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Abstract  Original Research Article 
 

The paper examines the state of a system consisting of a crystalline semiconductor doped with donor and acceptor 

impurities. The General Equation of State of the system is derived. Methods are proposed to solve the general equation 

for the concentration of electrons or holes in a semiconductor. The identity of the General Equations of State of 

semiconductors and aqueous solutions of electrolytes is discussed. An assumption is made about the practical application 

of the found relationships. 

Keywords: Semiconductor, Silicon, Germanium, Electrons Concentration, Holes Concentrations, The General Equation 

of State. 
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

INTRODUCTION 
The commonality of some properties of 

semiconductors and aqueous solutions of electrolytes has 

long been noted. For example, a pure crystalline 

semiconductor and pure water are not conductors of 

electric current, and the specific electrical conductivity 

of a doped semiconductor and an aqueous solution of the 

electrolyte increases with increasing temperature, in 

contrast to metallic conductors, where it decreases. An 

important commonality between crystalline 

semiconductors and water is that in semiconductors, the 

product of the electron and hole concentrations is the 

constant for a given semiconductor at a given 

temperature (n*p=constant) (Electrons and Holes in 

Semiconductors 2020). The ionic product of water (Kw) 

is also a constant, and these constants are strongly 

temperature-dependent. From a mathematical point of 

view, the General Equation of State of aqueous solutions 

of electrolytes (Yefimov S. 2023) and the General 

Equation of State of a doped semiconductor, derived in 

this work, turned out to be completely identical. This 

identity encourages us to look for other physical 

commonalities between aqueous solutions and 

semiconductors. Here we consider the most general case 

of no full ionization of dopant at the semiconductor. 

 

MATERIALS AND METHODS 
The derivation of the General Equation of State 

is based on three expressions taken as axioms: 1) The 

expression for the ionization constant of an impurity in a 

semiconductor crystal, which is equivalent to the 

dissociation constant of an electrolyte in a solution, 2) 

the equation of electroneutrality, which states that the 

sum of positive charges in a solution (liquid or solid) is 

equal to the sum of negative charges, and 3) The product 

of the concentrations of positively and negatively 

charged charge carriers (electrons and holes) in a given 

semiconductor crystal is constant at a given temperature. 

We will call it the semiconductor constant, for example, 

the Silicon Constant (S). For the numerical calculations, 

the Microsoft EXCEL spreadsheet was used. 

 

RESULTS AND DISCUSSION 
Derivation of the Equation of State 

The derivation of the equation of state consists 

of 7 stages: 1) The reaction scheme of the ionization 

process in a semiconductor; 2) An equation is written for 

the degree of ionization, which is an auxiliary variable; 

3) An equation is written for the ionization constant; 4) 

The degree of ionization is expressed in terms of the 

ionization constant; 5) The equation of electrical 

neutrality is written; 6) All members of the electrical 
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neutrality equation are expressed in terms of known 

variables and coefficients; 7) The electrical neutrality 

equation thus obtained is converted into a normal 

polynomial. 

 

We assume the system has a constant unit 

volume of 1L. For the convenience of deriving the 

equation, we introduce the following temporary 

abbreviations: 

D+i - a molar concentration of the ionized donor in the 

crystal. 

 

Multi-step ionization process: D <--k1--> D+<--k2--> 

D2+<--k3--> D+3. 

 

D, D+, D2+, and D+3 are the molarity of the 

donor and ionized donors in the crystal. Ionization is not 

complete, and an equilibrium is established between the 

ionized and non-ionized donor. K1, K2, and K3 are 

ionization constants that we consider known. Let's 

introduce auxiliary variables C1, C2, and C3 - Ionization 

Degrees of the first, second, and third ionization stages. 

 

Now let's write down the equations that will be needed 

to derive the general equation of state: 

A -> A- + p- an acceptor’s ionization. 

 

Let's write 3 lines of the equations of a donor’s 

ionization, using the Ionization Degree definition and the 

Mass-Action law: 

D  D+ + n; D+=D*C1, K1 = n* D+/ (D- D+), C1= 

K1/(K1+n), D+= D*K1/(K1+n) 

D+  D+2 + n; D+2 = D+*C2, K2 = n* D+2/ (D+- D+2), 

C2=K2/(K2+n), D+2= D+*K2/(K2+n) 

D+2 > D+3 + n; D+3 = D+2*C3, K3 = n* D+3/ (D+2- D+3), 

C3=K3/(K3+n), D+3= D+2*K3/( K3+n) 

 

Now rewrite the equation for ionized donors: 

D+= D*K1/(K1+n) 

D+2= D*K2*K1/((K2+n)*(K1+n)) 

D+3= D*K3*K2*K1/(( K3+n)*(K2+n)*(K1+n)) 

 

Now let's write down the Electroneutrality equation 

assuming complete ionization of the acceptor (A=A-): 

D+ + D+2 + D+3 + S/n = A + n. expanded equation: 

D*K1/(K1+n) + D*K2*K1/((K2+n)*(K1+n)) + 

D*K3*K2*K1/((K3+n)*(K2+n)*(K1+n)) + S/n = 

A + n. [**].  

