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The paper examines the state of a system consisting of a crystalline semiconductor doped with donor and acceptor
impurities. The General Equation of State of the system is derived. Methods are proposed to solve the general equation
for the concentration of electrons or holes in a semiconductor. The identity of the General Equations of State of
semiconductors and aqueous solutions of electrolytes is discussed. An assumption is made about the practical application

of the found relationships.
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INTRODUCTION

The commonality of some properties of
semiconductors and aqueous solutions of electrolytes has
long been noted. For example, a pure crystalline
semiconductor and pure water are not conductors of
electric current, and the specific electrical conductivity
of a doped semiconductor and an aqueous solution of the
electrolyte increases with increasing temperature, in
contrast to metallic conductors, where it decreases. An
important commonality between crystalline
semiconductors and water is that in semiconductors, the
product of the electron and hole concentrations is the
constant for a given semiconductor at a given
temperature (n*p=constant) (Electrons and Holes in
Semiconductors 2020). The ionic product of water (Kw)
is also a constant, and these constants are strongly
temperature-dependent. From a mathematical point of
view, the General Equation of State of aqueous solutions
of electrolytes (Yefimov S. 2023) and the General
Equation of State of a doped semiconductor, derived in
this work, turned out to be completely identical. This
identity encourages us to look for other physical
commonalities between aqueous solutions and
semiconductors. Here we consider the most general case
of no full ionization of dopant at the semiconductor.

MATERIALS AND METHODS

The derivation of the General Equation of State
is based on three expressions taken as axioms: 1) The
expression for the ionization constant of an impurity in a
semiconductor crystal, which is equivalent to the
dissociation constant of an electrolyte in a solution, 2)
the equation of electroneutrality, which states that the
sum of positive charges in a solution (liquid or solid) is
equal to the sum of negative charges, and 3) The product
of the concentrations of positively and negatively
charged charge carriers (electrons and holes) in a given
semiconductor crystal is constant at a given temperature.
We will call it the semiconductor constant, for example,
the Silicon Constant (S). For the numerical calculations,
the Microsoft EXCEL spreadsheet was used.

RESULTS AND DISCUSSION
Derivation of the Equation of State

The derivation of the equation of state consists
of 7 stages: 1) The reaction scheme of the ionization
process in a semiconductor; 2) An equation is written for
the degree of ionization, which is an auxiliary variable;
3) An equation is written for the ionization constant; 4)
The degree of ionization is expressed in terms of the
ionization constant; 5) The equation of electrical
neutrality is written; 6) All members of the electrical

Citation: Stanislav V. Yefimov. Derivation of the General Equation of State for a Doped Semiconductor. The Equation
is Solved Concerning the Electron Concentration in the Conduction Band for Different Concentrations and Properties of 324
Doping Substances. Sch J Eng Tech, 2024 Nov 12(11): 324-331.




Stanislav V. Yefimov, Sch J Eng Tech, Nov, 2024; 12(11): 324-331

neutrality equation are expressed in terms of known
variables and coefficients; 7) The electrical neutrality
equation thus obtained is converted into a normal
polynomial.

We assume the system has a constant unit
volume of 1L. For the convenience of deriving the
equation, we introduce the following temporary
abbreviations:

D* - a molar concentration of the ionized donor in the
crystal.

Multi-step ionization process: D <--Kl--> D*<--K..>
D2*<--K3__> D*3

D, D+, D2+, and D+3 are the molarity of the
donor and ionized donors in the crystal. lonization is not
complete, and an equilibrium is established between the
ionized and non-ionized donor. K1, K2, and K3 are
ionization constants that we consider known. Let's
introduce auxiliary variables C1, C2, and C3 - lonization
Degrees of the first, second, and third ionization stages.

Now let's write down the equations that will be needed
to derive the general equation of state:
A -> A"+ pan acceptor’s ionization.

