Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2014; 1(1):1-3

©Scholars Academic and Scientific Publishers (SAS Publishers)
(An International Publisher for Academic and Scientific Resources)

Observations on the Hyperbola $Y^{\mathbf{2}}=\mathbf{7 2} X^{\mathbf{2}}+1$

T. Geetha*, M. A. Gopalan, S. Vidhyalaksmi

Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamilnadu, India

*Corresponding Author:

T. Geetha

Email: vishaal25509@gmail.com

Abstract

The binary quadratic equation $y^{2}=72 x^{2}+1$ is considered and a few interesting properties among the solutions are presented.Employing the integral solutions of the equation under consideration, a special pythagorean triangle is obtained. Keywords: Binary quadratic, Hyperbola, Integral solutions, Pell equation 2010 Mathematics subject classification:11D09

INTRODUCTION

The binary quadratic equation of the form $y^{2}=D x^{2}+1$, where D is a non-square positive integer, has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values [1-4]. In [5] infinitely many pythagorean triangle in each of which hypotenuse is four times the product of the generators added with unity are obtained by employing the non-integral solutions of binary quadratic equation $y^{2}=3 x^{2}+1$. In [6], a special pythogorean triangle is obtained by employing the integral solutions of $y^{2}=10 x^{2}+1$. In [7], different patterns of infinitely many pythagorean triangle are obtained by employing the non-trivial solutions of $y^{2}=12 x^{2}+1$. In this context one may also refer [8-16]. These results have motivated us to search for the integral solutions of yet another binary quadratic equation $y^{2}=72 x^{2}+1$ representing a hyperbola. A few interesting properties among the solutions are presented.Employing the integral solutions of the equation under the consideration, a special pythagorean triangle is obtained.

Notations

$t_{m, n}$ - Polygonal number of rank n with size m.
$P_{n}^{m} \quad$ - Pyramidal number of rank n with size m .
$C P_{n}^{m} \quad$ - Centered pyramidal number of rank n with size m .
$C P_{m, n}$ - Centered polygonal number of rank n with size m .
$G N O_{n}$ - Gnomonic number of rank n.
$S_{n} \quad-$ star number of rank n.

METHOD OF ANALYSIS

The binary quadratic equation representing hyperbola under consideration is

$$
\begin{equation*}
y^{2}=72 x^{2}+1 \tag{1}
\end{equation*}
$$

whose general solution $\left(x_{n}, y_{n}\right)$ is given by $x_{n}=\frac{g}{2 \sqrt{72}}, y_{n}=\frac{f}{2}$,
where

$$
\begin{aligned}
& f=(17+2 \sqrt{ } 72)^{n+1}+(17-2 \sqrt{ } 72)^{n+1} \\
& g=(17+2 \sqrt{ } 72)^{n+1}-(17-2 \sqrt{72})^{n+1}, \mathrm{n}=0,1,2,3, \ldots \ldots
\end{aligned}
$$

The recurrence relations satisfied by x and y are given by

$$
\begin{aligned}
& y_{n+2}-34 y_{n+1}+y_{n}=0, y_{0}=17, y_{1}=577 \\
& x_{n+2}-34 x_{n+1}+x_{n}=0, x_{0}=2, x_{1}=68
\end{aligned}
$$

Some numerical examples of x and y satisfying (1) are given in the following table

n	x_{n}	y_{n}
0	2	17
1	68	577
2	2310	19601
3	78472	665857
4	2665738	22619537
5	3550000614930	30122754096401

From the above table, we observe some interesting properties :

1. x_{n} is always even.
2. y_{n} is always odd.
3. $y_{2 n} \equiv(\bmod 17)$.
4. $x_{2 n+1} \equiv(\bmod 68)$.

