
Citation: Gebriel M. Shamia & Ala Eddin Al-Shareef. Distributional Properties of Generalized Diversity Index Based on 

two-key Species Abundance Models. Sch Acad J Biosci, 2024 Oct 12(9): 317-326. 

 

317 

  

Scholars Academic Journal of Biosciences                 

Abbreviated Key Title: Sch Acad J Biosci 

ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online)  

Journal homepage: https://saspublishers.com  

 

 

Distributional Properties of Generalized Diversity Index Based on two-

key Species Abundance Models 
Gebriel M. Shamia1*, Ala Eddin Al-Shareef2 

 

1Department of Statistics, Faculty of Science, University of Benghazi, Benghazi, Libya 
2Institute of Science and Technology, Benghazi, Libya 
  

DOI: https://doi.org/10.36347/sajb.2024.v12i09.006               | Received: 03.09.2024 | Accepted: 07.10.2024 | Published: 26.10.2024 
 

*Corresponding author: Gebriel M. Shamia 

Department of Statistics, Faculty of Science, University of Benghazi, Benghazi, Libya 
 

Abstract  Original Research Article 
 

In the area of ecological research, the study of species diversity of a community or population seems to have been fully 

developed. However, the problem of how the distributions and expectations of the sample diversity indices are affected 

by population diversity has received little attention. This paper is concerned with methods of moments of improved 

generalized diversity index, N(α,β) due to Shamia's (2013) proposal which includes special cases. This improved index 

is a further generalization due to Good as described by Backowski et al., (1997). In this article, the first four central 

moments of N(α,β) are derived for both general species relative abundance models: the Broken-Stick model and 

Sequential-Breakage model within a range of (α,β) considered. This allows the determination of the skewness and 

kurtosis of N(α,β) and thus gives information about the behaviour of the distribution of the improved index. The results 

are applied for comparing the diversities of the communities based on the samples n>s, and they yielded certain desirable 

monotonicity properties for large samples. It can be also shown that such indices are asymptotically normally distributed. 
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1. INTRODUCTION 
Improvement of some diversity indices is 

important to find meaningful measures that describe the 

systems under study. In addition, any diversity measure 

is a function of the species abundances in the community, 

which are usually unknown quantities. Accordingly, the 

abundances are estimated basis on suitable sampling 

strategies that can handle the problems arising when 

working with ecological communities as well as ensuring 

good statistical properties.  

 

Bowman et al., (1971) showed that the 

distribution of Shannon’s index for the broken-stick 

model is asymptotically normal for general species 

relative abundance. When the species relative 

abundances are equiprobable, the distribution can be 

modelled as chi-squared. Lyons and Hutcheson (1979) 

derived the first four moments of Simpson’s index of 

diversity and examined the distribution of the index 

when the relative abundances follow a geometric series. 

Bhargava and Uppuluri (1976, 1977) derived the mean 

and variance of Gini’s index; the complement of 

Simpson’s index. 

 

 

Shamia (1997) suggested a generalized 

diversity index, H(α,β), due to Good’s index (1953) and 

discussed its optimal bounds of (α,β) for ecological 

applications. Further results, such as large-sample 

normality and related issues, are contained in Backowski 

et al., (1998).  

 

Baczkowski et al., (2000) derived the rth 

moments of both a general species abundance and 

equiprobable case and examined the distribution of the 

index, H(α,β), for fitting a Pearson system of curves. 

 

Skewness and kurtosis reveal significant 

insights about the nature of distributions. This study 

aimed to provide a methodology for deriving the four 

central moments of the estimator for a diversity index 

belonging to what is known as the improved index, 

N(α,β) to study the power or effectiveness of the 

ecological models from a statistical standpoint.  

 

1.1 Generalized diversity index in ecology 

The use of families of indices has a long history 

in ecology, see Lövei (2005) and Tóthmérész (1995). In 

the 1970s of the last century, Hill (1973) proposed a 

family of diversity indices that may be interpreted as 

Statistics 

https://www.jstor.org/topic/diversity-indices/
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mean numbers of species, see Jost (2006). These 

numbers can be written in an entropic form as: 

𝑁𝛼 = { ∑ 𝜋𝑖
𝛼

𝑠

𝑖=1

}

1/(1−𝛼)

 ; 𝛼 ≥ 0, 𝛼 ≠ 1. 

 

The parameter α determines the sensitivity of 

the measure to the relative frequencies. When α=0, the 

abundances of individual species do not contribute to the 

sum in the above equation. Rather, only presences are 

counted, so that N0 is simply species richness. For α=1, 

the above equation is undefined, but its limit as α tends 

to one is the exponential of the familiar Shannon index, 

referred to here as Shannon diversity: 

𝑁1 = 𝐸𝑥𝑝 { − ∑ 𝜋𝑖{𝑙𝑜𝑔(𝜋𝑖)}

𝑠

𝑖=1

} . 