Let's write 3 lines of the equations of a donor’s
ionization, using the lonization Degree definition and the
Mass-Action law:

D < D' + n; D*=D*C1, K1 = n* D'/ (D- D*), C1=
K1/(K1+n), D*= D*K1/(K1+n)

D* < D2 + n; D*2=D**C2, K2 = n* D*?/ (D*- D*?),
C2=K2/(K2+n), D*2= D**K2/(K2+n)

D*2<> D*+ n; D =D*2*C3, K3 = n* D*¥/ (D*2- D*3),
C3=K3/(K3+n), D**= D***K3/( K3+n)

Now rewrite the equation for ionized donors:
D*= D*K1/(K1+n)

D*2= D*K2*K1/((K2+n)*(K1+n))

D*3= D*K3*K2*K1/(( K3+n)*(K2+n)*(K1+n))

Now let's write down the Electroneutrality equation
assuming complete ionization of the acceptor (A=A"):
D* + D*2 + D** + S/n = A + n. expanded equation:

D*K1/(K1+n) + D*K2*K1/((K2+n)*(K1+n)) +
D*K3*K2*K1/((K3+n)*(K2+n)*(K1+n)) + S/n =
A +n. [**].

This is the equation of state of the system, it
includes only known or given variables and constants: A,
D, K1, K2, K3, S, and the desired value n. We limited
ourselves to the K3 constant, but you can similarly write
an equation for an n-step ionization donor (n>3). Now
let's convert the fractional notation [**] to a linear one
and group the terms:
n® + a*n* + b*n® + ¢*n? +d* n + e = 0 [***]. This is the
normal form of the General Equation of State for a
semiconductor doped with a stepwise ionizing donor and
completely ionizing acceptor. The coefficients (a, b, c, d)
are presented in Table 1.

It is easy to show, that if we put K3=0, then
from the equation [***] we get the equation for a two-
stage ionizing donor, and if K3=0 and K2=0, then we get
the equation for a one-stage ionizing donor Table 1.

A mixture of several donors. The equation of
state for a mixture of donors is derived in the same way
as in the previous case. The equation contains the amount
of each of the donors (D1, D2, ... Dn), ionization
constants (K), and the amount of acceptor (A). Let us
derive the equation of state for a mixture of two donors,
D1 (K1, K2) and D2 (K3). Passing all the above steps of
the derivation we take the equation of state:
n® + a*n* + b*n?® + ¢*n? +d* n + e = 0, the coefficients a,
b, ¢, d, and e are given in Table 1.

Note 1:

The equation of state of a semiconductor doped
with a stepwise ionizing acceptor and a fully ionizing
donor is symmetrical to this [***]. The donor ionization
constants are replaced by the acceptor ionization
constants, D is replaced by A, A is replaced by D, and n
is replaced by p—the molarity of holes in the
semiconductor.

Using this method, equations of state can be derived for
many systems and used to predict the behavior of
semiconductors.

Table 1: Polynomial coefficients of the General Equation of State the semiconductor is doped with a donor and a
fully ionizing acceptor

Max. The mix of two-stage ionizing Three-stage ionizing donor. | Two-stage One-stage | Completely
degree. | donor D1(K1, K2) and one-stage | n®+ a*n*+ b*n®+ c¢*n?+d* | ionizing donor. | ionizing ionizing
ionizing donor. D2(K3). n* + n+e=0 n*+a*n®+b*n? | donor donor.
a*n*+b*n*+c*n>+d*n+e=0 +c*n+d=0 nd+a*n?2 | n2+a*n+b
+b*n+c | =0
=0
n’ 1 1 0 0 0
n* A + K1+K2+K3 A + K1+K2+K3 1 0 0
n3 K1*K2 + K1*K3 + K2*K3 + K1*K2 + K1*K3 + K2*K3 | A +K1+K2 1 0
A*(K1+K2+K3)-S-D1*K1 | + A¥(K1+K2+K3)-S-
- D2*K3 D*K1
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n2 K1*K2*K3 + A*(K1*K2 + K1*K2*K3 + AX(K1*K2 + | AX(K1+K2) + | A+K1 1