A few interesting properties between the solutions and special numbers are given below:

1. $34 y_{2 n+2}-288 x_{2 n+2}+2$ is a perfect square.
2. $6\left(34 y_{2 n+2}-288 x_{2 n+2}+2\right)$ is a nasty number.
3. $34 y_{3 n+3}-288 x_{3 n+3}+3\left(34 y_{n+1}-288 x_{n+1}\right)$ is a cubic integer.
4. $S_{f}=6\left[34\left(y_{2 n+2}-y_{n+1}\right)-288\left(x_{2 n+2}-x_{n+1}\right)\right]$.
5. $G N O_{f}=68 y_{n+1}-576 x_{n+1}-1$.
6. $6 P_{f}^{m}=34\left[(m-2) x_{3 n+3}+3 y_{2 n+2}+(2 m-1) y_{n+1}\right]$

$$
-288\left[(m-2) x_{3 n+3}+3 x_{2 n+2}+(2 m-1) x_{n+1}\right]+6
$$

7. $6 C P_{f}^{m}=34\left[m\left(y_{3 n+3}+2 y_{n+1}\right)+y_{n+1}\right]-288\left[m\left(x_{3 n+3}+2 x_{n+1}\right)\right]$

$$
\text { i. }+x_{n+1}
$$

8. $2 t_{m, f}=34\left[(m-2) y_{2 n+2}-y_{n+1}(m-4)\right]$

$$
-\quad-288\left[(m-2) x_{2 n+2}-x_{n+1}(m-4)\right]+2 m-4
$$

9. $2 C p_{m, f}=m\left[\begin{array}{c}(m-2)\left(34 y_{2 n+2}-288 x_{2 n+2}\right) \\ -(m-4)\left(34 y_{n+1}-288 x_{n+1}\right)+2(m-2)\end{array}\right]+2$.
10. Let $\mathrm{y}=34 y_{n+1}-288 x_{n+1}$ and $x=17 x_{n+1}-2 y_{n+1}$. Then the pair (x, y) satisfies the hyperbola $y^{2}=288 x^{2}+$ 4.
11. $y_{n+1}=17 y_{n}+144 x_{n}$.
12. $y_{n+2}=577 y_{n}+4896 x_{n}$.
13. $x_{n+1}=17 x_{n}+2 y_{n}$.
14. $x_{n+2}=577 x_{n}+68_{n}$.
15. $y_{3 n+2}+3 y_{n}=2 y_{n}\left[y_{2 n+1}+1\right]$.
16. $\left(y_{3 n+2}+3 y_{n}\right)^{2}=16 y_{n}^{6}$.

REMARKABLE OBSERVATIONS

1. Let α be any non-zero positive integer such that $\alpha_{n}=\frac{y_{n}-1}{2}$, $\mathrm{n}=0,1,2, \ldots \ldots$, it is seen that $6 t_{3, \alpha_{n}}$ is a nasty number.
2. Let p, q be the generators of the pythagorean triangle $\mathrm{S}(\alpha, \beta, \gamma)$ with $\alpha=2 \mathrm{pq}, \beta=p^{2}-q^{2}, \gamma=p^{2}+q^{2}$, $p>q>0$. Let $q_{s}=x_{s}$,
$p_{s}=x_{s}+y_{s}$.Then S satisfies the following relations.
(a) $36 \beta=35 \gamma+\alpha+1$.
(b) $(\gamma-\alpha)=36\left(\alpha-\frac{4 A}{P}\right)+1 \quad$ where A and P represent the area and perimeter of the pythagorean triangle.
(c) $x_{n}=p-q, p>q>0$. Let N be a positive integer defined by $N=\frac{y_{n}-1}{2}$. Then $36(\gamma-\alpha)$ is four times a triangular number.

n	x_{n}	p	q	y_{n}	$N=\frac{y_{n}-1}{2}$	α	γ	$36(\gamma-\alpha)=4 t_{3, N}$
0	2	6	4	17	8	48	52	$144=4 t_{3,8}$
		3	1			6	10	
1	68	70	2	577	288	280	4904	$66464=4 t_{3,288}$

3. Employing the solutions of (1), the following relations among the special polygonal and pyramidal numbers are observed,

$$
\begin{equation*}
t_{3, \frac{y_{s}-1}{}}^{2}=9\left(\frac{p_{x_{s}}^{5}}{t_{3, x_{s}}}\right)^{2} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
t_{3, \frac{y_{s}-1}{2}}=9\left(\frac{3 p_{x_{s}}^{3}}{t_{3, x_{s}+1}^{3}}\right)^{2} \tag{ii}
\end{equation*}
$$