 

The variable N1 weighs species in proportion to 

their frequency. When α=2, N2 yields Simpson diversity, 

the inverse of the Simpson concentration is as follows: 

𝑁2 = { 1 ∑ 𝜋𝑖
2

𝑠

𝑖=1

⁄ } . 

 

This places more weight on the frequencies of 

abundant species and discounts rare species. 

Investigators using Hill numbers should report, at least, 

the diversity of all species (α=0), of ‘‘typical’’ species 

(α=1), and dominant species (α=2).  

 

Patil and Taillie (1979) proposed a parametric 

diversity index family β. In (1982) they called it the 

diversity index of degree β, in the form 

∆𝛽=
1

𝛽
{1 − ∑ 𝜋𝑖

𝛽+1

𝑠

𝑖−1

} ; 𝛽 ≥ −1, 𝛽 ≠ 1. 

 

This equation interpolates the well-known 

Simpson index for β=1, and when (β+1) tends to one, it 

interpolates the well-known Shannon-Wiener index. 

 

From this family, a critical discussion of these 

indices was made by Jost (2006). A new index, Sq, was 

introduced as a unified way to measure ecological 

diversity and species rarity as special diversity and 

evenness indices that balance commonness and rareness, 

a practice still unemployed by ecologists. It is based on 

Patil and Tallies (1979, 1982) indices and the 

corresponding evenness. 

𝑆𝑞 =
1

(1 − 𝑞)
{1 − ∑ 𝜋𝑖

𝑞

𝑠

𝑖−1

}. 

 

In general, a desirable measure of diversity has 

to take all the relevant aspects that characterize 

ecological systems into account, from richness to species 

dominance. 

 

Good (1953) outlined a generalized diversity 

index that incorporates richness and evenness into a 

single value that generally increases with both richness 

and evenness.  

𝐻(𝛼, 𝛽) = ∑ 𝜋𝑖
𝛼

𝑠

𝑖=1

{−𝑙𝑜𝑔(𝜋𝑖)}𝛽. 

 

Where πi is the relative abundance of taxon-i 

(species-i), such that 0≤πi≤1, ∑πi=1, and S is the total 

number of species present in the community, and (α,β) 

define structures of the algorithm. It was defined for non-

negative integer values of  and  which included as 

special cases for both H(1,1),  Shannon’s (1948) index, 

and H(2,0), related to Simpson’s (1949) index. 

 

In practice, when the abundance data are 

available, the relative abundance can be estimated by 

using the maximum likelihood estimator 

)/(ˆ nnp iii == . 

 

Within this framework, Shamia (1997) 

proposed a further generalization of H(α,β), defined for 

real values of (α,β), and discussed its optimal bounds. 

For 0 <α≤0.3267 the valid region for rare species is given 

by 0≤β≤4α(1-α), while for 0.3267<α≤1.000 the valid 

region for β satisfies 

0≤β≤0.153426+0.693147α+½√(0.094159+2.772589α). 

For H(α,β) it consists of the region α≥1 and β≤0 for 

common species. The case with (α,β) equal to (1,0) is 

excluded. Baczkowski et al., (1998) determine the range 

of values (α,β) for which H(α,β) satisfies two key 

properties of Pielou (1975, p.7). 

 

A short review of diversity measures is given, 

then the rest of this paper is organized as follows: a brief 

discussion of the Subject and Method are provided in 

Section-2 whereas in Section-3 we deal with 

Methodology for Deriving Moments of N(α,β); say IGDI, 

including the Results for General Abundance 

Distributions. Section-4 presents the Simulation and 

Empirical evaluation of the measures. Finally, Section-5 

contains the Summary and Conclusions. 

 

2. SUBJECT AND METHOD 
A commonly used approach is that of rank-

abundance distributions in ecology. Favoured, 

biologically founded models, e.g., the geometric series 

model, the broken-stick model (see; Magurran, 1988; 

Wilson, 1991; Magurran, 2004), and the sequential-

breakage model of Sugihara (1980). 

 

In this work, asymptotic moments of the 

estimator ( ) ,N̂  have been derived which is a 

developed measure from generalized diversity due to 

Good (1953) by Shamia (1997) and Baczkowski et al., 

(1997). It is sufficient to evaluate the skewness and 

kurtosis, which were examined by analysing simulated 

communities generated under the broken-stick model 

due to MacArthur (1957) and the distribution of 

commonness and rarity is hypothesized to reflect 
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“minimal structure” in biological communities, 

statistically, it has a link with canonical log-normal; 

namely sequential-breakage model due to Sugihara 

(1980). 

