment forms the foundation for developing 

strategies to prevent and mitigate urban flooding floods. 

In an era marked by significant advancements in earth 

observation technology and computational capabilities, 

there is a growing emphasis on large-scale flood 

mapping and flood risk assessment. Integrating machine 

learning methods into these processes is becoming 

increasingly prevalent, leveraging rapid advancements in 

earth observation and computing technology 

capabilities. 

 

The AHP method, enhanced with D-numbers, is 

commonly referred to as D-AHP. This approach has been 

successfully applied in various contexts, including 

vendor selection [9] and the evaluation of curtain 

grouting effectiveness [10]. The AHP method enhanced 

with D-numbers preserves the simplicity of AHP 

calculations and the clarity of hierarchical logic, while 

effectively addressing the adverse effects of uncertain 

and incomplete evaluation information. As a result, the 

Disaggregation Analytic Hierarchy Process (D-AHP) 

method was chosen to determine the significance of 

indices in assessing the risk of urban flooding in this 

research. Once the criterion weights are established, the 

next step involves categorizing the level of flood risk. 

Thoughtful assessment of risk levels is a critical stage in 

urban flood risk assessment, and clustering algorithms 

provide a data-driven methodology capable of 

categorizing data in the absence of explicit 

categorization standards. Xu and colleagues [12] utilized 

the k-means clustering technique to evaluate flood 

vulnerability classification in Haikou City, China, 

achieving satisfactory results. However, constraints of 

the k-means algorithm were identified [11]. Importantly, 

the number of clusters must be predetermined, which can 

be challenging in the initial stages of grouping. 

Furthermore, since the starting cluster center is chosen 

randomly, the outcome of each iteration is heavily 

influenced by this initial selection. 

 

However, the methodologies mentioned earlier 

assumed complete evaluation information. In practice, 

expert evaluations within the Analytic Hierarchy Process 

(AHP) inherently introduce uncertainties such as 

imprecision, vagueness, and incompleteness, stemming 

from subjective judgments made by individuals. For 

example, during the pairwise comparison of index 

importance, two typical scenarios can occur: (i) lack of 

consensus among experts resulting in divergent 

evaluations, and (ii) cases where some experts may 

refrain from providing evaluations due to differences in 

their respective research domains. In such situations, 

traditional AHP methods may prove impractical or 

produce unsatisfactory evaluation results. To tackle the 

challenge of uncertain information, Deng et al. 

introduced the theory of D-numbers, which extends the 

Dempster-Shafer evidence theory—a framework widely 

employed in information fusion systems. The theory of 

D-numbers successfully overcomes the constraints of the 

Dempster-Shafer evidence theory in handling ambiguous 

data. Unlike the Dempster-Shafer theory, it does not 

necessitate the fulfillment of the completeness constraint 

for the basic probability assignment (BPA) and can 

effectively manage incomplete data. Therefore, the fuzzy 

preference relationship extended by D-numbers serves as 

a representation of the decision matrix resulting from 

pairwise comparisons made by AHP experts, providing 

a solution to challenges arising from uncertain evaluation 

information [13]. 

 

This section is dedicated to generating a map 

indicating areas prone to flooding utilizing the Analytic 

Hierarchy Process (AHP) and Geographic Information 

System (GIS) software. The Analytic Hierarchy Process 

(AHP) is a straightforward yet powerful decision-making 

process approach enabling decision-makers to 

systematically and objectively prioritize and assess 

various criteria. In the context of AHP, four factors 

rainfall pattern, elevation, proximity to the river, and 

Land Use and Land Cover (LULC) were considered. 

These elements were reclassified into five risk 

categories, comprising the spectrum of risk including 
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gradations such as minimal, low, moderate, high, and 

maximal risk. 

1) The precipitation arrangement serves as a 

pivotal cause associated with inundation, 

amplifying the volume of hydrological flow 

within riverine and stream environments, 

leading to an inundation of the magnitude, 

duration, and spatial dispersion of precipitation 

occurrences impacting the nearby regions are 

critical factors influencing the magnitude and 

scope of inundation. 

2) Elevation, synonymous with altitude relative to 

sea level, is a crucial determinant of flood 

vulnerability. Low-lying areas are more 

susceptible to inundation as they are prone to 

water accumulation. The elevation of a location 

significantly influences its vulnerability to 

inundation. 