 

This is the equation of state of the system, it 

includes only known or given variables and constants: A, 

D, K1, K2, K3, S, and the desired value n. We limited 

ourselves to the K3 constant, but you can similarly write 

an equation for an n-step ionization donor (n>3). Now 

let's convert the fractional notation [**] to a linear one 

and group the terms: 

n⁵ + a*n⁴ + b*n³ + c*n² +d* n + e = 0 [***]. This is the 

normal form of the General Equation of State for a 

semiconductor doped with a stepwise ionizing donor and 

completely ionizing acceptor. The coefficients (a, b, c, d) 

are presented in Table 1. 

 

It is easy to show, that if we put K3=0, then 

from the equation [***] we get the equation for a two-

stage ionizing donor, and if K3=0 and K2=0, then we get 

the equation for a one-stage ionizing donor Table 1. 

 

A mixture of several donors. The equation of 

state for a mixture of donors is derived in the same way 

as in the previous case. The equation contains the amount 

of each of the donors (D1, D2, ... Dn), ionization 

constants (K), and the amount of acceptor (A). Let us 

derive the equation of state for a mixture of two donors, 

D1 (K1, K2) and D2 (K3). Passing all the above steps of 

the derivation we take the equation of state: 

n⁵ + a*n⁴ + b*n³ + c*n² +d* n + e = 0, the coefficients a, 

b, c, d, and e are given in Table 1. 

 

Note 1: 

The equation of state of a semiconductor doped 

with a stepwise ionizing acceptor and a fully ionizing 

donor is symmetrical to this [***]. The donor ionization 

constants are replaced by the acceptor ionization 

constants, D is replaced by A, A is replaced by D, and n 

is replaced by p—the molarity of holes in the 

semiconductor. 

 

Using this method, equations of state can be derived for 

many systems and used to predict the behavior of 

semiconductors. 

 

Table 1: Polynomial coefficients of the General Equation of State the semiconductor is doped with a donor and a 

fully ionizing acceptor 

Max. 

degree. 

The mix of two-stage ionizing 

donor D1(K1, K2) and one-stage 
ionizing donor. D2(K3). n⁵ + 

a*n⁴ + b*n³ + c*n² +d* n + e = 0 

Three-stage ionizing donor. 

n⁵ + a*n⁴ + b*n³ + c*n² +d* 
n + e = 0 

Two-stage 

ionizing donor.  
n⁴ + a*n³ + b*n² 

+c* n + d = 0 

One-stage 

ionizing 
donor 

n³ + a*n² 

+b* n + c 
= 0 

Completely 

ionizing 
donor. 

n² +a* n + b 

= 0 

n⁵ 1 1 0 0 0 

n⁴ A + K1+K2+K3 A + K1+K2+K3 1 0 0 

n³ K1*K2 + K1*K3 + K2*K3 + 
A*(K1 + K2 + K3) – S – D1*K1 

- D2*K3 

K1*K2 + K1*K3 + K2*K3 
+ A*(K1 + K2 + K3) – S – 

D*K1 

A + K1 + K2 1 0 
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n² K1*K2*K3 + A*(K1*K2 + 

K1*K3 + K2*K3) – S*(K1 + K2 
+ K3) – D1*(2*K1*K2 + 

K1*K3) - D2*(K1*K3 + 

K2*K3) 

K1*K2*K3 + A*(K1*K2 + 

K1*K3 + K2*K3) – S*(K1 
+ K2 + K3) – D*(2*K1*K2 

+ K1*K3) 

A*(K1 + K2) + 

K1*K2 - S – 
D*K1 

A + K1 1 

n A*K1*K2*K3 – S*(K1*K2 + 
K1*K3 + K2*K3) – 

2*D1*K1*K2*K3 – 

D2*K1*K2*K3 

A*K1*K2*K3 – 
S*(K1*K2 + K1*K3 + 

K2*K3) – 3*D*K1*K2*K3 

A*K1*K2 – 
S*(K1 + K2) -

2*D*K1*K2 

A*K1 – S 
– D*K1 

A - D 

n0 
(const.) 

-S*K1*K2*K3 -S*K1*K2*K3 -S*K1*K2 -S*K1 -S 

 

Let us add two important cases to our consideration. 