K1*K3 + K2*K3) - S*(K1 + K2 | K1*K3 + K2*K3) — S*(K1 | K1*K2-S—
+ K3) - DI*(2*K1*K2 + + K2 + K3) — D*(2*K1*K2 | D*K1
K1*K3) - D2*(K1*K3 + + K1*K3)

K2*K3)

n A*K1*K2*K3 — S*(K1*K2 + A*K1*K2*K3 — A*K1*K2 - A*K1-S | A-D
K1*K3 + K2*K3) — S*(K1*K2 + K1*K3 + S*(K1+K2)- |-D*K1
2*D1*K1*K2*K3 — K2*K3) — 3*D*K1*K2*K3 | 2*D*K1*K2
D2*K1*K2*K3

n° -S*K1*K2*K3 -S*K1*K2*K3 -S*K1*K2 -S*K1 -S

(const.)

Let us add two important cases to our consideration.

It's not a completely ionizing acceptor. The
equation of state will contain both the donor ionization
constant K, and the acceptor ionization constant Kp. The
derivation of the equation is like the one above:

Let Kn=K1, Kp=K2

Cn= K1U/(K1 +n)

Co= K2/(K2 + p) = K2*n/(K2*n + W)

D*C, + W/n = n + A*C, (equation of electrical
neutrality)

D*K1/(K1 + n) + W/n = n + A*K2*h/(K2*n + W). After
transformations, we get the equation of state in normal
form: n* + a*n?® + b*n? +c* n + d = 0, where:
a=A+K1l+S/K2

b = A*K1 + S*K1/K2 - S - D*K1

¢ = -(S*K1 + D*S*K1/K2 + S*/K2)

d = -K1*S?/K2

A mixture of several donors. The equation of
state for a mixture of donors is derived in the same way
as above. The equation contains the amount of each of
the donors (D1, D2, ... Dn), ionization constants (K), and
the amount of acceptor (A). Let us derive the equation of
state for a mixture of two donors, D1 (K1, K2) and D2
(K3). Passing all the above steps of the derivation we
take the equation of state:
n® +a*n* + b*n3 + ¢*n? +d* n + e = 0, the coefficients a,
b, c,d, and e are in Table 1.

Solution of the Equations of State in Radicals

In the physics literature (Electrons and Holes in
Semiconductors 2020), the concentration of charge
carriers in a semiconductor is traditionally denoted in
units of (1/cm?). Chemists denote concentrations in
moles (M), the relationship between the quantities is
1/cm® = 0.1666*10"%° M. This paper will follow chemical
notations to compare the results obtained for
semiconductors and aqueous solutions (Yefimov S.
2023). Now let's proceed directly to solving the problem

posed - determining the concentration of conduction
electrons in an impurity semiconductor as a function of
D and A, considering the parameters K and S or Ge at
constant temperature and pressure: n=f(A, D, s k)T, p,
n=f(A, D, Ge, K)T, p.

Solving equations in radicals (Yremes A. 2022)
will give us a formula with which we can plot the
dependence of the concentration of electrons on the
variables - D and A and parameters K1, K2, K3, S, Ge.
Thanks to the work of Omar Khayyam (1048-1131),
Niccolo Tartaglia (1500-1557), Gerolamo Cardano
(1501-1576), Lodovico Ferrari (1522-1565), and other
great mathematicians, we know how to find the roots of
polynomials 2nd, 3rd, and 4th degree. Each equation of
state has as many roots as its degree, but we are only
interested in one real, positive root, and as we will show
below, such a root exists. Let's formulate the Chemist's
Theorem (Yefimov S. 2023): “The equation of state
presented as a normal polynomial of the n-th degree with
real coefficients has at least one real positive root if the
free term of the polynomial is negative (a, < 0)”. This
can be verified visually by moving the polynomial graph
along the coordinate plane. In Table 1, the bottom row
shows the free terms of the polynomials, all of which are
negative, so the real positive root exists.

