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Abstract  Review Article 
 

Extreme value theory (EVT) is becoming increasingly important as a suitable model of extreme events to represent 

phenomena in various fields of applications where extreme values may appear and have detrimental effects. In EVT, 

the Reversed Fréchet (RF) distribution is a special case of the Reversed generalized extreme value distribution (RGEVD) 

for modeling extreme data under linear normalizing. The purpose of this paper is divided into four objectives: Firstly, 

we discuss the practical aspects of the two methods that belong to the domain attraction of RF distribution. The second 

objective is to use RF distribution to model the behavior of two extreme air pollutants. The third objective is based on a 

diagnostics plot and hypothesis testing used to evaluate an appropriate shape of the tail distribution. Lastly, for the fourth 

objective, we attempt to obtain the return level period (RLP) that is expected to be exceeded. Maximum likelihood 

estimation (MLE) is derived and used to estimate the parameters of RF distribution. The results show that applications 

are significant for modeling by RF distribution in all cases of two air pollutants. Software that was used in all 

computations and graphics is the R statistical program with packages fExtreme and ismev. 

Keywords: Main Limiting Results in EVT, Reversed Fréchet Distribution, Determining the Domain Attraction of RF 

distribution, Parameter Estimation, Diagnostic plots, Hypothesis Testing. 
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

1 INTRODUCTION 
Extreme value theory (EVT) is used to develop a statistical tool capable to descript and evaluate rare or extreme 

events, mainly which are considerably larger or smaller compared to usual happenings. Normally, the extreme values (EVs) 

refer to rare event, that means the analysts often need to assess the probability of occurrence of unusual extreme event than 

what has been observed in available set of data. The dare of EVT is to extrapolate beyond the available data and predict 

the unusual. Authors in [1], pioneered the contributions to this area, where they recognized a potential limit distribution 

for the maximum values in a dataset. Following this, [2], established that the EVT can only belong to one of three 

fundamental types of distribution namely; Gumbel, Fréchet, and Weibull. This revolutionary comprehension established 

the foundation for further developments, including the work by [3], who introduced basic but essential conditions for the 

weak convergence of maxima to these three types of EVT distributions. The authors in [4], built on this by founding a 

rigorous theoretical groundwork for EVT, providing necessary and sufficient conditions for the weak convergence issue in 

extremes. The EVT were further generalized by authors in [4], and studied in depth by [5], who expanded the applicability 

of EVT. Further improvement has been introduced by [6], who refined the understanding of asymptotic distributions. 

Subsequently, many authors have later expanded on these results and offer even more nuanced insights. In [7], the focus 

shifted to discussing various asymptotic results for extreme order statistics, adding further complexity to the field. The 

authors of [8], explored the practical applications of theory in statistical frameworks, while [9], introduced a latest, 

essential, and adequate condition that has advanced the theoretical understanding of EVT. Later [10], provided an 

innovative alternative formulation for EVT called von Mises conditions, offering another level of clarity. EVT plays a 

fundamental role across many fields, as specified by studies like [11, 12]. For the selection and validation of EVT models, 

the primary tools used are Probability Paper Plots (PPP), Quantile-Quantile Plots (QQP), and Return Level Plots (RLP). 

These tools are described extensively and demonstrated with several examples in [8-19]. To simplify evaluation process, 

packages of computer programs designed for EVT are available for download online, as referenced in [14-16]. For a more 

exhaustive theoretical elucidation and definition of the concepts involved in EVT, readers are directed to consult [17]. 
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This paper is organized in the follows manner: In Section 2, light shad on a summary of the key results related to 

extreme value theory (EVT). Section 3 offers a general overview of some important findings regarding the RF distribution. 

While, section 4, discusses two approaches to determine whether a given distribution belongs to the domain of attraction 

(DA) condition of the RF distribution under linear normalization. Section 5 presents parameter estimation methods. In 

Section 6, focuses the diagnostic plots to assist in the selection of a suitable model. Section 7 is devoted to demonstrating 

hypothesis testing for the RF model. Section 8 reveals the application of the RF distribution to actual dataset. The final 

section provides conclusion and future work for possibly new research directions. 