3) Proximity to the river is a decisive factor 

influencing flood susceptibility in a specified 

region. Regions situated proximate to a river 

face a heightened likelihood of flooding, since 

water may inundate from the river channel 

during periods of elevated flow. Conversely, 

locations situated at a greater distance from a 

river typically exhibit a diminished risk of 

flooding owing to a decreased probability of 

river overflow impacting them. 

4) Land Use and Land Cover (LULC) plays a 

pivotal influence in shaping the frequency and 

severity of flood occurrences. Regions 

accompanied by significant amounts of 

impermeable surfaces, like those found in urban 

environments areas, face an increased 

likelihood of inundation because of heightened 

surface runoff during periods of intense 

precipitation. In contrast, areas with indigenous 

vegetation or porous surfaces, like woodlands 

or prairies, exhibit a decreased risk of flooding 

as they have the capacity to absorb and retain 

water. Alterations or changes in Land Use and 

Land Cover (LULC), including activities such 

as deforestation, urbanization, or agricultural 

expansion, may modify related to water systems 

phenomena within a locality, exacerbating the 

likelihood of inundation. 

 

Additionally, the regularity ratio The coherence 

(CR) of weights, as expressed in Equation (4-2) provided 

below, served to assess and ascertain the scientific 

validity of the comparison matrix. 

 

In Equation (4-1), λ𝑚𝑎𝑥 λ max denotes the 

highest eigenvalue associated with the comparison 

matrix, and n represents the arrangement pertaining to 

the comparison matrix, which equals 4 in this study. In 

Equation (4-2), RI signifies the random nature 

consistency indicator, with its value determined 

according to the arrangement of the comparison matrix; 

for this work, RI is 0.8931. The computed Consistency 

Ratio of 0.1, derived as per the equation (4-2) suggests 

indicating that the matrix for pairwise comparisons 

employed in this research is deemed plausible and 

scientifically sound. 

 

Subsequently, the weights for each factor in the 

Analytic Hierarchy Process (AHP) were calculated using 

Equation (4-3). In Equation (4-3), the variable n remains 

consistent with its definition in Equation (4-1) and also 

w denotes the weight assigned to every single 

component. The variables i, j, k represent the 𝑖𝑡ℎ , 𝑗𝑡ℎ , 𝑘𝑡ℎ 

values, ranging from 1 to n. Consequently, the 

importance coefficients attributed regarding absolute 

rainfall patterns elevation, Distance from the river, as 

well as Land Use and Land Cover (LULC) were 

determined as 0.62, 0.05, 0.09, and 0.25, 

correspondingly. 

 

Finally, AHP was employed to produce the 

ultimate flood risk map utilizing the prescribed formula 

and corresponding weights: where R_a, H, R_i, L 

represented the rainfall pattern, absolute height, distance 

from the river, and land use and land cover (LULC) 

characteristics, in sequence. The resultant flood risk map 

generated through AHP analysis was stratified into five 

distinct risk levels, from minimal to maximal risk. For a 

comprehensive understanding of the correlation between 

the flood monitoring results and the flood risk map, In 

this investigation, Pearson correlation coefficients and 

associated P-values were employed to validate their 

relationship. Pearson correlation coefficients may be 

depicted. In Equation (4-5), 𝑋𝑖 , 𝑌𝑖 are the i-point 

observations corresponding to variables X, Y, and �̅�, �̅� 

are these represent the averages of X, Y samples, 

respectively. r is the correlation coefficient and n is the 

overall sample count. Besides, The P-values can be 

computed using the above equation (4-6). CDF 

represents the cumulative distribution function. t refers 

to the t-statistic, which can be specified. Where r, n are 

the correlation coefficient derived from Equation (4-5) 

and the total number of samples, respectively. 

Specifically, the correlation coefficient quantifies the 

extent of the linear relationship between the two 

variables, with values ranging between -1 and 1. A value 

of 1 denotes a perfect positive linear correlation, 

Meanwhile, a value of -1 signifies a perfect negative 

linear correlation. The P-value quantifies the likelihood 

of observing a correlation coefficient as extreme as the 

one obtained by chance, assuming the absence of a 

genuine correlation between the two variables. A P-value 

below a certain threshold (e.g., 0.05) indicates statistical 

significance of the correlation, implying that its 

occurrence is improbable by chance. 