Completely lonizing Donor and Acceptor

In the simplest case, both the donor and
acceptor are completely ionized in the semiconductor.
This case is described by the General Equation of State
of the 2nd degree (Table 1.) The roots of the quadratic
equation are found most easily:

n=(D-A)/2 + sqrt(d) (&), where d = (D-A)?/4 +
S is discriminant of this quadratic equation. The curve's
inflection point (Figure 1. b) corresponds to the equality
of the concentrations of electrons and holes in the
semiconductor, n=sqrt(S).
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Figure 1 a, b: Dependence of the electron concentration (n) and (pn) on the change in the concentration of the acceptor
impurity in the simplest case.

The donor is not completely ionized in one ionization
stage with constant K1. This case is described by a 3rd-
degree polynomial (Table 1). The formula finds the roots
of the cubic equation:

n=y - al3, where

y = 2*sqrt(-p/3)*cos(¢/3)

¢ = arccos(3*g*sqrt(-3/p)/(2*p))

p=b-a?3,

q=2%a%27-a*b/3+c

For details see Appendix #1.

The graph of the solution of this equation in the
n-A-D coordinate system represents a surface and a line
in n-A (Figure 2). The curve's inflection point (Figure 2.
b) corresponds to the equality of the concentrations of
electrons and holes in the semiconductor, n=sqrt(S).
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Figure 2 a, b: Dependence of the electron concentration (n) and (pn) on the change in acceptor concentration. Donor ionization
occurs in one stage with the constant K1. The value of the constant is chosen arbitrarily for better clarity of the curve

behavior.
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The donor is not completely ionized. The
ionization occurs in two stages with constants K1 and
K2. This case is described by a 4th-degree polynomial
(Table 1). To find the root, it is necessary to take several
steps and make several changes to variables (Vremes A.
2022). The equation gives the root (n):
n=x-a/4
x=K/2+ sqrt(D)

D=K?/4-(t/2-L)

K=sqrt(t-p)

L=g/(2*K)

t=y-0/3

y = 2*%(- I1/3)*2*cos(¢/3)

¢ = arccos(3*Q*(-3/I1)*2/(2*11))

=P o3
Q=2*0%27 + ¢ —a*B/3
a=-p

B = -4*r

g = 4*p*r — ¢
p=b-3*a?%8

q=a%8-b*a/2 +c
r=d - c*a/4 + b*a?/16 -3*a*/256
See Appendix#2 for details.

The dependence n=f(A, D, ce, k1, k2)T, p based on the root

of the polynomial is presented in Figure 3.

Fortunately, the terms A and D are presented in the

General Equation of State in the first degree:
n* + (A + K1 + K2)*n3 + (A*(K1 + K2) + K1*K2

D:

A = [(S*KL*K2 — n* - n¥*(K1 + K2) — n?*(K1*K2 —
D*K1) + n*(KL1*S + K2*S + 2*D*K1*K2)]/(n® + n?*(K1

+ K2) +n*K1*K2) (&&&).

We can plot dependence A=f(n) and A=f(pn)
using this formula. Figure 3(b) shows the dependence of
pn on A obtained by solving the General Equation of
State (solid line) and using the formula &&& (symbols
(pn2)). Both lines coincide. The formula &&& is useful
for finding the inflection points of the curve (Yefimov S.

2023)

-S—
D*K1)*n? +( A*K1*K2 — S*(K1 + K2) -2*D*K1*K2)*n
-S*K1*K2 =0, so, we can express A as function of n and
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Figure 3 a, b, ¢, d: Dependence of the electron concentration (n) and (pn) on the change in acceptor and donor

concentration. Donor ionization occurs in two stages with the constants K1 and K2. The values of the constants
are chosen arbitrarily for better clarity of the curve behavior.
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The Case When the General Equation of State
Contains Three lonization Constants

As is known, there is no general solution to the
fifth-degree equation in radicals. To represent the
dependence of pn on A, we transform the General
Equation of State into the dependence of A on n (formula
&&&&) and plot it (Figure 4).