It's not a completely ionizing acceptor. The 

equation of state will contain both the donor ionization 

constant Kn and the acceptor ionization constant Kp. The 

derivation of the equation is like the one above: 

Let Kn=K1, Kp=K2 

Cn= K1/(K1 + n) 

Cp= K2/(K2 + p) = K2*n/(K2*n + W) 

D*Cn + W/n = n + A*Cp (equation of electrical 

neutrality)  

 

D*K1/(K1 + n) + W/n = n + A*K2*h/(K2*n + W). After 

transformations, we get the equation of state in normal 

form: n⁴ + a*n³ + b*n² +c* n + d = 0, where: 

a = A + K1 + S/K2 

b = A*K1 + S*K1/K2 – S – D*K1 

c = -(S*K1 + D*S*K1/K2 + S2/K2) 

d = -K1*S2/K2 

 

A mixture of several donors. The equation of 

state for a mixture of donors is derived in the same way 

as above. The equation contains the amount of each of 

the donors (D1, D2, ... Dn), ionization constants (K), and 

the amount of acceptor (A). Let us derive the equation of 

state for a mixture of two donors, D1 (K1, K2) and D2 

(K3). Passing all the above steps of the derivation we 

take the equation of state: 

n⁵ + a*n⁴ + b*n³ + c*n² +d* n + e = 0, the coefficients a, 

b, c, d, and e are in Table 1. 

 

Solution of the Equations of State in Radicals 

In the physics literature (Electrons and Holes in 

Semiconductors 2020), the concentration of charge 

carriers in a semiconductor is traditionally denoted in 

units of (1/cm3). Chemists denote concentrations in 

moles (M), the relationship between the quantities is 

1/cm3 = 0.1666*10-20 M. This paper will follow chemical 

notations to compare the results obtained for 

semiconductors and aqueous solutions (Yefimov S. 

2023). Now let's proceed directly to solving the problem 

posed - determining the concentration of conduction 

electrons in an impurity semiconductor as a function of 

D and A, considering the parameters K and S or Ge at 

constant temperature and pressure: n=f(A, D, S, K)T, P, 

n=f(A, D, Ge, K)T, P. 

 

Solving equations in radicals (Утешев А. 2022) 

will give us a formula with which we can plot the 

dependence of the concentration of electrons on the 

variables - D and A and parameters K1, K2, K3, S, Ge. 

Thanks to the work of Omar Khayyam (1048–1131), 

Niccolo Tartaglia (1500–1557), Gerolamo Cardano 

(1501–1576), Lodovico Ferrari (1522–1565), and other 

great mathematicians, we know how to find the roots of 

polynomials 2nd, 3rd, and 4th degree. Each equation of 

state has as many roots as its degree, but we are only 

interested in one real, positive root, and as we will show 

below, such a root exists. Let's formulate the Chemist's 

Theorem (Yefimov S. 2023): “The equation of state 

presented as a normal polynomial of the n-th degree with 

real coefficients has at least one real positive root if the 

free term of the polynomial is negative (an < 0)”. This 

can be verified visually by moving the polynomial graph 

along the coordinate plane. In Table 1, the bottom row 

shows the free terms of the polynomials, all of which are 

negative, so the real positive root exists. 

 

Completely Ionizing Donor and Acceptor 

In the simplest case, both the donor and 

acceptor are completely ionized in the semiconductor. 

This case is described by the General Equation of State 

of the 2nd degree (Table 1.) The roots of the quadratic 

equation are found most easily:  

 

n=(D-A)/2 + sqrt(d) (&), where d = (D-A)2/4 + 

S is discriminant of this quadratic equation. The curve's 

inflection point (Figure 1. b) corresponds to the equality 

of the concentrations of electrons and holes in the 

semiconductor, n=sqrt(S). 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

Stanislav V. Yefimov, Sch J Eng Tech, Nov, 2024; 12(11): 324-331 

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          327 

 

 

 

 

a b 

  

Figure 1 a, b: Dependence of the electron concentration (n) and (pn) on the change in the concentration of the acceptor 

impurity in the simplest case. 

 

The donor is not completely ionized in one ionization 

stage with constant K1. This case is described by a 3rd-

degree polynomial (Table 1). The formula finds the roots 

of the cubic equation: 

n = y - a/3, where 

y = 2*sqrt(-p/3)*cos(φ/3) 

φ = arccos(3*q*sqrt(-3/p)/(2*p)) 

p = b – a2/3,  

q = 2*a3/27 – a*b/3 + c 

 

For details see Appendix #1.  

 

The graph of the solution of this equation in the 

n-A-D coordinate system represents a surface and a line 

in n-A (Figure 2). The curve's inflection point (Figure 2. 

b) corresponds to the equality of the concentrations of 

electrons and holes in the semiconductor, n=sqrt(S). 