 

II. RELATED WORKS 
2. 1. AHP Flood Risk in Remote Sensing 

Flood mapping is essential for decision-making 

processes related to such events, as it aids in risk 

management, near real-time forecasting, and the 

management of land use and land cover (LU/LC). The 
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complexity of floods as multi-dimensional dynamic 

phenomena has prompted the widespread use of 

geographic information system (GIS) and remote sensing 

(RS) data to delineate the extent of flooded areas. 

Ensuring near-real-time flood monitoring is vital for 

effective mitigation and control of their impact [14]. 

Research conducted by Sofia et al [15], emphasizes the 

importance of cumulative flood hazard delineation, 

considering environmental degradation and climate 

change factors associated with LU/LC changes, to 

enhance monitoring capabilities. However, pixel-based 

flood analysis requires significant time and processing 

power to achieve near-real-time assessment. Flood 

vulnerability assessment combines inundation extent 

with social data to identify communities most at risk for 

property damage and loss of life. In developed countries 

with high population density, flood exposure, and 

vulnerability are currently mapped using hydrodynamic 

inundation models combined with high-resolution 

population distribution data. Different models, such as 

the adaptive neuro-fuzzy inference system for landslide 

susceptibility in Qazvin Province, Iran [16], hydraulic 

modeling to estimate unsaturated soil hydraulic 

conductivity [17], and the Soil and Water Assessment 

Tool (SWAT) integrated into ArcGIS software 

environment [18], are used for flood susceptibility 

estimation. Deep learning methods such as artificial 

neural networks (ANNs), fuzzy logic, support vector 

machines (SVM), random forest classification, 

regression trees (RTs), and classification and regression 

trees (CART) algorithms [19], have considerable 

potential for accurate flood mapping and monitoring. 

Although artificial neural networks (ANNs) are 

extensively utilized for flood susceptibility mapping, 

they have been noted for drawbacks such as over-fitting, 

under-fitting, slow learning, the curse of dimensionality, 

and slow convergence to a local optimum. Moreover, its 

capability to handle complex hydrological phenomena 

has been found inadequate. Tellman et al [20] introduced 

an innovative approach to flood modeling, utilizing 

satellite imagery within a cloud computing-enabled 

Google Earth Engine (GEE) system. This methodology 

enables real-time mapping of flood hazards through the 

generation of a globally consistent flood inundation layer 

and the dynamic modeling of flood-susceptible areas. A 

cloud computing GEE-based Flood Prevention and 

Emergency Response System (FPERS) was successfully 

developed and implemented for three key scenarios: pre-

flood, post-flood, and during flood events caused by 

typhoons or torrential rain in China from 2013 to 2016 

[21]. For creating a specialized decision-making 

framework in flood susceptibility mapping, the 

analytical hierarchy process (AHP) emerges as the 

preferred technique [22]. Within the AHP, various flood 

vulnerability parameters are systematically ranked based 

on their impact, employing Pairwise Comparison 

Matrices (PCMs) [23]. This selected methodological 

framework captures the cumulative nature of each 

criterion, proving effective in generating flood data 

across spatial scales, including local, regional, and 

national levels. Bihar, characterized by numerous rivers, 

is identified as a flood-prone region, constituting 16.5 

percent of the total flood area and housing 22.1 percent 

of the flood-affected population in India [24]. 

 

2.2. The cloud computing-enabled Google Earth 

Engine (GEE) system 

Google Earth Engine (GEE) is a cloud-based 

computing platform that leverages Google's 

infrastructure to facilitate the retrieval and processing of 

geospatial data [25]. Access to this platform requires an 

account, and it is provided free of charge for educational 

and research purposes. The overarching goals of GEE 

include: (i) creating a dynamic platform for developing 

algorithms at a large scale; (ii) promoting high-impact 

research through free and open access; and (iii) 

contributing to global initiatives addressing the demand 

and management of big data [26]. GEE features a vast 

petabyte-scale catalog that consolidates data from 

diverse sources such as Landsat, Sentinel, and MODIS 

satellites, along with information on climate models, 

temperature, and geophysical data characteristics [27]. 

Its user-friendly interface includes a code editor 

(available at https://code.earthengine.google.com/, last 

accessed on January 30, 2023), functioning as an 

integrated development environment (IDE) for algorithm 

development using the JavaScript programming 

language [28]. The platform also supports Python, 

facilitated through the Earth Engine library [29]. 