 

It is not possible to recommend a single index 

as superior to all the others and choosing the appropriate 

index depends on what sort of question is being asked. 

Furthermore, studies dealing with the topic of 

community comparison utilizing diversity indices 

concluded that no single diversity index adequately 

summarizes community structure (see Hurlbert, 1971). 

Thus, a family of indices whose members have varying 

sensitivities to the rare and common species may be used. 

 

In this context, it is proposed to be conducted 

some mathematical and applied investigations to the 

range of values (α,β) of the biodiversity index, N(α,β). 

As well as deriving moments and studying the power or 

effectiveness of the models in terms of statistical 

amended. 

 

So, we are dealing with an Improved 

Generalized Diversity Index (IGDI), N(α,β), which is 

satisfying the key properties due to Pielou (1975, p.7) 

and other desirable properties due to Rutledge (1979, 

p.511). High index scores indicate both high species 

richness and a more equal distribution of individuals 

among species. 

 

Suppose that the relative abundances in the 

community of the s species are s ,...,, 21 . Then the 

improved generalized diversity index of (α,β), which 

gives more weight to the rare than to common for 

(0<α≤1,β≥0) otherwise it gives more weight to the 

common than to the rare for (α≥1,β≤0), is given by 

 

𝑁(𝛼, 𝛽) = { 
𝐻(𝛼, 𝛽)

(ln 𝑠)𝛽
}

1
1−𝛼

 ;  𝛼 > 0, 𝛼 ≠ 1, 𝛽𝜖{−2.5,2.5}. 

𝑁(1, 𝛽) = 𝐸𝑥𝑝{ 𝐻(1, 𝛽)} 1/𝛽;  𝛼 = 1, 𝛽𝜖{−2.5,2.5}. 
 

If a sample of size n is available with in  the number of individuals of the ith species, where =
s

i

inn , then the relative 

abundance of species i can be estimated by nnp ii =  then the estimator of N(α,β) is given by 

�̂�(𝛼, 𝛽) = { 
ℎ(𝛼, 𝛽)

(ln 𝑠)𝛽
}

1
1−𝛼

 ;  𝛼 > 0, 𝛼 ≠ 1, 𝛽𝜖{−2.5,2.5}. 

 

�̂�(1, 𝛽) = 𝐸𝑥𝑝{ ℎ(1, 𝛽)} 1/𝛽;  𝛼 = 1, 𝛽𝜖{−2.5,2.5}. 
 

Where 

ℎ(𝛼, 𝛽) = ∑ 𝑝𝑖
𝛼

𝑠

𝑖=1

{−𝑙𝑛(𝑝𝑖)}𝛽. 

 

The central role of the exponential quantity 

gives the measure a privileged place as a measure of 

complexity and diversity in all of the sciences. Since a 

suitable transformation of ( )0,1  N , such as 

inverse or others, would not be required to satisfy the 

properties. It does not need to be borrowed from 

information theory but arises naturally from this 

formalism of number equivalents. 

 

The transformation N(α,0) gives the class of 

diversity index  for some positive 

values of α as Hill's (1973) index. 

 

These families of indices have satisfied 

additional properties such as consistency and 

monotonicity. In addition, the population indices have 

some desirable properties such as the addition of a new 

species increases the measure, and transferring 

abundance from a species to another one that is strictly 

less abundant increases the measure. High index scores 

indicate both high species richness and a more equal 

distribution of individuals among species. In fact, such 

transformations express the data in terms of the number 

of species and thus are more easily interpreted. The value 

of a traditional heterogeneity index with equal 

probabilities can be considered a richness measure. This 

is because these indices are monotone-increasing 

functions of the number of species s. Furthermore, these 

families of indices can be used as an equitability measure 

of species evenness for fixed s species. For more details, 

see Al-Shareef (2011) and Shamia (2013). 

 

In this paper, the transformation of H(α,β) with 

base (e) logs can be used, since it is more common and 

more convenient, see Magurran (1988). N(α,β) (IGDI) 

shows the same combined acceptable region as for 

H(α,β), particularly for the equiprobable model and 

broken-stick model due to MacArthur (1957). So, it is 

  ( )
  −= 1

1

iN
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sufficient to display the essential features of IGDI, 

N(α,β), for real arbitrary α and β for which satisfied the 

requirement properties of a diversity index and 

determining acceptable regions: Rare Species Region R1 

contained in the region α∈(0,1] and β ≥0 and Common 

Species Region R2, given by α ≥1 and β≤0. 

 

Deriving an asymptotic expression for the 

expectation of N(α,β) to terms of order four in relation to 

H(α,β) is given in two cases. 

 

3. Methodology for Deriving Moments of N(α,β) 

In this section, the moment coefficients of 

skewness, β1, and the kurtosis, β2 of N(α,β) can be 

evaluated. The second, third, and fourth central moments 

of ( ) ,N̂  are required. 