 

a b 
 

  
Figure 2 a, b: Dependence of the electron concentration (n) and (pn) on the change in acceptor concentration. Donor ionization 

occurs in one stage with the constant K1. The value of the constant is chosen arbitrarily for better clarity of the curve 

behavior. 
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The donor is not completely ionized. The 

ionization occurs in two stages with constants K1 and 

K2. This case is described by a 4th-degree polynomial 

(Table 1). To find the root, it is necessary to take several 

steps and make several changes to variables (Утешев A. 

2022). The equation gives the root (n):  

n = x -a/4 

x=K/2+ sqrt(D) 

D=K2/4-(t/2-L) 

K=sqrt(t-p) 

L=q/(2*K) 

t= y-α/3 

y = 2*(- Π/3)1/2*cos(φ/3) 

φ = arccos(3*Q*(-3/Π)1/2/(2*Π)) 

Π = β – α2/3 

Q = 2*α3/27 + ε – α*β/3 

α = -p 

β = -4*r 

ε = 4*p*r – q2 

p = b – 3*a2/8 

q = a3/8 -b*a/2 + c 

r = d – c*a/4 + b*a2/16 -3*a4/256 

See Appendix#2 for details. 

 

The dependence n=f(A, D, Ge, K1, K2)T, P based on the root 

of the polynomial is presented in Figure 3.  

 

Fortunately, the terms A and D are presented in the 

General Equation of State in the first degree: 

n⁴ + (A + K1 + K2)*n³ + (A*(K1 + K2) + K1*K2 - S – 

D*K1)*n² +( A*K1*K2 – S*(K1 + K2) -2*D*K1*K2)*n 

-S*K1*K2 = 0, so, we can express A as function of n and 

D:  

 

A = [(S*K1*K2 – n4 - n3*(K1 + K2) – n2*(K1*K2 – S – 

D*K1) + n*(K1*S + K2*S + 2*D*K1*K2)]/(n3 + n2*(K1 

+ K2) +n*K1*K2) (&&&). 

 

We can plot dependence A=f(n) and A=f(pn) 

using this formula. Figure 3(b) shows the dependence of 

pn on A obtained by solving the General Equation of 

State (solid line) and using the formula &&& (symbols 

(pn2)). Both lines coincide. The formula &&& is useful 

for finding the inflection points of the curve (Yefimov S. 

2023) 

 

a b 

 

  

c d 

  
Figure 3 a, b, c, d: Dependence of the electron concentration (n) and (pn) on the change in acceptor and donor 

concentration. Donor ionization occurs in two stages with the constants K1 and K2. The values of the constants 

are chosen arbitrarily for better clarity of the curve behavior. 
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The Case When the General Equation of State 

Contains Three Ionization Constants 

As is known, there is no general solution to the 

fifth-degree equation in radicals. To represent the 

dependence of pn on A, we transform the General 

Equation of State into the dependence of A on n (formula 

&&&&) and plot it (Figure 4). 

A = [Ge*K12*K2*K3 – n5-n4*(K1 + K2 + K3) – 

n3*(K1*K2 + K1*K3 + K2*K3 – Ge – D*K1) – 

n2*(K1*K2*K3 – Ge*(K1 + K2 + K3) – D*(2*K1*K2 + 

K1*K3)) + n*(Ge*(K1*K2 + K1*K3 + K2*K3) + 

3*D*K1*K2*K3)]/(n4 + n3*(K1 + K2 + K3) + 

n2*(K1*K2 + K1*K3 + K2*K3) + n*K1*K2*K3). 

(&&&&) 

 

a b 

  
Figure 4 a, b: Germanium. Dependence of the electron concentration (n) and (pn) on the change in acceptor 

concentration. The General Equation of State contains three ionization constants K1, K2, and K3. The values of 

the constants are chosen arbitrarily for better clarity of the curve behavior. 

 

The graphs of the pn=f(A) dependence have 

inflections. At the inflection points, the number of free 

electrons is equal to the number of holes, these are 

equivalence points. The number of equivalence points 

coincides with the number of ionization constants, each 

ionization stage has its equivalence point. In Figure 1b, 

the inflection point is visible, the abscissa of the point is 

equal to 0.001 M of the acceptor impurity, while the 

starting amount of the donor impurity was also 0.001 M. 

In Figures 3b and 4b, it is difficult to visually determine 

the equivalence points with high accuracy, but if we have 

the General Equation of State, then these points are 

determined by the algorithm described in the work 

“Finding Singular Points of the Titration Curve…” 

(Yefimov, S. 2023). 

 

Appendix# 1 

To find the roots of a cubic equation, it is necessary to 

take several steps and make several changes to variables 

(Утешев A. 2022). 

n³ + a*n² +b* n + c = 0 

let n = y + k, and k = -a/3 (first changing of variable) -> 

y3 + p*y + q = 0 were  

p = b – a2/3, and  

q = 2*a3/27 – a*b/3 + c 

y = u + v and let u*v = -p/3 (second changing of variable) 

-> 

u3 + v3 + q = 0 

u3*v3 = -p3/27 -> 

u3 and v3 are the roots (t1, t2) of the quadratic equation: 

t2 + t*q – p3/27 = 0, its discriminant is D. 