Furthermore, it includes a streamlined interface called 

"Explorer" (accessible at 

https://explorer.earthengine.google.com/ workspace, last 

accessed on January 30, 2023), tailored for users who 

have limited programming experience. Both interfaces 

facilitate importing local data and exporting information 

for further processing or visualization within geographic 

information systems (GIS) software, such as QGIS 

(Version 3.28) and ArcGIS Pro (Version 3.1.2), among 

others. 

 

Research methodologies continually evolve and 

innovate to construct knowledge [30]. Within the realm 

of geoscience and remote sensing, Google Earth Engine 

(GEE) has emerged as a potent tool for remote sensing, 

finding diverse applications across domains such as 

agricultural productivity, vegetation monitoring, 

grassland monitoring, mangrove mapping, land use, and 

cover, risk and disaster management, islands of heat, 

surface temperature [31]. The myriad applications 

underscore the GEE platform’s capacity to handle 

extensive datasets, thereby contributing significantly to 

the advancement of scientific research [32]. Numerous 

researchers have scrutinized the diverse applications of 

GEE in recent years. Kumar and Mutanga conducted an 

analysis of literature published between 2011 and 2017 

to elucidate the platform’s uses, trends, and potential 

since its inception. In a different vein, Tamiminia et al 

undertook a systematic review of GEE in geographic big 

data applications. Bibliometric analysis, employed in 

these studies, serves to identify gaps and research 

https://code.earthengine.google.com/
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directions within a specific area. Furthermore, it yields 

objective results that enhance our understanding of the 

impact and influence of the knowledge area, discerning 

the evolution of publications. The methodology involves 

processing bibliographic information, constructing 

structural maps of the fields, and conducting quantitative 

analyses of existing academic literature. In recent years, 

there has been a notable surge in the number of 

publications utilizing Google Earth Engine (GEE). In 

light of this trend and recognizing its significance, this 

research is dedicated to generating knowledge through a 

bibliometric approach, specifically employing GEE as a 

focal point. The aim is to derive a quantitative and 

comprehensive assessment of the topic by conducting 

citation, co-citation, and co-occurrence analyses. 

Moreover, the research endeavors to assist researchers in 

comprehending the progress within this domain, 

pinpointing proposed works, and fostering innovation in 

future applications. 

 

2.3. The Rainfall, DEM, Stream, and LULC 

Several well-documented methodologies for 

evaluating flood risk include the application of physical 

process-based models, notably hydrological models like 

WATFLOOD. These methods include techniques such 

as continuous simulation using rainfall-runoff models 

[33], and statistical methods, such as fitting a probability 

distribution function to a dataset of annual maximum 

values (as illustrated in). While both physical-based 

(mechanistic) and statistical models have proven robust 

in flood modeling, their effectiveness relies on the 

availability of streamflow observations for model 

calibration and validation. However, challenges arise 

when observational records are either completely 

unavailable, accessible for only a limited timeframe, or 

contain data gaps, thus limiting their full potential for 

flood risk assessment modeling [34]. To overcome these 

challenges, the integration of advanced geospatial 

technologies like Geographic Information Systems (GIS) 

and remote sensing, combined with the application of 

machine learning algorithms, has greatly improved flood 

risk assessment. Prominent examples of these algorithms 

include maximum entropy (MaxEnt) and random forest 

(RF) [35], K-nearest neighbor (K-NN), decision tree 

(DT), fuzzy rule-based systems (FRBS), artificial neural 

networks (ANN), deep neural networks (DNN), adaptive 

neuro-fuzzy inference system (ANFIS), and support 

vector machine (SVM). These technologies are 

particularly advantageous for assessing flood risk in 

areas where comprehensive hydraulic and hydrological 

data are not readily available [36]. 

 

III. PROPOSED METHOD 
3.1. Flood Risk Map in Vientiane Capital, Laos 

This section aims to generate a flood risk map 

using the AHP and GIS software [37]. AHP is a 

straightforward yet powerful decision-making 

methodology that enables decision-makers to 

systematically and objectively prioritize and evaluate 

multiple criteria. This method entails creating a hierarchy 

of criteria and alternatives, assigning numerical values to 

each criterion, and employing pairwise comparisons to 

establish the relative importance of each criterion. Four 

elements, namely rainfall pattern, absolute height, 

distance from the river, and LULC were considered in 

AHP and reclassified into five classes: minimal risk, low 

risk, moderate risk, high risk, and maximal risk. As 

depicted in the flowchart of Figure 2, the study area is 

Vientiane Capital, Laos of Figure 1. 