𝛽1 =
𝜇3

2

𝜇2
3  and 𝛽2 =

𝜇4

𝜇2
2. 

 

Where √β1 is often used as a measure of skewness and 

β2 is often used as a measure of kurtosis. It should be 

noted √β1 undergoes a significant change within 

acceptable regions (R1, R2). 

 

To evaluate the moment coefficients of 

skewness and kurtosis (β1,β2) of the improved index 

N(α,β), let us consider the first 4-central moments of the 

index H(α,β) due to Shamia (1997) and Baczkowski et 

al., (2000). The methodology used to derive the central 

moments of h(α,β) is presented in Baczkowski et al., 

(2000), in which derived the rth central moments for both 

a general species abundance and equiprobable case. 

 

Really, what is needed are the central moments of ( ) ,ˆ)( Nxf   about their mean E[f(x)]. Consequently, by 

using the Taylor series expansion at deriving an asymptotic expression, it can be written. 

    ).()()()()()()(
)4(

4

)3(

3

)2(

2 !4

1

!3

1

!2

1
 ffffxfxfExf −−−−−

 

 

Where f (r)(µ); r = 2, 3,4 denotes the rth differential of f (r)(µ) with respect to µ. 

 

Now let      rrr NENfxfD  ),(ˆ),(ˆ)()(  −−=  and taking the expectation gives, 

    ),()()()()(
)4(

4

)3(

3

)2(

2 !4

1

!3

1

!2

1
 ffffxfE +++

 

    , 
2

 
4
1

3
12

)()()()()()(
)2()3()1(

4

)2()1(

3

)1(

2

2





+++













  ffffffDE
 

   , 
2
3 )()()(

)2(2)1(

4

3)1(

3

3  fffDE 









 +
 
and

   .
4

)()1(4

4








  fDE

 

 

In this way, D r can be written in terms of powers µr’s. To do so let us write that: 

𝜇𝑟 = ∑(𝐶𝑟𝑘/𝑛𝑘)

𝑘=1

= (𝐶𝑟1/𝑛) + (𝐶𝑟2/𝑛2) + (𝐶𝑟3/𝑛3) + ⋯, 

 

Where Crk is the kth combination out of "r" cases. 

 

It can be shown in the general case that C11, C12, C31, and C41 are zeros. To derive the results, it is necessary to 

only evaluate µr up to terms 0(n-3). The results for Crk’s are given in Appendix (I). 

 

3.1. Results for general abundance distribution 

The results of mean, 2nd, 3rd, and 4th central moments of ( ) ,N̂  are given by 

 

Case –I: 

For deriving an asymptotic expression for the expectation of ( ) ,N̂  to terms of the order four at α≠1,  

( )
.1,

)(ln

1
;

)(lnln
),(ˆ

)1/(0

)1/(1

0)1/(

)1/(1
1/(1 )

),(










==








=








=
−

−

−

−
−












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s
CC

ss

h
N h

h
 

In addition,  

 

.  and,,,
)1(

)23(

)1(

)12(

)1()1(

1

4321 











 −

−

−

−

−−
==== CCCC
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Case –II: 

For deriving an asymptotic expression for the expectation of ( ) ,N̂  to terms of the order four at α=1,  
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If the relative abundances of the S species are 

all equal (equiprobable case);   /1/ˆ Snnp
iii

=== , then it 

can be shown C11, C12, C21, C31, C32, C41, and C42 are all 

zeros. 

 

To obtain the central moments of order r of bias, 

it is necessary to evaluate terms of up to 0(1/n3), 

obtaining, consequently, the moment coefficients of 

skewness and kurtosis (β1,β2) of N(α,β). 

In doing so, it is possible to select an 

appropriate un-equiprobable case as two key models 

considered here are the broken-stick model of 

MacArthur (1957) and a sequential- breakage model of 

Sugihara (1980) presents a distribution for the 

generalized diversity index, as shown in the next section. 
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4. Simulation Behaviour of the Distribution of 

Measures 

The moments of ( ),N̂  are evaluated for 

several different species abundance models. The two key 

models considered here are the broken-stick model and 

the sequential-breakage model. The simulation is set to 

an initial sample size of 100 with ten species from the 

population. 

 

Figure-1 gives the population proportions plot 

for the broken-stick model and the sequential-breakage 

model in the cases s=10 respectively. Do this several 

times, once you see how this works, you can speed things 

up by taking 1000 as a large community. 

 

 
Figure 1: Comparisons between the pattern of the broken-stick and sequential-breakage models of 10-species 

communities 

 

It is clear that the sequential-breakage model 

trend to predict the rarest species compared with the 

broken-stick model. However, the broken-stick model is 

the most common species abundance distribution model 

in biological diversity due to treatments. 