 

D = q2/4 + p3/27 – Discriminant of a cubic polynomial. 

In all cases considered by us, the discriminant of the 

cubic equation was negative. So, to find the roots, we 

need to use a complex number: a +i*b = r*(cos(φ) + 

i*sin(φ)) where “i” is the imaginary unit. 

 

Theorem. In the case of D < 0, the real roots of the 

polynomial y3 + p*y + q are given by the formulas: 

y1 = 2*sqrt(-p/3)*cos(φ/3) 

y2 = 2*sqrt(-p/3)*cos(φ/3+ 2*π/3) 

y3 = 2*sqrt(-p/3)*cos(φ/3+ 4*π/3) were π=3.14…  

φ = arccos(3*q*sqrt(-3/p)/(2*p)) 

The desired n is related to y by the relation: n = y - a/3 
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Figure 1: An example of an EXCEL spreadsheet for calculating the roots of a cubic equation. 

 

As you requested, we develop and supply spreadsheet 

templates for calculations and plotting curves. 

 

Appendix# 2 

To find the roots of a quartic equation n⁴ + a*n³ + b*n² 

+c* n + d = 0, it is necessary to take several steps and 

make several changes to variables (Утешев A. 2022). 

 

Having made the change of variable n = x -a/4, we get 

the equation:  

x4 + x2*p + x*q + r =0 (#), where 

p = b – 3*a2/8 

q = a3/8 -b*a/2 + c 

r = d – c*a/4 + b*a2/16 -3*a4/256 

 

Add and subtract the expression (x2*t +t2/4) to (#) to get 

the sum of two perfect squares: 

(x2 + t/2)2 = (t-p)*x2 – q*x + (t2/4 – r) (##) 

 

The right part of the equation will be perfect square (t-

p)*x2 – q*x + (t2/4 – r) ≡ (K*t + L)2 at K=sqrt(t-p), and 

L=-q/(2*K) if 

D = q2 – 4*(t-p)*(t2/4 – r) =0= t3 – p*t2 – 4*r*t + (4*p*r 

– q2) 

t3 – p*t2 – 4*r*t + (4*p*r – q2) =0 This cubic equation is 

the Ferrari Resolvent. 

t3 + α*t2 + β*t + ε = 0 

α = -p 

β = -4*r 

ε = 4*p*r – q2 

 

Let's find the root of the Resolvent (see appendix#1), for 

this, we will make the change of variable t= y + ϒ = y-

α/3 and get the equation: 

y3 + Π*y + Q = 0 (###), where 

Π = β – α2/3 

Q = 2* α3/27 + ε – α* β/3 

D = Q2/4 + Π3/27 – Discriminant of cubic polynomial 

D < 0 => y = 2*(- Π/3)1/2*cos(φ/3)  

 

Where φ = arccos(3*Q*(-3/Π)1/2/(2* Π)) 

if D > 0, the only real root is computed using Cardano's 

formula (Утешев A. 2022). But in all our cases, D was 

negative.  

 

Now we have one chosen root “y”. 

Go back to equation (##): 

t = y -α/3 

K = (t-p)1/2 

L = -q/(2*K) 

(x2 + t/2)2 = (t-p)*x2 – q*x + (t2/4 – r) = (t-p)*x2 – q*x + 

(t2/4 – r) = (K*x + L)2 → 

(x2 + t/2)2 = ((t-p)1/2*x - q/(2*K))2 → 

x2 + t/2 = ±(K*x + L) = ±((t-p)1/2*x - q/(2*K)) 

 

Now we have two quadratic equations and two 

discriminants D1 and D2: 

D1=K2/4-(t/2+L), D2=K2/4-(t/2-L), and hence four 

roots: x1, x2, x3 and x4. 

 

We choose one root so that n = x -a/4 > 0. Finally, we get 

the functional dependence n = f(A, D, K1, K2), and the 

theoretical curve pn= f(A, D, K1, K2). 