(iii) $\quad t_{3, \frac{y_{s}-1}{2}}=9\left(\frac{6 p_{x_{x^{-1}}}^{4}}{t_{3,2 x_{s}-2}}\right)^{2}$
(iv)

$$
\left(\frac{p_{y_{s}}^{5}}{t_{3, y_{s}}}\right)^{2}=72\left(\frac{3 p_{x_{s}}^{3}}{t_{3, x_{s}+1}^{3}}\right)^{2}+1
$$

$$
\begin{equation*}
\left(\frac{6 p_{y_{s}-1}^{4}}{t_{3,2 y_{s}-2}}\right)^{2}=72\left(\frac{p_{x_{s}}^{5}}{t_{3, x_{s}}}\right)^{2}+1 \tag{v}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{p_{y_{S}}^{5}}{t_{3, y_{s}}^{5}}\right)^{2}=72\left(\frac{3 p_{x_{s}-2}^{3}}{t_{3, x_{s}-2}}\right)^{2}+1 \tag{vi}
\end{equation*}
$$

(vii)

$$
t_{3, \frac{y_{s}-1}{2}}^{2}=9\left(\frac{3 p_{x_{s}-2}^{3}}{t_{3, x_{s}-2}^{3}}\right)^{2}
$$

CONCLUSION

To conclude, one may search for other choices of hyperbola for patterns of solutions and their corresponding properties.

REFERENCES

1. Dickson LE; History of Theory of Numbers. Volume 2, Chelsea Publishing Company, New York,1952.
2. Mordel LJ; Diophantine Equations. Academic Press, New York, 1969.
3. Telang SJ; Number Theory. Tata Mcgraw Hill Publishing Company Ltd., New Delhi, 2000.
4. Burton D; Elementary number Theory. Tata Mcgraw Hill Publishing Company Ltd., New Delhi, 2002.
5. Gopalan M.A, Janaki G; Observation on $y^{2}=3 x^{2}+1$. Acta Ciancia Indica, 2008; XXXIVM(2): 693-696.
6. Gopalan MA, Sangeetha G; A Remarkable observation on $y^{2}=10 x^{2}+1$. Impact J Sci Tech., 2010; 4: 103-106.
7. Gopalan MA, Palanikumar R; Observation on $y^{2}=12 x^{2}+1$. Antarctica J Math., 2011; 8(2):149-152.
8. Gopalan MA, Vidhyalakshmi S, Devibala S; On the Diophantine equation $3 x^{2}+x y=14$. Acta Ciancia Indica, 2007; XXIIIM(2): 645-648.
9. Gopalan MA, Vijayalakshmi R; Observation on the integral solutions of $y^{2}=5 x^{2}+1$. Impact J Sci Tech., 2010; 4:125-129.
10. Gopalan MA, Yamuna RS; Remarkable observation on the binary quadratic eqution $y^{2}=\left(k^{2}+2\right) x^{2}+1, \mathrm{k} £$ Z-\{0\}. Impact J Sci Tech., 2010; 4: 61-65.
11. Gopalan MA, Sivagami B; Observation on the Integral solutions of $y^{2}=7 x^{2}+1$. Antarctica J Math., 2010; 7(3): 291-296.
12. Gopalan MA, Vidhyalakshmi R; Special pythagorean triangle generated through the integral solutions of the equation $y^{2}=\left(k^{2}+1\right) x^{2}+1$. Antarctica J Math., 2010; 7(5): 503-507.
13. Gopalan MA, Srividhya G; Relation among M-ognal Number through the equation $y^{2}=2 x^{2}+1$. Antarctica J Math., 2010; 7(3): 363-369.
14. Gopalan MA, Vidhyalakshmi S, Usharani TR, Mallika S; Observation on $y^{2}=12 x^{2}-3$. Bessel J Math., 2010; 2(3):153-158.
15. Gopalan MA, Vidhyalakshmi S, Umarani J; Remarkable observations on the hyperbola $y^{2}=24 x^{2}+1$. Bulletin of Mathematics and Statistics Research, 2013; 1: 9-12.
16. Gopalan MA, Vidhyalakshmi S, Maheswari D; Remarkable observations on the hyperbola $y^{2}=30 x^{2}+1$. International Journal of Engineering of Research, 2013; 1(3): 312-314.