A = [Ge*K12*K2*K3 — n>-n**(K1 + K2 + K3) —
nN3*(K1*K2 + K1*K3 + K2*K3 — Ge — D*K1) —
N2*(K1*K2*K3 — Ge*(K1 + K2 + K3) — D*(2*K1*K2 +
K1*K3)) + n*(Ge*(K1*K2 + KI1*K3 + K2*K3) +
IFDAKI*K2*K3)]/(n* + ne*(K1 + K2 + K3) +
nN?*(K1*K2 + KI1*K3 + K2*K3) + n*K1*K2*K3).
(&&&&)

a b
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1.20E-04
1.00E-04
8.00E-05
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40
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0.0E+00

Ge. K1=1E-4, K2=1E-6, K3=1E-9, D=7E-4 (M)

5.0E-04 1.0E-03 2.0E-03 2.5E-03

A(M)

1.5E-03

Figure 4 a, b: Germanium. Dependence of the electron concentration (n) and (pn) on the change in acceptor
concentration. The General Equation of State contains three ionization constants K1, K2, and K3. The values of
the constants are chosen arbitrarily for better clarity of the curve behavior.

The graphs of the pn=f(A) dependence have
inflections. At the inflection points, the number of free
electrons is equal to the number of holes, these are
equivalence points. The number of equivalence points
coincides with the number of ionization constants, each
ionization stage has its equivalence point. In Figure 1b,
the inflection point is visible, the abscissa of the point is
equal to 0.001 M of the acceptor impurity, while the
starting amount of the donor impurity was also 0.001 M.
In Figures 3b and 4b, it is difficult to visually determine
the equivalence points with high accuracy, but if we have
the General Equation of State, then these points are
determined by the algorithm described in the work
“Finding Singular Points of the Titration Curve...”
(Yefimov, S. 2023).

Appendix# 1

To find the roots of a cubic equation, it is necessary to
take several steps and make several changes to variables
(Yremer A. 2022).

nd+a*n2+b*n+c=0

let n =y + k, and k = -a/3 (first changing of variable) ->
y3 + p*y + q =0 were

p=b-a?3, and

q=2%%27—-a*b/3+c

y=u+vand let u*v = -p/3 (second changing of variable)
->

w+vi+q=0

w*ve = p¥27 ->

u® and v are the roots (t1, t2) of the quadratic equation:
t2 + t*q — p%27 = 0, its discriminant is D.

D = g%/4 + p3/27 — Discriminant of a cubic polynomial.
In all cases considered by us, the discriminant of the
cubic equation was negative. So, to find the roots, we
need to use a complex number: a +i*b = r*(cos(p) +
i*sin(p)) where “i” is the imaginary unit.

Theorem. In the case of D < 0, the real roots of the
polynomial y® + p*y + g are given by the formulas:

y1 = 2*sqrt(-p/3)*cos(¢/3)

y2 = 2*sqrt(-p/3)*cos(p/3+ 2*n/3)

y3 = 2*sqrt(-p/3)*cos(¢/3+ 4*n/3) were n=3.14...

¢ = arccos(3*q*sqrt(-3/p)/(2*p))

The desired n is related to y by the relation: n =y - a/3
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q=2%a%/27 —a*b/3 + ¢
d=qg%/4 + p°27
y1 =2*sqrt(-p/3)*cos(¢/3)

S 6.25E-22|silicon

¢ = arccos(3*q*sqrt(-3/p)/(2*p))
A = (S*K1 + n*(S + D*K1) —n**K1-n?)/(n* + K1*n)