 

 
Figure 1: The study area is Vientiane Capital, Laos 
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Figure 2: Flow chart of Model-Based Flood Forecasting Method 

 

 
Figure 3: Flow chart of Model-Based Flood Risk Method 

 

1) Rainfall pattern is a crucial factor in flooding, as it 

raises the water levels in rivers and streams, leading to 

their banks overflowing and flooding adjacent areas. The 

intensity, duration, and spatial distribution of rainfall 

events significantly influence the severity and extent of 

flooding, as illustrated in Figure 4. 
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Figure 4: Rainfall in Vientiane Capital, Laos 

 

2) Absolute height, or elevation above sea level, is a 

critical factor in determining flood risk. Low-lying areas 

are more susceptible to flooding because water tends to 

accumulate there, as shown in Figure 5. 

 

 
Figure 5: DEM in Vientiane Capital, Laos 

 

3) Distance from the river is a significant determinant 

of flood risk in a specific region. Areas in close proximity 

to a river face heightened flood risks, as river channels 

can overflow during periods of high flow. Conversely, 

areas situated farther from a river generally experience 

lower flood risks due to the reduced likelihood of river 

overflow impacting them. This relationship is illustrated 

in Figure 6. 

 

 
Figure 6: Stream in Vientiane Capital, Laos 
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4) LULC significantly influence the frequency and 

severity of flood events. Areas dominated by impervious 

surfaces, such as urban areas, are more susceptible to 

flooding due to increased runoff during intense rainfall. 

Conversely, regions with natural vegetation or 

permeable surfaces like forests or grasslands experience 

lower flood risk, as they can absorb and store water. 

Changes in LULC, such as deforestation, urban 

development, or agricultural expansion, can modify local 

hydrological processes and escalate flood risks. This 

relationship is depicted in Figure 7. 

 

 
Figure 7: LULC in Vientiane Capital, Laos 

 

The initial stage of AHP involved establishing 

the pairwise comparison matrix. Based on the 

importance of each element related to induced flooding 

as outlined in Table 1, the pairwise comparison matrix 

for this study is illustrated in Figure 8. Each value in the 

matrix denotes the relative importance between two 

factors. 

 

 
Figure 8: Pairwise comparison matrix 
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Table 1: Pairwise importance 

Value Importance 

1 Equally significant 

3 Marginally more significant 

5 Moderately more significant 

7 Considerably more significant 

9 Substantially more significant 

2,4,6,8 The median value of the aforementioned 

Reciprocal If A/B is 3, then B/A is 1/3 

 

Moreover, the consistency rate (CR) of weights, 

shown in Equation (4-2) below, could test and determine 

whether the comparison matrix is scientific. 

𝐶𝐼 =
λ𝑚𝑎𝑥 − 𝑛

𝑛−1
 …………….. (1) 

 

In Equation (4-1), λmax is the maximum 

eigenvalue of the comparison matrix, n is the order of the 

comparison matrix and it is 4 in this work. 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 ………………. (2) 

 

In Equation (2), RI represents a random 

consistent index and its value is determined based on the 

order of the comparison matrix. RI is 0.8931 in this work. 

The calculated CR of 0.1 from Equation (2) indicated 

that the pairwise comparison matrix used in this study 

was reasonable. 

 

Then, the weights of each factor in AHP could be 

calculated by the Equation (3) below: 

𝑊𝑖 =
1

𝑛
 ∑

𝑎𝑖𝑗

∑ 𝑎𝑘𝑗
𝑛
𝑘=1

𝑛
𝑗=1  , (i=1, 2…, n) …… (3) 

 

In Equation (3), n is same as Equation (1), and 

w is weight of each element. i, j, k are ith, jth, kth values 

from 1 to n, respectively. As a result, the weights 

assigned to Rainfall pattern, Absolute height, Distance 

from river, and LULC were 0.62, 0.09, 0.25, and 0.05, 

respectively. Finally, AHP was used to generate the final 

flood risk map with the following formula and weights: 

Flood_risk = (R_a × 0.62) + (H × 0.09) + (R_i 

× 0.25) + (L × 0.05) …………. (4) 

 

Where R_a, H, R_i, L represent rainfall pattern, 

absolute height, distance from river and LULC, 

respectively. The resulting flood risk map of AHP was 

divided into five levels of risk, ranging from minimal to 

maximal risk. 