 

2 Main Limiting Results in EVT 

The groundwork in EVT traced back to the work of authors in [1-3]. In [4], EVT summaries the possible limiting 

behavior of categorizations of maximum or minimum values under linear normalization, with an incomplete description 

that was fully achieved in [12], concerning the domains of attraction. One of the primary limiting results in EVT is 

summarized in the following theorem. It can be achieved by a well-established iterative procedure, like the Newton-

Raphson method. This numerical method provides an effective solution, typically when analytical solution is not available. 

For further details on the application and theoretical background of these numerical techniques, reader is referred to [18]. 

 

2.1 Theorem of Limiting Results of Extreme Distributions 

Consider ( NiX i , ) as a set of independent random variables with an identical distribution specified using the 

distribution function (d.f.) F . Suppose that the initial n random variables are sequenced in increasing order of magnitude 

and specified as nnnn XXX ::2:1 ...  ; in this case, the ith  ordinary order statistic is denoted as niX : . Specifically, 

)(maxmin ,...,1,...,1:1 iniinin XXX −−== ==
 designate the lower values among nXXX ,...,, 21 , hence, 

n

n xFxXP ))(1(1)( :1 −−=  and let   specify a real line and F  d.f. is considered among the min DA based on the 

linear normalisation of a non-degenerate d.f. G. It is typically denoted as )(min GDF when normalising constants 

0nb  and na , Nn  exist and follow the specified expression for all x.  
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for all x  where )(xGB here is the Reversed generalized extreme value distribution (RGEVD) or the von Mises-Jenkinson 

form and it can be written as: 
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and the cumulative density function (cdf) is given by: 
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If the conditions in Eq. 1 or 2 are met, we may indicate that CDF F resides in the min DA of )(xGB  in (3) and is typically 

denoted as minDF  . In extreme value analysis (EVA), the real parameter   is the chief parameter and is designated as 

the extreme value index (EVI). This EVI (  ) ascertains how the right tail of F is shaped. The EVD, as specified in (3), is 

typically categorized into three variants: the first comprises CDFs with a small tail comprising a finite right threshold, such 

as the beta CDFs, that are specified as the Weibull ( 0 ), e.g., beta and uniform distributions. The second case 

comprises the Gumbel ( 0= ) situation that may be used for several applied science scenarios. It comprises numerous 

CDFs that have an exponential tail, such as exponential, gamma, and normal. Finally, Fréchet DA ( 0 ) is the third 

scenario. It comprises heavy-tailed CDFs, such as Student-t, Cauchy, loggamma, and the Pareto Burr distributions. The 

problem of finding the extreme values of the distributions has been solved by [2], completed by [4] and later by [6]. They 

http://www.wikiwand.com/en/Generalized_extreme_value_distribution
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demonstrate that, if Eq. 1 or 2 hold, the limiting distribution )(xGB  must be one of just three types, i.e., Weibull, Gumbel, 

or Fréchet. 

3 Reversed Fréchet distribution (RFD) 

For the last few decades, the EVT domain has relied on the reversed Fréchet distribution (RFD) because it allows the 

modeling of several wide-ranging scenarios. It has been used for technological work and natural extremes like rainfall, 

floods, temperature, air pollution, and wind speed. The RFD is a unique scenario of RGEVD, where the shape (β) variation

0 . Such distributions are also called Weibull or type II distributions. The Fréchet type is sometimes referred to as the 

Cauchy-Fréchet type. The three parameters of RFD were considered, namely, β, location (μ), and scale (σ), as well as the 

RF’s ( )(min RFD ) probability density function ( ), which is expressed as: 
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and has the cumulative distribution function (cdf):

 

6,exp1)( 


























−
−−= x

x
xF

 Where ),,(   are shape, location and scale parameter respectively. For some properties and applications, see [20-22]. 

 

4 Determining the Domain Attraction under Linear Normalizing 

This section discusses two methods and the necessary and sufficient conditions for belonging to the domain of 

attraction of the reversed Fréchet distribution (DARFD) under linear normalizing. However, first, some of the principles 

for the DA to belong to the RFD are discussed. 