K1 1.75E-05

D 1.70E-05[donor
# A P q d 2*(ro)1/3 cos(d) ¢
1 0.0E+00 -4.0E-10 2.1E-15 -1.2E-30 2.3E-05 -0.7 23
2 8.5E-07 -3.9E-10 2.2E-15 -1.1E-30 2.3E-05 -0.7 24
3 1.7E-06  -3.9E-10 2.2E-15 -9.6E-31  2.3E-05 -0.8 24
4 2.6E-06 -3.9E-10 2.3E-15 -8.4E-31  2.3E-05 -0.8 25
5 3.4E-06 -3.8E-10 2.3E-15 -7.3E-31 2.3E-05 -0.8 2.5
6 4.3E-06 -3.8E-10 2.4E-15 -6.3E-31 2.3E-05 -0.8 2.6
7 5.1E-06 -3.8E-10 2.4E-15 -5.4E-31  2.2E-05 -0.9 26
8 6.0E-06 -3.8E-10  2.5E-15 -4.6E-31 2.2E-05 -09 2.6
9 6.8E-06 -3.8E-10 2.5E-15 -3.8E-31 2.2E-05 -09 2.7
10 7.7E-06 -3.7E-10  2.6E-15 -3.2E-31 2.2E-05 -09 2.7
11 8.5E-06 -3.7E-10 2.6E-15 -2.6E-31  2.2E-05 -0.9 28

n+an?+b*n+c=0 |a= A+ K1

n=y-a/3 b= A*K1-S - D*K1

y*+p*y +q=0 c= -S*K1

p=b-a%3 p= A*K-S-D*K-(A+K)*(A+K)/3= ((A*K*3-5*3-D*K*3-(A+K) *(A+K))/3

a/3
Y1 Y2 Y3 (A+K)/3 nl n2 n3 pn
1.6E-05 #iHit# HitHH# 5.8E-06 1.1E-05 #HHHHt HiHHHE 5.0
1.6E-05 #iHtH HitHiHe 6.1E-06  1.0E-O5 #HHHHt #iHHH 5.0
1.6E-05 #iHi HitHiH#e 6.4E-06 9.4E-06 #HHHH HitHHH 5.0
1.5E-05 #i## #tHH# 6.7E-06 8.8E-06 #HHHH HHHHHH 5.1
1.5E-05 #iHi #iHHiHe 7.0E-06  8.2E-06 #HH#Ht #HitHH 5.1
1.5E-05 #iHi HiHHH#H 7.3E-06 7.6E-06 #HHHH HHHHHE 5.1
1.5E-05 #iHt #itHHe 7.5E-06 7.0E-06 #HHH HitHHH 5.2
1.4E-05 #iHiH HiHHiHe 7.8E-06  6.5E-06 #HHHt #HiHHH 5.2
1.4E-05 #iHi# #iHHH#E 8.1E-06 5.9E-06 #HHiHH HHHHH 5.2
1.4E-05 #iHt# #itHHs 8.4E-06  5.4E-06 #HHHHt #HiHHH 5.3
1.3E-05 #iHi# HiHHH#E 8.7E-06  4.8E-06 #HHH#Ht HiHHHE 5.3

Figure 1: An example of an EXCEL spreadsheet for calculating the roots of a cubic equation.

As you requested, we develop and supply spreadsheet
templates for calculations and plotting curves.

Appendix# 2

To find the roots of a quartic equation n* + a*n? + b*n?
+c* n +d =0, it is necessary to take several steps and
make several changes to variables (Yremmes A. 2022).

Having made the change of variable n = x -a/4, we get
the equation:

x4 + x¥*p + x*q + r =0 (#), where

p=b-3*a%8

q=a%8-b*a/2 +c

r=d - c*a/4 + b*a?/16 -3*a*/256

Add and subtract the expression (x>*t +t2/4) to (#) to get
the sum of two perfect squares:
(X2 + 1/2)? = (t-p)*x® — q*Xx + (24 — 1) (##)

The right part of the equation will be perfect square (t-
PY*X2 — q*x + (t2/4 — 1) = (K*t + L)? at K=sqrt(t-p), and
L=-g/(2*K) if

D = % — 4*(t-p)*(t%/4 — r) =0= 13 — p*t? — 4*r*t + (4*p*r
~q7)

t — p*t2 — 4*r*t + (4*p*r — g?) =0 This cubic equation is
the Ferrari Resolvent.