 

Tabulate the moments of ( ),N̂  for a range 

of α and β values for the broken-stick model and the 

sequential-breakage model with s=10 and sample size 

n=1000 produced, including the sample mean of 

( ),N̂ , the central moments µr for r=2;3;4, and the 

sample skewness β1 and kurtosis β2 of the improved 

index, by the R-programs, are given below. 

 

Tables (1.a) and (1.b) show asymptotic results, 

for a selection of values (α,β) in rare species region R1, 

for the mean of N(α,β), 2nd, 3rd, 4th moments, the 

coefficients of skewness β1 and kurtosis β2 of ( ),N̂  

index for the case of s=10 species and sample size 

n=1000 using the two key models respectively. Again, 

Tables (2.a) and (2.b) show asymptotic results, for a 

selection of values (α,β) in common species region R2. 

 

Table 1.a: Values of N(α,β) and the moments of ( ),N̂  with Broken-Stick Model in the acceptable region R1 

 1


 5

4
10  5

3
10

 5

2
10  

   

2.642 -0.234 8.236 -9.746 558.286 9.137 9.137 (0.25,0.25) 

2.670 -0.307 4.628 -8.234 416.312 9.317 9.317 (0.25,0.50) 

2.801 -0.106 59.463 -18.729 1457.107 8.305 8.305 (0.50,0.00) 

2.875 -0.124 139.224 -40.631 2200.467 7.954 7.954 (0.50,0.50) 

2.887 -0.207 141.952 -68.345 2217.497 8.161 8.160 (0.50,1.00) 

2.904 -0.041 133.512 -12.869 2144.279 7.683 7.682 (0.75,0.00) 

3.059 0.016 798.676 18.721 5109.437 6.056 6.053 (0.75,0.50) 

3.067 0.033 1297.028 54.578 6503.350 5.443 5.438 (0.75,1.00) 

3.324 0.031 314.063 16.614 3073.760 6.762 6.760 (1.00,0.50) 

3.203 0.004 210.549 1.612 2563.937 7.174 7.173 (1.00,1.00) 

 

 

 

 

2)(NE),( N),( 
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Table 1.b: Values of N(α,β) and the moments of ( ),N̂  with Sequential-Breakage Model in the acceptable region 

R1 

 1


 5

4
10  5

3
10

 5

2
10  

   

1.964 -0.292 60.699 -68.005 1757.881 8.171 8.171 (0.25,0.25) 

1.755 -0.382 51.188 -85.212 1707.598 8.520 8.520 (0.25,0.50) 

2.642 -0.068 148.138 -24.866 2367.904 6.668 6.667 (0.50,0.00) 

2.591 -0.091 366.048 -66.300 3758.986 5.978 5.977 (0.50,0.50) 

2.298 -0.212 552.512 -230.058 4903.644 6.374 6.372 (0.50,1.00) 

2.895 0.027 181.557 10.639 2504.074 5.661 5.660 (0.75,0.00) 

3.001 0.136 457.144 105.233 3902.772 3.153 3.148 (0.75,0.50) 

2.935 0.167 452.050 129.943 3924.522 2.543 2.537 (0.75,1.00) 

3.163 0.137 212.445 57.360 2591.549 4.287 4.283 (1.00,0.50) 

3.137 0.086 180.674 31.984 2399.898 4.931 4.929 (1.00,1.00) 

 

Table 2.a: Values of N(α,β) and the moments of ( ),N̂  with Broken-Stick Model in the acceptable region R2 

 1


 5

4
10  5

3
10

 5

2
10  

   

2. 897 0.133 887.811 173.641 5535.600 5.546 5.534 (1.00,-1.50) 

2.785 0.069 587.565 68.057 4593.576 6.074 6.067 (1.00,-0.50) 

2.790 0.424 1010.387 625.246 6017.829 1.887 1.867 (1.25,-1.00) 

2.979 0.037 283.757 19.871 3086.186 6.755 6.752 (1.25,0.00) 

2.726 0.429 1179.837 724.196 6578.299 2.052 2.028 (1.50,-1.50) 

2.838 0.148 1226.426 249.153 6573.429 4.555 4.544 (1.50,-0.50) 

2.725 0.243 1541.353 501.897 7520.563 3.602 3.584 (1.75,-1.00) 

2.988 0.090 415.064 64.460 3727.356 6.113 6.108 (1.75,0.00) 

2.983 0.115 472.719 91.006 3980.723 5.865 5.858 (2.00,0.00) 

2.965 0.166 570.586 152.543 4386.709 5.470 5.460 (2.50,0.00) 

 

Table 2.b: Values of N(α,β) and the moments of ( ),N̂  with Sequential-Breakage Model in the acceptable region 