 

n³ + a*n² +b* n + c = 0 a= A + K1

n = y  - a/3 b= A*K1 –S – D*K1

y 3 + p*y  + q = 0 c= -S*K1

p = b – a2/3 p= A*K-S-D*K-(A+K)*(A+K)/3= ((A*K*3-S*3-D*K*3-(A+K)*(A+K))/3

q = 2*a3/27  – a*b/3 + c

d = q
2
/4 + p

3
/27

y 1  = 2*sqrt(-p/3)*cos(φ/3)

φ = arccos(3*q*sqrt(-3/p)/(2*p))

A = (S*K1 + n*(S + D*K1) –n2*K1 –n3)/(n2 + K1*n)

S 6.25E-22 silicon

K1 1.75E-05

D 1.70E-05 donor a/3

# A P q d 2*(ro)1/3 cos(φ) φ Y1 Y2 Y3 (A+K)/3 n1 n2 n3 pn

1 0.0E+00 -4.0E-10 2.1E-15 -1.2E-30 2.3E-05 -0.7 2.3 1.6E-05 ##### ###### 5.8E-06 1.1E-05 ##### ##### 5.0

2 8.5E-07 -3.9E-10 2.2E-15 -1.1E-30 2.3E-05 -0.7 2.4 1.6E-05 ##### ###### 6.1E-06 1.0E-05 ##### ##### 5.0

3 1.7E-06 -3.9E-10 2.2E-15 -9.6E-31 2.3E-05 -0.8 2.4 1.6E-05 ##### ###### 6.4E-06 9.4E-06 ##### ##### 5.0

4 2.6E-06 -3.9E-10 2.3E-15 -8.4E-31 2.3E-05 -0.8 2.5 1.5E-05 ##### ###### 6.7E-06 8.8E-06 ##### ##### 5.1

5 3.4E-06 -3.8E-10 2.3E-15 -7.3E-31 2.3E-05 -0.8 2.5 1.5E-05 ##### ###### 7.0E-06 8.2E-06 ##### ##### 5.1

6 4.3E-06 -3.8E-10 2.4E-15 -6.3E-31 2.3E-05 -0.8 2.6 1.5E-05 ##### ###### 7.3E-06 7.6E-06 ##### ##### 5.1

7 5.1E-06 -3.8E-10 2.4E-15 -5.4E-31 2.2E-05 -0.9 2.6 1.5E-05 ##### ###### 7.5E-06 7.0E-06 ##### ##### 5.2

8 6.0E-06 -3.8E-10 2.5E-15 -4.6E-31 2.2E-05 -0.9 2.6 1.4E-05 ##### ###### 7.8E-06 6.5E-06 ##### ##### 5.2

9 6.8E-06 -3.8E-10 2.5E-15 -3.8E-31 2.2E-05 -0.9 2.7 1.4E-05 ##### ###### 8.1E-06 5.9E-06 ##### ##### 5.2

10 7.7E-06 -3.7E-10 2.6E-15 -3.2E-31 2.2E-05 -0.9 2.7 1.4E-05 ##### ###### 8.4E-06 5.4E-06 ##### ##### 5.3

11 8.5E-06 -3.7E-10 2.6E-15 -2.6E-31 2.2E-05 -0.9 2.8 1.3E-05 ##### ###### 8.7E-06 4.8E-06 ##### ##### 5.3
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Figure 1: An example of an EXCEL spreadsheet for calculating the roots of a quartic equation. 

 

As you requested, we develop and supply spreadsheet 

templates for calculations and plotting curves. 

 

CONCLUSION 
The General Equation of State of a doped 

semiconductor, derived in this work, and the General 

Equation of State of aqueous solutions of electrolytes 

(Yefimov S. 2023) were perfectly identical. Adding 

dopants to a semiconductor crystal is not as simple as in 

aqueous solutions, it is done by diffusion (El-Agawi et 

al., 2014). Using special methods, it is possible to obtain 

concentration profiles of the dopants in the crystal 

(Microelectronic Materials and Processing. 1989). On 

the other hand, knowing the diffusion coefficients, it is 

possible to estimate the formation time of a given 

concentration profile. Having a concentration profile and 

knowing the ionization constant of the dopant, it is 

possible to determine the concentration of the charge 

carrier in the semiconductor using the derived General 

Equation of State. If the ionization constant of the dopant 

is unknown, it can be determined by one of the suitable 

methods for determining the dissociation constants of 

weak acids and weak bases in water, which are well 

known. The conductivity method is a classical way to 

determine the dissociation constant. This method 

involves measuring the conductivity of solutions with 

different concentrations. The degree of dissociation can 

then be determined and the dissociation constant 

calculated. 

 

Prospects for the Future 

The identity of the General Equation of State for 

semiconductors and the water solution of electrolytes 

encourages researchers to look for other physical 

commonalities between aqueous solutions and 

semiconductors. 

 

Abbreviations: 

K1, K2, and K3 – dopant ionization constants. 

A – a molar concentration of acceptor in crystal. 

D – a molar concentration of donor in crystal. 