2+ o*t?+ Pt +e=0

a=-p
B = -4
g = 4*p*r — ¢

Let's find the root of the Resolvent (see appendix#1), for
this, we will make the change of variable t=y + Y = y-
o/3 and get the equation:

y3 + IT*y + Q = 0 (###), where

M=p-a%3

Q=2*a®27+&—a*p/3

D = Q%4 + I13/27 — Discriminant of cubic polynomial

D <0 =>y = 2*(- [1/3)"**cos(¢/3)

Where ¢ = arccos(3*Q*(-3/IT)*2/(2* I1))

if D > 0, the only real root is computed using Cardano's
formula (Yremes A. 2022). But in all our cases, D was
negative.

Now we have one chosen root “y”.
Go back to equation (##):

t=y-w/3
K = (t-p)**
L = -g/(2*K)

(X2 + 1/2)? = (t-p)*X% — gq*X + (44 — 1) = (t-p)**X° — q*x +
(214 —r) = (K*x + L)> —

(& + 1/2)% = ((t-p)**x - q/(2*K))* —

X2 +1/2 = £(K*x + L) = £((t-p)?*x - g/(2*K))

Now we have two quadratic equations and two
discriminants D1 and D2:
D1=K2/4-(t/2+L), D2=K2/4-(t/2-L), and hence four
roots: x1, x2, x3 and x4.

We choose one root so that n = x -a/4 > 0. Finally, we get
the functional dependence n = f(A, D, K1, K2), and the
theoretical curve pn=f(A, D, K1, K2).
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Figure 1: An example of an EXCEL spreadsheet for calculating the roots of a quartic equation.

As you requested, we develop and supply spreadsheet
templates for calculations and plotting curves.

CONCLUSION

The General Equation of State of a doped
semiconductor, derived in this work, and the General
Equation of State of aqueous solutions of electrolytes
(Yefimov S. 2023) were perfectly identical. Adding
dopants to a semiconductor crystal is not as simple as in
aqueous solutions, it is done by diffusion (El-Agawi et
al., 2014). Using special methods, it is possible to obtain
concentration profiles of the dopants in the crystal
(Microelectronic Materials and Processing. 1989). On
the other hand, knowing the diffusion coefficients, it is
possible to estimate the formation time of a given
concentration profile. Having a concentration profile and
knowing the ionization constant of the dopant, it is
possible to determine the concentration of the charge
carrier in the semiconductor using the derived General
Equation of State. If the ionization constant of the dopant
is unknown, it can be determined by one of the suitable
methods for determining the dissociation constants of
weak acids and weak bases in water, which are well
known. The conductivity method is a classical way to
determine the dissociation constant. This method
involves measuring the conductivity of solutions with
different concentrations. The degree of dissociation can
then be determined and the dissociation constant
calculated.

Prospects for the Future

The identity of the General Equation of State for
semiconductors and the water solution of electrolytes
encourages researchers to look for other physical
commonalities between aqueous solutions and
semiconductors.

Abbreviations:
K1, K2, and K3 — dopant ionization constants.
A —a molar concentration of acceptor in crystal.

D — a molar concentration of donor in crystal.

S — the Silicon Constant (S= n*p = 2.25*10%° cmf =
6.25*10%2 M?)

Ge — the Germanium Constant (Ge= n*p = 16*10¢ M?)
n — a molar concentration of electrons in the conduction
band.

pn = - logio(n)

p - amolar concentration of holes in the conduction band.
p=S/n and p=Ge/n - a molar concentration of holes in the
conduction band.
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