 

3.2. Correlation analysis 

To comprehend the relationship between the 

flood monitoring result and flood risk map, this study 

adopted the Pearson correlation coefficients and P-values 

to verify their relationship. Pearson correlation 

coefficients could be represented as followed: 

𝑟 =
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑋𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑌𝑖−�̅�)2𝑛

𝑖=1

 ……………. (5) 

 

In Equation (5), Xi, Yi are the i-point 

observations corresponding to variables X, Y, and X¯, Y  ̄

are the the average of X, Y samples, respectively. r is 

correlation coefficient and n is the total number of 

samples. 

P = 2 × (1 − CDF(|t|))……………… (6) 

 

Besides, the P-values can be calculated 

following the Equation (6) above. CDF represents the 

cumulative distribution function. t means the t-statistic, 

which could be defined as: 

𝑡 = 𝑟 × √
𝑛−2

1−𝑟2 ……………..……… (4-7) 

 

Where r, n are the correlation coefficient from 

Equation (5) and the number of total samples, 

respectively. Specifically, the correlation coefficient 

represents the degree of linear relationship between the 

two variables, with values ranging from -1 to 1. A value 

of 1 indicates a perfect positive linear correlation, while 

a value of -1 indicates a perfect negative linear 

correlation. P-value, measures the probability of 

observing a correlation coefficient as extreme as the one 

obtained by chance, assuming that there is no true 

correlation between the two variables. The P-value 

below a certain threshold (e.g., 0.05) indicates that the 

correlation is statistically significant, meaning that it is 

unlikely to have occurred by chance. 

 

First of all, we generated the flood risk map, 

shown in Figure 9, and ranked risks into 5 classes 

(minimal risk, low risk, moderate risk, high risk, 

maximal risk) employing the AHP methodology of 

section. Then, we utilized Pearson correlation analysis as 

the chosen statistical approach to quantify the 

relationship between the flood risk map and the flood 

monitoring result in the Vientiane sub region of Figure 

9. As a result, the final correlation coefficients and P-

values from 2018 to 2022 are presented in Figure 10. The 

mean values of correlation coefficients and P-values in 

five years were assigned to 0.7144 and 0.021, 

respectively 
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Figure 9: Flood risk map of Vientiane Capital, Laos 

 

 
Figure 10: Correlation between flood risk map and flood monitoring map, from 2018 to 2022 

 

IV. DISCUSSION 
Additionally, supplementary data such as 

rainfall records, digital elevation models (DEMs), river 

networks, and proximity to waterways were integrated 

into the AHP methodology. This provided a 

comprehensive understanding of the factors influencing 

flood occurrences and enabled the creation of a more 

precise flood vulnerability map. The effectiveness and 

scientific rigor of the proposed approach were validated 

using Pearson correlation analysis, which examined the 

relationship between flood vulnerability and flooding 

outcomes. Additionally, the research included a 

comprehensive examination of flood occurrence and its 

effects within the study area at macroscopic, mesoscopic, 

and microscopic scales. This methodology demonstrated 

its efficacy and academic robustness, making it a 

valuable tool for evaluating and monitoring flood risk in 

other regions. 

 

A meticulous manual annotation process was 

employed to generate validation data for a specific area 

in Vientiane. The comprehensive accuracy evaluation of 

the identified flood regions clearly demonstrated their 

exceptional reliability and precision. 

 

V. CONCLUSION 
The flood risk level was evaluated using the 

Analytical Hierarchy Process (AHP) method, 

incorporating essential data such as rainfall, digital 

elevation models (DEMs), and river networks. Next, a 

correlation analysis was performed to compare flood 

detection results with the flood risk map. Notably, the 
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proposed methodology demonstrated outstanding 

efficiency; the methodology achieved an average 

correlation coefficient of 0.7144 over a five-year period, 

indicating a substantial level of precision in forecasting 

flood risk levels. Importantly, the examination was 

conducted using data collected from various geographic 

areas, highlighting the strength and versatility of the 

proposed approach. Furthermore, the Analytical 

Hierarchy Process (AHP) technique helped precisely 

identify the factors influencing flood risk, enhancing the 

understanding of the mechanisms driving flood 

vulnerability. 
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