 

4.1 Domain Attraction of Reversed Fréchet distribution (DARFD)

 
An interesting problem, from the point of view of extremes, is knowing the DA of a given cdf F . To identify the DA of a 

given d.f. F and the associated location ( na ( and scale ( nb ) sequences, [6, 9] have proposed the following two theorems. 

 

Theorem 1 (Sufficient conditions of Castilo and Hadi for )(min RFDF ). 

For the continuous cdf F  to belong to the sufficient conditions on the density of a distribution, it must belong to the 

DARFD. This is expressed as )(min RFDF   if and only if:  
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where, e is the base of the natural logarithm, })(:inf{)( yxFxyFQ ==   and   is the shape parameter of the 

associated limit RFD. The cdf satisfying Eq. 7 is called the DARFD. 

 

Theorem-2: (Sufficient conditions of de Haan and Ferreira for )(min RFDF  )  

A cdf F is in the DARFD if 0  and is expressed as )(min RFDF  if and only if 
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where, u  is the quantile function of the tail and expressed as )/11()( yFyU −=  . A d.f. F  is considered a part of 

the DARFD and is expressed as )(min RFDF  . A simple proof of this result is given in [9]. The d.f. F, which is 

considered a part of the DARFD, is called a heavy-tailed distribution. Lastly, na  and nb  are potential options for norming 
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constants. These constants are not exclusive and rely on the sort of DA. The μ and σ can be chosen in the DARFD as 

follows: 

4.2 Norming Constant of Domain Attraction of RF distribution 

Under the conditions of )(min RFDF  , the na  and nb  norming constants are defined as follows:  

 
)(,0 1−== nQba nn  11 

 For more information on the na  and nb  norming constants, see [17]. 

 

4.3 Examples of Theoretical Applications 

Examples-1: Let F  be the cdf of the Cauchy distribution is written as: 
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which shows that the Cauchy distribution belongs to the Reversed Fréchet domain of attraction )(min RFDF  . The 

limiting distribution for the minima in this case is the RF distribution and by symmetry the same conclusion holds for the 

maxima. Also we will try to check whether the de Haan sufficient condition (Eq-8) holds. For that purpose, let us note that: 
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This means that the condition of de Haan hold and we conclude that 
)(min mWDF 
When the domain of attraction condition 

is satisfied. A possible selection of the constants, according to (11), is 
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5 Parameter Estimation 

In this section, we describe the maximum likelihood estimators (MLE) for estimating the parameters of RF 

distribution are considered in case of location known. If nxxx ,...,, 21  is a random sample from the RF distribution, then 

the likelihood function corresponding to this sample is given by: 
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Whose solutions provide MLE̂  and 
MLE̂ . After some algebraic manipulations, the estimate 

MLE̂ can be obtained by 

solving the following non-linear equation: 
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The estimate MLE̂  can be obtained by substituting 
MLE̂  in 

17ˆ

1


=

−

=
n

i

i

MLE

x

n



  

This can be accomplished by the use of standard iterative procedures (i.e., Newton-Raphson method), for more details, see, 

[18]. 

 

6 Diagnostic plots 

Graphical nature methods are usually used to evaluate whether a distribution, such as 𝐹, behaves in accordance 

with the Reversed Fréchet (RF) distribution. The RF distribution is notable for its unlimited upper bound and heavy tail 

features. These graphical methods are crucial tools in extreme value analysis, providing a way to visualize the behavior of 

the distribution's tail. They offer valuable, immediate insights that can direct the model selection process. Importantly, 

many commonly-used evaluation techniques in extreme value theory (EVT) are directly obtained from these graphical 

tools. By using them, we can more precisely decide on the most appropriate model to describe the underlying data. In this 

section, we explore some of the most efficient graphical diagnostic plots, which help evaluate whether the chosen model 

fits the used dataset appropriately. 

 

6.1 Probability Paper Plot of Reversed Fréchet (PPPRF) 

One of the most frequently used graphical techniques in statistical analysis is the Probability Paper Plot (PPP). 