R2 

 1


 5

4
10

 
5

3
10

 5

2
10  

   

2.860 0.413 138.218 134.450 2198.216 2.899 2.887 (1.00,-1.50) 

2.906 0.068 208.398 114.564 2677.706 3.389 3.381 (1.00,-0.50) 

2.515 0.877 0.662 5.728 162.200 0.175 0.169 (1.25,-1.00) 

2.993 0.125 166.414 45.198 2357.836 4.396 4.392 (1.25,0.00) 

2.516 0.824 1.515 10.017 245.379 0.253 0.246 (1.50,-1.50) 

2.880 0.355 138.543 115.437 2193.268 1.726 1.716 (1.50,-0.50) 

2.761 0.515 48.264 78.286 1322.150 1.051 1.040 (1.75,-1.00) 

2.988 0.195 130.071 58.735 2086.529 3.695 3.690 (1.75,0.00) 

2.978 0.226 113.644 61.814 1953.581 3.463 3.457 (2.00,0.00) 

2.951 0.284 87.127 63.991 1718.313 3.136 3.129 (2.50,0.00) 

 

From Tables (1.a) and (1.b), it can be seen that 

the values of N(α,β) and their expected in acceptable 

regions are close to each other for both models. 

However, for the broken-stick model, they are greater 

slightly than those for the sequential-breakage model for 

all selective values of (α,β) within the two regions.  

 

Statistically, it is known that if the coefficient of 

skewness lies between -0.50 and 0.50 then the 

distribution is fairly symmetrical. Consequently, it can be 

noted that in region R1 when α≤0.50 and β≤1.00 the 

coefficients of skewness give small negative values 

(close to zero), and for the kurtosis are close to three. 

Similarly, the same behaviour occurs when α>0.50 and 

β≥0.50. Kurtosis between 1.80 and 3.00 is considered 

acceptable to prove normal distribution. Then the 

distribution is approximately symmetrical and nearly 

mesokurtic. This suggests a Gaussian distribution, when 

using both key models. 

 

Again, the same conclusion can be drawn the 

distribution is nearly normal, in region R2 when α≥1.00 

and β≤0.00, specifically, for the case of the broken-stick 

model as the information shown in Tables (2.a) and (2.b). 

 

It is noted for values of 2nd, 3rd, and 4th central 

moments of ( ) ,N̂  in both regions (R1, R2) for the 

most values of (α,β) are very small. 

2)(NE),( N),( 

2)(NE),( N),( 

2)(NE),( N),( 
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The Pearson system of classifying distributions 

is based on the two parameters β1 and β2, see Pearson and 

Merrington (1951). In the acceptable regions using both 

key models, it can be seen that (β1,β2)≈(0,3), corresponds 

to a Gaussian distribution for (α,β)≈(1,1) including the 

Shannon index. Again, it is valid for (α,β)≈(α,0) 

including Simpson and Hill indices. For small values of 

(α,β)≈(0.25,0.25) and (α,β)≈(0.25,0.50) in region R1 for 

the case of broken-stick model, the distribution of IGDI 

is the beta distribution of the first kind (Type I), in which 

values of (α,β) satisfy 2β2-3β1-6<0, and as well as for the 

case of the sequential-breakage model.  

 

 
N : Normal distribution I(U) : Beta (U-shaped I(J) : Beta (J-shaped I : Beta (type-I) 

III : Gamma (Chi-square) IV : Cinderella distrib. V : Inverse Gamma VI : Beta prime 

Figure 2: The (β1,β2) values for ( ) ,N̂  in the pattern of broken-stick andsequential-breakage models of 10-

species communities 

 

While we have only presented results for IGDI, 

it is possible to consider alternative values of species 

number (s) and sample sizes (n) in both regions (R1, R2) 

using the two key models or alternative models for this 

index as suitable diversity indices for different values of 

(α,β). For example, for the case s=10 and n=100, 500. In 

general, the results indicate platykurtic distribution 

specifically when n=100 for the most values of (α,β). 

This is not pursued here.  

 

5. SUMMARY AND CONCLUSIONS 
The present study derived the central moments 

of an improved generalized diversity index that is widely 

applied in ecology, which is including N(1,1) for the 

Shannon index, N(α,0) for the Hill index, and N(2,0) for 

the Simpson index. The contribution of this paper about 

this index, IGDI, provided consistency and asymptotic 

normality of estimators under conditions.  

 

Accordingly, it is recommended for sampled 

species’ data, especially when large species communities 

are involved using the broken-stick and the sequential-

breakage models. Other models that also assume 

ecological equivalence between species make 

predictions similar to those we used is the Poisson 

lognormal model that invokes standard statistical 

distributions. In this paper, we present the theoretical 

background by which we can understand why these 

neutral generative models are so successful.  