S – the Silicon Constant (S= n*p = 2.25*1020 cm6 = 

6.25*10-22 M2) 

Ge – the Germanium Constant (Ge= n*p = 16*10-16 M2) 

n – a molar concentration of electrons in the conduction 

band. 

pn = - log10(n) 

p - a molar concentration of holes in the conduction band.  

p=S/n and p=Ge/n - a molar concentration of holes in the 

conduction band. 
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D- donor A- acceptor

K1= 0.001 a= A+K1+K2

K2= 1.00E-08 b= A*(k1+k2)+k1*k2-S-D*K1

D= 1.00E-05 c= A*K1*K2-S*(K1+K2)-2*D*K1*K2

Ge= 1.60E-15 d= -S*K1*K2

pGe= 14.79588

# A (mol) a b c d p q r alpha betta epsilon Π Q D φ Y1 Y2 Y3 t1 t2 t3 K=sqrt(t-p) L=q/2K D1 D2 D3 X_11 X_12 X_21 X_22X_31 X_32 n1 n2 n3 n4 n5 n6 pn

1 0.0E+00 1.0E-03 -1.0E-08 -2.0E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -3.3E-17 7.5E-26 -3.9E-56 3.1E+00 3.4E-09 ###### ###### -1.2E-07 ###### -1.2E-07 5.1E-04 -1.3E-07 2.5E-11 2.6E-07 2.5E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 9.9E-06 ##### #### -5.0E-04 5.00

2 2.0E-06 1.0E-03 -8.0E-09 -1.8E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -2.1E-17 3.8E-26 -2.0E-56 3.1E+00 2.7E-09 ###### ###### -1.3E-07 ###### -1.2E-07 5.1E-04 -1.3E-07 1.6E-11 2.6E-07 2.5E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 7.9E-06 ##### #### -5.0E-04 5.10

3 4.0E-06 1.0E-03 -6.0E-09 -1.6E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -1.2E-17 1.6E-26 -9.0E-57 3.1E+00 2.0E-09 ###### ###### -1.3E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 8.9E-12 2.6E-07 2.5E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 6.0E-06 ##### #### -5.0E-04 5.22

4 6.0E-06 1.0E-03 -4.0E-09 -1.4E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -5.4E-18 4.9E-27 -3.1E-57 3.1E+00 1.4E-09 ###### ###### -1.3E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 4.0E-12 2.6E-07 2.5E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 4.0E-06 ##### #### -5.0E-04 5.40

5 8.0E-06 1.0E-03 -2.0E-09 -1.2E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -1.4E-18 6.6E-28 -6.2E-58 3.1E+00 7.2E-10 ###### ###### -1.3E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 1.0E-12 2.6E-07 2.5E-07 2.5E-04 ##### 2.5E-04 #### #### -2.5E-04 ##### ##### 2.0E-06 ###### #### -5.0E-04 5.69

6 1.0E-05 1.0E-03 1.0E-11 -1.0E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -1.0E-19 -3.4E-31 -4.0E-59 1.5E+00 3.2E-10 ###### ###### -1.3E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 2.4E-14 2.6E-07 2.6E-07 2.5E-04 ##### 2.5E-04 ### #### -2.5E-04 ##### ##### 3.1E-07 ##### #### -5.0E-04 6.51

7 1.2E-05 1.0E-03 2.0E-09 -8.2E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -1.4E-18 -6.6E-28 -2.8E-58 5.1E-02 1.4E-09 ###### ###### -1.3E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 4.0E-16 2.5E-07 2.6E-07 2.5E-04 ##### 2.5E-04 ### #### -2.5E-04 ##### ##### 4.0E-08 ##### #### -5.1E-04 7.40

8 1.4E-05 1.0E-03 4.0E-09 -6.2E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.9E-14 2.1E-21 -5.4E-18 -4.9E-27 -6.2E-58 1.0E-02 2.7E-09 ###### ###### -1.2E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 6.3E-17 2.5E-07 2.6E-07 2.5E-04 ##### 2.5E-04 ### #### -2.5E-04 ##### ##### 1.6E-08 ##### #### -5.1E-04 7.81

9 1.6E-05 1.0E-03 6.0E-09 -4.2E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.8E-14 2.0E-21 -1.2E-17 -1.6E-26 -7.2E-58 3.3E-03 4.0E-09 ###### ###### -1.2E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 1.5E-17 2.5E-07 2.6E-07 2.5E-04 ##### 2.5E-04 ### #### -2.5E-04 ##### ##### 7.3E-09 ##### #### -5.1E-04 8.14

10 1.8E-05 1.0E-03 8.0E-09 -2.2E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.8E-14 2.0E-21 -2.1E-17 -3.8E-26 -5.9E-58 1.3E-03 5.3E-09 ###### ###### -1.2E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 3.8E-18 2.5E-07 2.6E-07 2.5E-04 ##### 2.5E-04 ### #### -2.5E-04 ##### ##### 3.3E-09 ##### #### -5.1E-04 8.48

11 2.0E-05 1.0E-03 1.0E-08 -1.6E-18 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.8E-14 2.0E-21 -3.3E-17 -7.4E-26 -6.0E-58 6.6E-04 6.7E-09 ###### ###### -1.2E-07 ###### -1.3E-07 5.1E-04 -1.3E-07 1.6E-18 2.5E-07 2.6E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 1.3E-09 ##### #### -5.1E-04 8.87