The basic concept behind PPP, especially for a bi-parameter family of distributions, is to transform the Cumulative 

Distribution Function (CDF) to a family of straight lines when plotted. This linearization process allows for an easier 

evaluation of how well the data aligns with selected distribution. However, when the PPP is used for the Reversed Fréchet 

distribution. In order to produce a meaningful probability plot, we target a suitable transformation that reformulates the 

original equation, presenting the data in a way that discloses whether or not it obeys the expected behavior of the RF 

distribution. This graphical visualization tool simplifies the analysis of multifaceted data, especially when it comes to 

identifying the distribution's tail characteristics, which is vital in extreme value theory. 
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Now, we derive the probability paper plots of Reversed Fréchet (PPPRF), for more details, see,[19]. When the cdf of RF 

is given in (5) can be written as: 
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The scatter plot of iy , versus iu ni ,...,2,1= , where )]1log(log[)( Ppgy −−==  and )log()( xxhu −−==   are called the 

PPPRF. In this way, when the trend as approximately linear is an indication of the sample coming from the corresponding 
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family (RFPPP). If the deviation from the straight line is too strong we conclude that the sample comes from a different 

distribution, for more details, see [19]. 

6.2 Return Level Plot (RLP) 

The fitted distribution may be used to forecast the frequency of the extreme quantiles within a specified return 

level (RL). The theory indicates that, on average, the observations may be equal to or greater than the return value for every 

time period (T) (having a likelihood of T/1 ). The return value may be ascertained by solving for the following expression 

(i.e., by inverting Eq. 5 in RF) and the quantile RF is specified as:  

23))1log(( 1  pX p −−−=  

 

The maximum likelihood estimation (MLE) technique is employed to predict the values of these variables. The 

parameters ),,(   are substituted by the estimated values )ˆ,ˆ,ˆ(   to obtain 
PX̂ . The RLP indicates the 

),(log pp xy plot. Moreover, confidence intervals are typically specified to enhance the information provided by the graph 

(refer to [12, 17]). The DARFD has concave properties 

 

6.3 Return Levels Estimation (RLE) 

It is critical to assess the RL pertaining to extreme events using shorter-term data, for example, the extremes that 

occur in 10-, 20-, 50-, 100-year or more extended periods; refer [12-17]. The T-year is when the event occurs; RL may be 

determined simply after estimating the model variables. For instance, consider ̂  and ̂  as the CDF parameters of RF 

determined using MLE. Based on Eq. 5, the following expression is derived: 

 

24]
)ˆ,ˆ;(

1
[lnˆ

ˆ

1






i

p
xf

x =
 

and substituting Txf i /11)ˆ,ˆ,ˆ;( −=  from the RF distribution we get: 
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Where T  denotes the return duration and x  indicates the conceptual RL for a specified period. The usual terminology 

designates px  as the RL linked with the return duration T/1  because we may expect with a reasonable predictability 

level that the px level may be breached once every 1/T years. A plot of px and log py  (or, equivalently, py  on a 

logarithmic scale plotted against px ) is linear for 0= . The plot has a convex shape for 0 , whereas the plot is 

concave with indeterminable bounds for 0 . The plot represents an RLP, which is specifically helpful for presenting 

and verifying the model.  

 

6.4 Quantile Quantile Plot (Q-Q Plot) 

A visual assessment of the QQ graphs based on the β of the extreme event distributions also helped validate if the 

datasets were consistent with specified distributions (had fat tails). Distinguishing between heavy, ordinary, and light tail 

scenarios helps ascertain the distributions used for modelling such events. For this graphical plot, we mark the quantiles of 

one d.f. against another (refer to [8-19]. The quantile function Q  is the generalized inverse expression (5) pertaining to the 

cdf F: 
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=  is a quantity denoting the pth quantile of the distribution. Suppose that nxxx ,...,, 21  is a sample selected 

from a specified set and F̂  estimates F . In this case, the points may be represented by the scatter plot specified using the 

following expression:  
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This represents a Q-Q plot. A great fit between the model and data is indicated by the Q-Q plot points appearing as a 

diagonal that follows the distribution. It must be noted that the points comprising a Q-Q plot are within the square [
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7 Hypothesis Testing for the Reversed Fréchet Model 

To test the data from the d.f. of RF model defined in Eq. 4, the hypothesis testing can be written as: 