 

 

 

Briefly, we may draw the following conclusions: 

1. This index, IGDI measuring the diversity of large 

communities should be a function of species 

abundances (πi), satisfying that N(α,β)≡s in the 

equiprobable case, and N(α,β)<s otherwise. In 

addition, no need to use any transformation of this 

index to satisfy the main two key properties.  

2. The second point deserves some elaboration. When 

one investigates any species abundance distribution, 

previous studies suggested that it was ubiquitous and 

observed that many species are rare and just a few are 

common. 

3. The new asymptotically unbiased estimators 

generally have reasonably stable sample paths, 

making the choice of optimal values of (α,β) within 

the acceptable regions less troublesome. 

4. These results of the distribution of IGDI, N(α,β), hold 

if other species abundance models are used.  

5. In general, the behaviour of the distribution gives a 

marginally better approximation to normality. 

Shannon index, ( )1,1N ; Hill index, ( )0,N ; and 

Simpson index, ( )0,2N  show corresponding values 

of (β1,β2)≈(0,3) within the acceptable regions. 

 

To sum up, the simulation results demonstrated 

that the 0(n−3) approximation to the moments of N(α,β) 

is acceptable providing that the species abundances using 

the broken-stick model are close to the sequential-

breakage model. 
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Generally, the distribution of ( ),N̂  is 

approximately normally distributed for the Broken-Stick 

Model as well for the Sequential-Breakage Model in both 

acceptable regions. 

 

It is hoped that the findings of this work will be 

useful for practitioners in various fields of theoretical and 

applied sciences in ecology. 
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Appendix (I): Expressions of "Crk" 

C21=β2H(2α-1,2β-2)-2αβH(2α-1,2β-1)+α2H(2α-1,2β)-β2H(α,β-1)2+2αβH(α,β-1)H(α,β)-α2H(α,β)2. 

 

C22=β3H(α,β-2)2+1/2β2H(α,β-2)2-5αβ3H(α,β-2)H(α,β-1)+5αβ2H(α,β-2)H(α,β-1)+2β3H(α,β-2)H(α,β-1)-2β2H(α,β-

2)H(α,β-1)+4α2β2H(α,β-2)H(α,β)-4α2βH(α,β-2)H(α,β)-2αβ2H(α,β-2)H(α,β)+2αβH(α,β-2)H(α,β)+5α2β2H(α,β-1)2-

4αβ2H(α,β-1)2+1/2β2H(α,β-1)2-6α3βH(α,β-1)+6α2βH(α,β-1)H(α,β)-αβH(α,β-1)H(α,β)+3/2α4H(α,β)2-

2α3βH(α,β)2+1/2α2H(α,β)2-2β3H(α-1,β-2)H(α,β-1)+2β2H(α-1,β-2)H(α,β-1)-3α2β2H(α-1,β-2)H(α,β)+3α2βH(α-1,β-

2)H(α,β)+2αβ2H(α-1,β-2)H(α,β)-2αβH(α-1,β-2)H(α,β)-3α2β2H(α-1,β-1)H(α,β-1)+4αβ2H(α-1,β-1)H(α,β-1)-β2H(α-1,β-

1)H(α,β-1)+3α3βH(α-1,β-1)H(α,β)-4α2βH(α-1,β-1)H(α,β)+αβH(α-1,β-1)H(α,β)+α3βH(α-1,β)H(α,β-1)-2H(α-1,β)H(α,β-

1)α2β+αβH(α-1,β)H(α,β-1)-α4H(α-1,β) H(α,β)+2α3H(α-1,β)H(α,β)- α2H(α-1,β) H(α,β)+β4H(α,β-3)H(α,β-1)-3β3H(α,β-

3)H(α,β-1)+2β2H(α,β-3)H(α,β-1)-αβ3H(α,β-3)H(α,β) +3H(α,β-3)H(α,β)αβ2-2αβH(α,β-3)H(α,β)+1/2β4H(α,β-2)2-

10αβ2H(2α-1,2β-3)+2αβH(2α-1,2β-3)-3β3H(2α-1,2β-3)+3β2H(2α-1,2β-3)-12α2β2H(2α-1,2β-2)+5α2βH(2α-1,2β-

2)+9αβ2H(2α-1,2β-2)-3αβH(2α-1,2β-2)-β2H(2α-1,2β-2)+8α3βH(2α-1,2β-1)-9α2βH(2α-1,2β-1)+2H(2α-1,2β-1)αβ-

2α4H(2α-1,2β)+3α3H(2α-1,2β)-α2H(2α-1,2β)-β4H(α-1,β-3)H(α,β-1)+3β3H(α-1,β-3)H(α,β-1)-2β2H(α-1,β-3)H(α,β-

