Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2014; 1(1):1-3 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

Observations on the Hyperbola $Y^2 = 72X^2 + 1$

T. Geetha*, M. A. Gopalan, S. Vidhyalaksmi

Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamilnadu, India

*Corresponding Author: T. Geetha Email: vishaal25509@gmail.com

Abstract: The binary quadratic equation $y^2 = 72x^2 + 1$ is considered and a few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a special pythagorean triangle is obtained.

Keywords: Binary quadratic, Hyperbola, Integral solutions, Pell equation 2010 Mathematics subject classification:11D09

INTRODUCTION

The binary quadratic equation of the form $y^2 = Dx^2 + 1$, where D is a non-square positive integer, has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values [1-4]. In [5] infinitely many pythagorean triangle in each of which hypotenuse is four times the product of the generators added with unity are obtained by employing the non-integral solutions of binary quadratic equation $y^2 = 3x^2 + 1$. In [6], a special pythogorean triangle is obtained by employing the integral solutions of $y^2 = 10x^2 + 1$. In [7], different patterns of infinitely many pythagorean triangle are obtained by employing the non-trivial solutions of $y^2 = 12x^2 + 1$. In [7], different patterns of infinitely many pythagorean triangle are obtained by employing the non-trivial solutions of $y^2 = 12x^2 + 1$. In this context one may also refer [8-16]. These results have motivated us to search for the integral solutions of yet another binary quadratic equation $y^2 = 72x^2 + 1$ representing a hyperbola .A few interesting properties among the solutions are presented.Employing the integral solution under the consideration, a special pythagorean triangle is obtained.

Notations

 $t_{m,n}$ – Polygonal number of rank n with size m.

 P_n^m – Pyramidal number of rank n with size m.

 CP_n^m - Centered pyramidal number of rank n with size m.

 $CP_{m,n}$ - Centered polygonal number of rank n with size m.

 GNO_n – Gnomonic number of rank n.

 S_n – star number of rank n.

METHOD OF ANALYSIS

The binary quadratic equation representing hyperbola under consideration is

$$y^2 = 72x^2 + 1 \tag{1}$$

whose general solution (x_n, y_n) is given by $x_n = \frac{g}{2\sqrt{72}}, y_n = \frac{f}{2}$,

where

$$\begin{aligned} f &= (17+2\sqrt{72})^{n+1} + (17-2\sqrt{72})^{n+1} \\ g &= (17+2\sqrt{72})^{n+1} - (17-2\sqrt{72})^{n+1} \ , n = 0, 1, 2, 3, \dots ... \end{aligned}$$

The recurrence relations satisfied by x and y are given by

 $y_{n+2} - 34y_{n+1} + y_n = 0$, $y_0 = 17$, $y_1 = 577$ $x_{n+2} - 34x_{n+1} + x_n = 0$, $x_0 = 2$, $x_1 = 68$

n	x _n	\mathcal{Y}_n
0	2	17
1	68	577
2	2310	19601
3	78472	665857
4	2665738	22619537
5	3550000614930	30122754096401

Some numerical examples of x and y satisfying (1) are given in the following table

From the above table, we observe some interesting properties :

- 1. x_n is always even.
- 2. y_n is always odd.
- 3. $y_{2n} \equiv (mod \ 17)$.
- $4. \quad x_{2n+1} \equiv \pmod{68}.$

A few interesting properties between the solutions and special numbers are given below:

- 1. $34y_{2n+2} 288x_{2n+2} + 2$ is a perfect square.
- 2. $6(34y_{2n+2} 288x_{2n+2} + 2)$ is a nasty number.
- 3. $34y_{3n+3} 288x_{3n+3} + 3(34y_{n+1} 288x_{n+1})$ is a cubic integer.
- 4. $S_f = 6[34(y_{2n+2} y_{n+1}) 288(x_{2n+2} x_{n+1})].$
- 5. $GNO_f = 68y_{n+1} 576x_{n+1} 1.$
- 6. $6P_f^m = 34[(m-2)x_{3n+3} + 3y_{2n+2} + (2m-1)y_{n+1}] 288[(m-2)x_{3n+3} + 3x_{2n+2} + (2m-1)x_{n+1}] + 6.$
- 7. $6CP_f^m = 34[m(y_{3n+3} + 2y_{n+1}) + y_{n+1}] 288[m(x_{3n+3} + 2x_{n+1})]$

8.
$$2t_{m,f} = 34[(m-2)y_{2n+2} - y_{n+1}(m-4)] - 288[(m-2)x_{2n+2} - x_{n+1}(m-4)] + 2m$$

9.
$$2Cp_{m,f} = m \begin{bmatrix} (m-2)(34y_{2n+2} - 288x_{2n+2}) \\ -(m-4)(34y_{n+1} - 288x_{n+1}) + 2(m-2) \end{bmatrix} + 2.$$

10. Let $y = 34y_{n+1} - 288x_{n+1}$ and $x = 17x_{n+1} - 2y_{n+1}$. Then the pair (x,y) satisfies the hyperbola $y^2 = 288x^2 + 4$.

- 4.

11.
$$y_{n+1} = 17y_n + 144x_n$$
.

- 12. $y_{n+2} = 577y_n + 4896x_n$.
- 13. $x_{n+1} = 17x_n + 2y_n$
- 14. $x_{n+2} = 577x_n + 68_n$.
- 15. $y_{3n+2} + 3y_n = 2y_n[y_{2n+1} + 1].$
- 16. $(y_{3n+2} + 3y_n)^2 = 16y_n^6$.