)(Re0:0: 10 FrechetversedHversusH =   

where μ and σ are unknown. Hence, the Gumbel distributions are validated against a different EV RFD for a specified data 

vector nxxx ,...,, 21 . The likelihood ratio test (LRT) or Devison (Dev) statistic test is: 
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Here, (  ˆ,ˆ ) and (  ˆ,ˆ,ˆ ) denote the Gumbel frameworks and the MLEs in the EV (i.e., RF), respectively. Since the 

dimensions of the parameter sets are 2 and 3, it can be said that LR-statistic (LRS) has an asymptotical distribution based 

on 
2

11  و− having a single degree of freedom based on the null hypothesis ( 0H ). Therefore, the p-value is specified as:  

 

 
29)(1)( 2

1 LRTLRTvalueP −=−  

 

The significance level is attained with a higher accuracy by employing the Bartlett correction when the LR–statistic (LRS) 

is replaced by nLRT /8.21/( + . In this case the valueP−  is: 

 
30)/8.21/()(1 2

1 nLRTvalueP +−=−   

 

There is a general approach to substitute an LRS by nLRT /8.21/( + ) to attain better accuracy while approximating 
2

1 . 

 

8 Data Description 

To exemplify the use of several approaches applicable for estimating the minimum distribution in applications. 

This section is based on practical data sets indicating sulphur dioxide (SO2) and particulate matter (PM) pollutants measured 

in 2008 to determine air quality during the 10th Ramadan. The pollutant levels were recorded hourly for all twenty-four-

hour periods across the year 2008. To apply the block minima (BM), the first sample was divided in blocks, then, the 

minimum value in each block was collected and the RFD was fitted. The BM data of the two air pollutants, SO2 and PM, 

are depicted in Figs. 1 and 2, respectively. The plots allowed us to identify some inconsistent values when the data was 

partitioned into of four different time periods (6, 12, 16, and 24 hours). 
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Fig. 1: Plot block minimum of four periods (6, 12, 16 and 24-Hours) from left panel to right respectively of SO2. 

 

 
Fig. 2: Plot block minimum of four periods from left panel to right respectively of PM. 

 

8.1 Descriptive Statistics 

Firstly, it helps to have an overall understanding of the statistical properties of the specified dataset. Before using 

Gumbel's approach, it is suitable to gather an understanding of the tail index pertaining to the underlying d.f. F. Table-1 

summarizes specific statistical characteristics of the two pollutants (SO2 and PM) measured in the city during the 10th 

Ramadan. Moreover, Table-1 also indicates that the pollutant data pertaining to four durations exhibits a particular 

skewness indicative of heavy tails (i.e.,
 

0 ). Hence, there is a compelling reason for such pollutants to be distributed 

based on the DARFD (fat tail 0 ). 

 

Table 1: Descriptive statistics of two pollutants of 10th Ramadan city 

Type of pollution selection period N 

8760 

Min Max Mean Median SD SK 

SO2 6-hours 1423 7.98 422.94 72.563 60.648 46.77 2.28 

12-hours 712 11.172 422.94 88.6019 77.42 52.67 2.13 

18-hours 475 18.088 422.94 101.888 90.052 56.96 2.07 

24-hours 356 18.886 422.94 108.611 95.494 60.22 1.97 

PM10 6-hours 1423 49 1219 246.401 221 113.62 2.94 

12-hours 712 109 1219 274.415 247 124.77 3.25 

18-hours 475 128 1219 295.628 261 137.53 3.25 

24-hours 356 143 1219 306.78 273.5 142.31 3.30 

 

8.2 Parameter Estimation 

Assume that we have a probability distribution; estimating the parameters of the distribution requires the use of 

the MLE to evaluate these parameters (  ˆ,ˆ,ˆ ) for BM considering four durations (6-, 12-, 16-, and 24-hours) for the 

two specified pollutants. MLE is utilized to fit the BM data and obtain the point estimates to present the results specified 

in Table-2.  