1)+αβ3H(α-1,β-3)H(α,β)-3αβ2H(α-1,β-3)H(α,β)+2αβH(α-1,β-3)H(α,β)+3αβ3H(α-1,β-2)H(α,β-1)-3αβ2H(α-1,β-2)H(α,β-

1)+3/2β4H(2α-2,2β-4)-4β3H(2α-2,2β-4)+5/2β2H(2α-2,2β-4)-6αβ2 H(2α-2,2β-3)+8αβ2H(2α-2,2β-3)-2αβ H(2α-2,2β-

3)+3β3H(2α-2,2β-3)-3β2H(2α-2,2β-3)+9α2β2H(2α-2, 2β-2)-4α2βH(2α-2,2β-2)-9αβ2H(2α-2,2β-2)+3αβH(2α-2,2β-2) 

+3/2β2H(2α-2,2β-2)-6α3βH(2α-2,2β-1) +9α2βH(2α-2,2β-1)-3αβH(2α-2,2β-1)+3/2α4H(2α-2,2β)-3α3H(2α-2,2β)+3/2H(2α-

2,2β)α2-2β4H(2α-1, 2β-4)+5β3H(2α-1,2β-4)-3β2H(2α-1,2β-4)+8αβ3 H(2α-1,2β-3). 

 

C32=3αβ2H(2α-1,2β-2)H(α,β)-18α2β2H(2α-1,2β-1)H(α,β-1)+6αβ2H(2α-1,2β-1)H(α,β-1)+18α3β H(2α-1,2β-

1)H(α,β)-6α2βH(2α-1,2β-1)H(α,β)+6α3βH(2α-1,2β)H(α,β-1)-3α2βH(2α-1,2β)H(α,β-1)-6α4H(2α-1,2β)H(α,β)+3α3H(2α-

1,2β)H(α,β)+3β4H(α,β-2)H(α,β-1)2-3β3H(α,β-2)H(α,β-1)2-6H(α,β-2)H(α,β-1)H(α,β)αβ3+6αβ2H(α,β-2)H(α,β-

1)H(α,β)+3α2β2H(α,β-2)H(α,β)2-3H(α,β-2)H(α,β)2α2β-6αβ3H(α,β-1)3 +β3H(α,β-1)3+15α2β2H(α,β-1)2H(α,β)-3αβ2H(α,β-

1)2H(α,β)-12α3β H(α,β-1)H(α,β)2+3α2β H(α,β-1)H(α,β)2+3α4H(α,β)3-α3H(α,β)3+3β4H(3α-2,3β-4)-3β3H(3α-2,3β-4) -

12αβ3H(3α-2,3β-3)+6αβ2H(3α-2, 3β-3)+2β3H(3α-2,3β-3)+18α2β2H(3α-2,3β-2)-3α2βH(3α-2,3β-2)-6αβ2H(3α-2,3β-2)-

12α3βH(3α-2,3β-1)+6α2βH(3α-2,3β-1)+3α4H(3α-2,3β)-2α3H(3α-2,3β)-6β4H(2α-1,2β-3)H(α,β-1)+6β3H(2α-1,2β-3)H(α,β-

1)+6αβ3H(2α-1,2β-3)H(α,β)-6αβ2H(2α-1,2β-3)H(α,β)+18αβ3H(2α-1,2β-2)H(α,β-1)-6αβ2H(2α-1,2β-2)H(α,β-1)-3β3H(2α-

1,2β-2)H(α,β-1)-18α2β2H(2α-1,2β-2)H(α,β)+6α2βH(2α-1,2β-2)H(α,β). 

 

C42=3(-4α3βH(α,β-1)H(α,β)3+α4H(α,β)4+β4H(2α-1,2β-2)2-4αβ3H(2α-1,2β-2)H(2α-1,2β-1)+2α2β2H(2α-1,2β-

2)H(2α-1,2β)-2β4H(2α-1,2β-2)H(α,β-1)2+4αβ3H(2α-1,2β-2)H(α,β-1)H(α,β)-2α2β2 H(2α-1,2β-2) H(α,β)2+4α2β2H(2α-1,2β-

1)2-4α3βH(2α-1,2β-1)H(2α-1,2β)+4αβ3H(2α-1,2β-1) H(α, β-1)2-8α2β2H(2α-1, 2β-1)H(α,β-1)H(α,β)+4α3βH(2α-1,2β-

1)H(α,β)2+α4H(2α-1,2β)2-2α2β2H(2α-1,2β)H(α,β-1)2+4α3βH(2α-1,2β)H(α,β-1)H(α,β)-2α4H(2α-1,2β)H(α,β)2+β4H(α,β-1)4-

4αβ3H(α,β-1)3H(α,β) +6α2β2H(α,β-1)2H(α,β)2). 
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