REMARKABLE OBSERVATIONS

- 1. Let α be any non-zero positive integer such that $\alpha_n = \frac{y_n 1}{2}$, $n = 0, 1, 2, \dots$, it is seen that $6t_{3,\alpha_n}$ is a nasty number.
- 2. Let p,q be the generators of the pythagorean triangle S (α,β,γ) with $\alpha=2pq$, $\beta=p^2-q^2,\gamma=p^2+q^2$, p > q > 0. Let $q_s = x_s$, $p_s = x_s + y_s$. Then S satisfies the following relations.
 - (a) $36\beta = 35\gamma + \alpha + 1$.
 - (b) $(\gamma \alpha) = 36\left(\alpha \frac{4A}{p}\right) + 1$ where A and P represent the area and perimeter of the pythagorean triangle.
 - (c) $x_n = p q, p > q > 0$. Let N be a positive integer defined by $N = \frac{y_n 1}{2}$. Then $36(\gamma \alpha)$ is four times a triangular number.

n	<i>x</i> _n	р	q	y_n	$N = \frac{y_n - 1}{2}$	α	γ	$36(\gamma - \alpha) = 4t_{3,N}$
0	2	6 3	4	17	8	48 6	52 10	$144 = 4t_{3,8}$
1	68	70 74	2 6	577	288	280 888	4904 5512	$66464 = 4t_{3,288}$

3. Employing the solutions of (1), the following relations among the special polygonal and pyramidal numbers are observed. 5 \ 2

(i)	$t_{3,\frac{y_{s}-1}{2}} = 9\left(\frac{p_{x_{s}}^{3}}{t_{3,x_{s}}}\right)^{2}$
(ii)	$t_{3,\frac{y_{s}-1}{2}} = 9\left(\frac{3p_{x_{s}}^{2}}{t_{3,x_{s}+1}}\right)^{2}$
(iii)	$t_{3,\frac{y_s-1}{2}} = 9\left(\frac{6p_{x_s-1}^4}{t_{3,2x_s-2}}\right)^2$
(iv)	$\left(\frac{p_{y_s}^5}{t_{3,y_s}}\right)^2 = 72 \left(\frac{3p_{x_s}^3}{t_{3,x_s+1}}\right)^2 + 1$
(v)	$\left(\frac{6p_{y_s-1}^4}{t_{3,2y_s-2}}\right)^2 = 72\left(\frac{p_{x_s}^5}{t_{3,x_s}}\right)^2 + 1$
(vi)	$\left(\frac{p_{y_s}^5}{t_{3,y_s}}\right)^2 = 72 \left(\frac{3p_{x_s-2}^3}{t_{3,x_s-2}}\right)^2 + 1$
(vii)	$t_{3,\frac{y_s-1}{2}} = 9 \left(\frac{3p_{x_s-2}^3}{t_{3,x_s-2}}\right)^2$

CONCLUSION

To conclude, one may search for other choices of hyperbola for patterns of solutions and their corresponding properties.

REFERENCES

- 1. Dickson LE; History of Theory of Numbers. Volume 2, Chelsea Publishing Company, New York, 1952.
- 2. Mordel LJ; Diophantine Equations. Academic Press, New York, 1969.
- 3. Telang SJ; Number Theory. Tata Mcgraw Hill Publishing Company Ltd., New Delhi, 2000.

- 4. Burton D; Elementary number Theory. Tata Mcgraw Hill Publishing Company Ltd., New Delhi, 2002. 5. Gopalan M.A, Janaki G; Observation on $y^2 = 3x^2 + 1$. Acta Ciancia Indica, 2008; XXXIVM(2): 693-696. 6. Gopalan MA, Sangeetha G; A Remarkable observation on $y^2 = 10x^2 + 1$. Impact J Sci Tech., 2010; 4: 103-106.
- 7. Gopalan MA, Palanikumar R; Observation on $y^2 = 12x^2 + 1$. Antarctica J Math., 2011; 8(2):149-152.
- 8. Gopalan MA, Vidhyalakshmi S, Devibala S; On the Diophantine equation $3x^2 + xy = 14$. Acta Ciancia Indica, 2007; XXIIIM(2): 645-648.
- 9. Gopalan MA, Vijayalakshmi R; Observation on the integral solutions of $v^2 = 5x^2 + 1$. Impact J Sci Tech.. 2010; 4:125-129.
- 10. Gopalan MA, Yamuna RS; Remarkable observation on the binary quadratic equation $y^2 = (k^2 + 2)x^2 + 1$, k £ Z-{0}. Impact J Sci Tech., 2010; 4: 61-65.
- 11. Gopalan MA, Sivagami B; Observation on the Integral solutions of $y^2 = 7x^2 + 1$. Antarctica J Math., 2010; 7(3): 291-296.
- 12. Gopalan MA, Vidhyalakshmi R; Special pythagorean triangle generated through the integral solutions of the equation $y^2 = (k^2 + 1)x^2 + 1$. Antarctica J Math., 2010; 7(5): 503-507.
- 13. Gopalan MA, Srividhya G; Relation among M-ognal Number through the equation $y^2 = 2x^2 + 1$. Antarctica J Math., 2010; 7(3): 363-369.
- 14. Gopalan MA, Vidhyalakshmi S, Usharani TR, Mallika S; Observation on $y^2 = 12x^2 3$. Bessel J Math., 2010; 2(3):153-158.
- 15. Gopalan MA, Vidhyalakshmi S, Umarani J; Remarkable observations on the hyperbola $y^2 = 24x^2 + 1$. Bulletin of Mathematics and Statistics Research, 2013; 1: 9-12.
- 16. Gopalan MA, Vidhyalakshmi S, Maheswari D; Remarkable observations on the hyperbola $y^2 = 30x^2 + 1$. International Journal of Engineering of Research, 2013; 1(3): 312-314.