Table 2: ML estimates for parameter of minimum data of two air pollutants 

Type of pollution SO2 PM10 

Period Parameters Estimation Standard error Estimation Standard error 

6-Hours Location  50.67 0.83 196.86 2.03 

Scale  27.67 0.66 68.69 1.54 

Shape  0.18 0.02 0.12 0.01 
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Type of pollution SO2 PM10 

Period Parameters Estimation Standard error Estimation Standard error 

12-Hours Location  64.56 1.40 221.84 2.89 

Scale  33.22 1.07 69.39 2.21 

Shape  0.12 0.03 0.14 0.02 

18-Hours Location 76.02 1.83 237.64 3.44 

Scale 35.73 1.39 67.24 2.73 

Shape 0.13 0.03 0.21 0.03 

24-Hours Location 81.26 2.28 247.61 3.95 

Scale 38.51 1.72 67.11 3.14 

Shape 0.11 0.03 0.22 0.04 

 

It can be seen that the β forecast for every pollutant is positive; hence, the BM distribution aligns with the RFD 

(right tail,
 

0 ). Here, it is clearly helpful to employ specific evaluation processes to ascertain how well the models 

align with the data. Specific processes are considered in this study. 

 

8.3 Diagnostic Plot 

The BM data fitting diagnostic graphs for SO2 and PM are specified in Figs. 3 to 6 and 7 to 10, respectively. 

Further, four additional diagnostic graphs: Q-Q-plot, P-P-plot, RLP and density plot pertaining to SO2 and PM are 

presented. The graphs provided indicate that the recommended model is a strong fit for the data. Moreover, the Q-Q plot 

fits well because the line is approximately straight. Furthermore, for every case, the RLP indicates that the RFD (i.e., 

0 ) aligns well with the BM observations pertaining to the two pollutants. Lastly, Table-2 (column 3) indicates that 

the β is estimated as positive, indicating that the data have RFDs. 

 

 
Fig. 3: Diagnostic plot of SO2 dataset for the RF model fit of 6-Hours. 
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Fig. 4: Diagnostic plot of SO2 dataset for the RF model fit of 12-Hours. 

 

 
Fig. 5: Diagnostic plot of SO2 dataset for the RF model fit of 18-Hours. 
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Fig. 6: Diagnostic plot of SO2 dataset for the RF model fit of 24-Hours. 

 

 
Fig. 7: Diagnostic plot of PM Dataset for the RF model fit of 6-Hours 

 

 
Fig. 8: Diagnostic plot of PM Dataset for the RF model fit of 12-Hours 
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Fig. 9: Diagnostic plot of PM Dataset for the RF model fit of 18-Hours. 

 

 
Fig. 10: Diagnostic plot of PM Dataset for the RF model fit of 24-Hours. 

 

8.4 Hypothesis Testing for the Reversed Fréchet Model 

Evaluating if the RF framework is applicable to the specified data requires a comparison of the RF and Gumbel 

families. The LRT is used to evaluate the distribution that fits better. The null hypothesis is stated as "the distribution is 

Gumbel ( 0= ) ", while the alternative hypothesis is stated as "the distribution is RF (i.e., 0 ) ". The null hypothesis 

is rejected in both cases because the LRS specified in Table-3 is below 1%. Therefore, it is confirmed that the data aligns 

well with the Fréchet distribution. 
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Table 3: The LR test of four periods (6,12,16 and 24-Hours) and P-value 

Type of Pollution Period 6-Hours 12-Hours 18-Hours 24-Hours 

SO2 Hypothesis 

0:

0:

1

0



=





H

H  
0:

0:

1

0



=





H

H  
0:

0:

1

0



=





H

H  
0:

0:

1

0



=





H

H  

Dev 93.04 27.42 19.17 12.12 

P-value 0.00 0.00 0.00 0.00 

Decision Accept H1 Accept H1 Accept H1 Accept H1 

Type of distribution Fréchet  

( 0 ) 

Fréchet  

( 0 ) 

Fréchet  

( 0 ) 

Fréchet 

 ( 0 ) 

      

PM Hypothesis 

0:

0:

1

0



=





H

H  

0:

0:

1

0



=





H

H  
0:

0:

1

0



=





H

H  

0:

0:

1

0



=





H

H  

Dev 66.89  63.84 57.26 50.85 

P-value 0.00 0.00 0.00 0.00 

Decision Accept H1 Accept H1 Accept H1 Accept H1 

Type of distribution Fréchet 

 ( 0 ) 

Fréchet  

( 0 ) 

Fréchet 

 ( 0 ) 

Fréchet 

 ( 0 ) 

 

8.5 Return Levels Estimation (RLE) 

Return levels (RL) are critical for estimating and planning. They may be devised to estimate the maximum level 

of air pollution in an extended future period. The RL is the level that may be reasonably expected to be breached on average 

once every T periods. For this research, we may not compute the RLs pertaining to the required return durations, i.e., 10, 

20, 50, and 100-year. These must be determined for the two pollutants, considering specific selection periods to forecast 

using the parameters listed in Table-4. 

 

Table 4: Estimated Return level of minimum extreme of two air pollutants 

Type of Pollution Block  Selection period (years) 

T=10 T=20 T=50 T=100 

SO2 6-Hours 127.73 159.87 208.28 250.37 

12-Hours 151.37 184.92 233.26 273.50 

18-Hours 169.31 205.34 257.22 300 

24-Hours 180.61 218.42 272.40 316.96 

PM 6-Hours 287.54 336.55 401.98 452.54 

12-Hours 326.53 380.12 452.11 508.05 

18-Hours 346.60 405.45 487.64 554.01 

24-Hours 365.39 429.34 520.17 594.74 

 

Estimates of the RL for the return periods 6, 12, 18, and 24 hours were calculated using 10, 20, 50, and 40 years 

of data for both the air pollutants. The results show that, for even shorter time series, there is a consistent increase from 

time to time for the next 100 years for each air pollutants, as with longer time series. In general, the results show that a 

100-year event for SO2 is between 250.37 to 300, while that of PM is between 452.54 to 594.74. The relative uncertainty 

also increases with time as the high return periods increase. 

 

9. CONCLUSION 
The present study investigated some theoretical and practical aspects of using RFD. This distribution is one of the 

special cases of RGEVD when modelling extreme events under linear normalizing. We applied the BM approach on the 

data of two air pollutants, namely, SO2 and PM, and illustrated how EVT can be used to model extreme events using an 

RF model and MLE to the estimate its parameters. The LRT was used to determine which type of distribution best suited 

the study’s data after it was partitioned into four different time periods, namely, 6, 12, 16, and 24 hours. Post-partitioning, 

as the selection period increased, the difference between the minimums and maximums increased. Furthermore, the sample 

means of the different selection periods were larger than the median. This indicates that the β of the distribution was 

positive. In addition, the skewness of all the selection periods was positive. This indicates that the distribution had a right 

tail that was relatively longer than the left. Meanwhile, the increasing skewness indicates that the right tail became heavier 

as the selection period increased. The MLE technique was used to estimate the parameters. It showed the estimates of the 

β at the four different time periods were positive. This indicates that the distribution of the BM was tail heavy (positive β) 

and the RFD was appropriate for the data of the two air pollutants. In all cases of the four different time periods, P-P, Q-

Q, RLP, and density plots were used to assess the accuracy of the model when fitted to the data of the two air pollutants. 
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As seen, the scatter of points supported the assumption that the RFD model was better able to describe the behavior of this 

data. The figure also showed that the skewness of two air pollutants indicate that data is skewed to the right (heavy tail). 

For the LRT, the H0 stated that the distribution was Gumbel, while H1 stated that it was RFD. The P-value of the LRT was 

smaller than all the significance levels. This indicated that the data of the two air pollutants had an RFD. It also showed 

that the RF model is a good fit for our data. The diagnostic plot and goodness-of-fit results indicate that modelling using 

the different selection periods yielded fits that were almost identical. Therefore, the results of the present study indicate 

that, in the future, the extremes of the two air pollutants will increase from time to time at high return period for the next 

100 years. Finally, we suggest some interesting directions for further research. First, it would be useful to deal with a 

multivariate continuous probabilistic model for the tail air pollutants distribution for other forms of insurance. Secondly, 

studying limiting distributions for extremes in cases where the observations are sample-dependent may be interesting. 
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