12 2.2E-05 1.0E-03 1.2E-08 1.8E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.8E-14 2.0E-21 -4.8E-17 -1.3E-25 -1.5E-57 6.0E-04 8.0E-09 ###### ###### -1.2E-07 ###### -1.3E-07 5.1E-04 -1.2E-07 1.9E-18 2.5E-07 2.6E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 6.2E-10 ##### #### -5.1E-04 9.21

13 2.4E-05 1.0E-03 1.4E-08 3.8E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.8E-14 2.0E-21 -6.5E-17 -2.0E-25 -4.3E-57 6.4E-04 9.3E-09 ###### ###### -1.2E-07 ###### -1.3E-07 5.1E-04 -1.2E-07 3.0E-18 2.5E-07 2.6E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 3.7E-10 ##### #### -5.1E-04 9.43

14 2.6E-05 1.0E-03 1.6E-08 5.8E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.8E-14 2.0E-21 -8.5E-17 -3.0E-25 -1.0E-56 6.7E-04 1.1E-08 ###### ###### -1.2E-07 ###### -1.3E-07 5.1E-04 -1.2E-07 4.3E-18 2.5E-07 2.6E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 2.6E-10 ##### #### -5.1E-04 9.59

15 2.8E-05 1.0E-03 1.8E-08 7.8E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.8E-14 2.0E-21 -1.1E-16 -4.3E-25 -2.2E-56 6.8E-04 1.2E-08 ###### ###### -1.1E-07 ###### -1.3E-07 5.1E-04 -1.2E-07 5.6E-18 2.5E-07 2.6E-07 2.5E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 2.0E-10 ##### #### -5.1E-04 9.71

16 3.0E-05 1.0E-03 2.0E-08 9.8E-17 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.7E-14 2.0E-21 -1.3E-16 -5.9E-25 -4.0E-56 6.7E-04 1.3E-08 ###### ###### -1.1E-07 ###### -1.3E-07 5.2E-04 -1.2E-07 6.8E-18 2.5E-07 2.6E-07 2.4E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 1.6E-10 ##### #### -5.1E-04 9.80

17 3.2E-05 1.0E-03 2.2E-08 1.2E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.7E-14 2.0E-21 -1.6E-16 -7.9E-25 -6.8E-56 6.6E-04 1.5E-08 ###### ###### -1.1E-07 ###### -1.4E-07 5.2E-04 -1.2E-07 8.0E-18 2.5E-07 2.6E-07 2.4E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 1.3E-10 ##### #### -5.1E-04 9.88

18 3.4E-05 1.0E-03 2.4E-08 1.4E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.7E-14 2.0E-21 -1.9E-16 -1.0E-24 -1.1E-55 6.4E-04 1.6E-08 ###### ###### -1.1E-07 ###### -1.4E-07 5.2E-04 -1.2E-07 9.0E-18 2.5E-07 2.6E-07 2.4E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 1.1E-10 ##### #### -5.1E-04 9.95

19 3.6E-05 1.0E-03 2.6E-08 1.6E-16 -1.6E-26 -3.8E-07 1.3E-10 -1.2E-14 3.8E-07 4.7E-14 1.9E-21 -2.3E-16 -1.3E-24 -1.6E-55 6.2E-04 1.7E-08 ###### ###### -1.1E-07 ###### -1.4E-07 5.2E-04 -1.2E-07 9.9E-18 2.5E-07 2.6E-07 2.4E-04 ##### 2.6E-04 ### #### -2.5E-04 ##### ##### 9.9E-11 ##### #### -5.1E-04 10.00

A'/&=(4*n*&+3*n²*A*&+3*n²*k1*&+3*n²*k2*&+2*n*A*(k1+k2)*&+2*n*k1*k2*& -2*n*Ge*& -2*n*D*k1*& 

+A*k1*k2*& -Ge*(k1=k2)*& -2*D*k1*k2*&) / (n²+n*(k1+k2)+k1*k2)

A"/&²=(-16*n³-9*n²*A+A'*6*n²-9*n²*k1-4*n*A*(k1+k2)+ A'*4*n*(k1+k2) -4*n*k1*k2+4*n*D*k1 -

A*k1*k2+A'*2*k1*k2 +(k1+k2)*Ge+2*D*k1*k2) / (n²+n*(k1+k2)+k1*k2)

 Two constants donor.   n⁴+a*n³+b*n²+c*n+d=0

A=(-n³-n²*k1-n²*k2-n*k1*k2+n*Ge+n*D*k1+(k1+k2)*Ge+2*D*k1*k2+Ge*k1*k2) / (n²+n*(k1+k2)+k1*k2)
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