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Abstract: Vector Autoregression (VAR) and Bayesian VAR (BVAR) were first introduced in the early eighties of the 
last century and have since proven to be practical and effective economic forecasting methodologies. This paper tends to 

study the forecasting performances of the unrestricted VAR model and four versions of the Sims-Zha BVAR models in 

the presence of collinearity using Monte Carlo simulation technique. We considered ten (10) collinearity levels (0.8, -0.8, 

0.85, -0.85, 0.9, -0.9, 0.95, -0.95, 0.99 and -0.99), the results from our simulation study revealed that the forecasting 

performances of the models vary as the collinearity levels varied. Furthermore, the values of the criteria increases as the 
time series length and the collinearity levels increased. We therefore recommend that if VAR modelers know that 

collinearity is acting upon the model, one can choose the forecasting model that is preferred for the criteria and the time 

series length selected. 

Keywords: Simulation, Collinearity, Forecasting, Time Series, Vector Autoregression (VAR) and Bayesian VAR 

(BVAR).

INTRODUCTION 

The role of forecasting in decision making for economic planning and development cannot be overemphasized, 

that is why economist, statisticians, econometricians and mathematicians are seeking ways to improve forecast 

performance.  For instance Schiff and Phillips,  [1] applied recent time series method to the problem of forecasting New 

Zealand‟s real GDP. Robertson and Tallman[2] revealed that the Federal-Fund rates forecast can be effectively improved 

using the Bayesian VAR model. Clements and Hendry, [3] investigated forecasting with difference-stationary and trend-

stationary models where they considered these models in a situation of misspecification and investigated the 

autocorrelation errors. Caraiani [4] applied the Bayesian VAR model in forecasting Romanian GDP. Stock and Watson 

[5] studied generalized shrinkage methods for forecasting many predictors; just to mention a few. 
 

Hendry [6] noted that the success of econometric model based forecast depends upon the following, there being 

regularities to be capture; such regularities being informative about the future; the proposed method capturing those 

regularities; and excluding non-regularities that swap the regularities. 

 

Clements and Hendry [7] enumerated a number of distinct forecasting methods, including: guessing (which 

relies on luck ); extrapolation (which relies on persistence); leading indicators (which relies on the indicators continuing 

to lead systematically); surveys (which relies on plans being implemented); analysis „in the context of an implicit, 

perhaps informal model‟ (which relies on the adequacy of the postulated framework); time series models such as the 

ARIMA class and Vector Autoregressions (VARs) (which relies on the „continuing of the time series representation); and 

econometrics systems (which relies on the model capturing the invariants of the economic structure. In addition, Sims[8] 
throws more light on macroeconomics and its methodology while Phillips[9] revealed the laws and limits of 

econometrics. 

 

However the focus of this paper is on Vector Autoregression (VAR) models, which is the most common 

multivariate time series form. 

 

VAR and Bayesian VAR (BVAR) were first introduced in the early eighties of the last century and have since 

proven to be practical and effective economic forecasting methodologies [10-13]. (On one hand VAR models explain the 

endogenous variable solely by their own history, apart from the deterministic regressors by incorporating non-statistical a 
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priori information, while on the other hand BVAR model employs mixed estimation, that is, a technique that blends 

actual data with stochastic prior information. VAR and BVAR models have typically been used in cases where long 

histories are available for each time series, the techniques are also appropriate when data are limited (that is short terms 

time series). In particular, BVAR models have been shown in numerous studies to be as accurate, if not more accurate, 

than large structural models and other time series methodologies [11, 2].  

Gujarati, [14] observed that multicollinearity problem usually afflict the VAR models. In a more recent 

literature, it was reported that correlation coefficients 7.0r  was an appropriate indicator for when collinearity 

begins to severely distort model estimation and subsequent prediction [15].  

 

Therefore in this paper we want to explore the forecasting performances of the reduced form VAR model and 

the Sims-Zha BVAR model in the presence of high collinearity levels using Monte Carlo simulation technique. 

 

REVIEW OF RELATED LITERATURES 

The name “Multicollinearity” was first introduced by Ragnar Frisch. In his original formulation the economic 

variables are supposed to be composed of two parts, a systematic or “true” and an “error” components. This problem 

which arises when some or all the variables in the regression equation are highly intercorrelated and it becomes also 
impossible to separate their influences and obtain the corresponding estimates of the regression coefficient [16]. 

Multicollinearity is a term that refers to correlation among independent variables in a multiple regression model; it is 

usually invoked when some correlations are “large” but an actual magnitude test is not well defined [17].   

 

Blalock [18] considered a situation where two independent variables are highly correlated, it was reported that it 

will be difficult to assess their relative importance in determining some dependent variable. It was also reported that the 

higher the correlation between independent variables the greater the sampling error of the partials and the implications 

for social research was also discussed. 

 

Schink and Chiu [19] considered the classical least squares (LS), Limited Information Single equation (LISE) 

and Two stage least Squares (2SLS) in the presence of multicollinearity and autocorrelation error terms for small sample 

situation. They reported that using the RMSE or Standard error criteria, either the LISE or 2SLS would give similar 
results. While on the other hand, using bias criterion, the LISE may be a more accurate method than the 2SLS. They 

recommended that if econometricians know that multicollinearity and autocorrelation are acting upon the model, one can 

choose the estimating technique that is best for the criteria that has been selected. 

 

Rama-Sastry,[16] reported some limits in the theory of multicollinearity on the parameters of a multiple 

regression model. 

 

Harvey,[20] made the following comments on multicollinearity in regression. They includes: Multicollinearity 

is a problem of degree rather than kind, except when the term is taken to refer to extreme multicollinearity. Although 

multicollinearity may be present in misspecified regression model, multicollinearity as such should not be regarded as 

evidence of misspecification, and lastly, in a linear model, prior detrending gives exactly the same results as does 
multiple regression applied to the full model. 

 

Atkinson, [21] performed a Monte-Carlo experiment to determined whether multicollinearity systematically 

affects the relative rankings of simultaneous equation techniques. Three single-equation techniques namely Ordinary 

Least squares (OLS), Two-Stage Least Squares (2SLS), and Limited Information Maximum Likelihood (LIML), two full 

information techniques namely Three-Stage Least squares (3SLS) and Linearized Maximum Likelihood (LML) were 

considered under small-sample properties at different levels of multicollinearity. He concluded that since high 

collinearity is unlikely, 3SLS was suggested for general use. 

 

Mittelhammer et al [22] studied OLS regression with exact linear restriction, mixed estimation (or regression 

with stochastic linear restriction) and principal components regression (PCR) as an alternative techniques to mitigate the 
effects of serious multicollinearity. In their work, they applied the techniques to the estimation of an aggregate 

agricultural production function for Thailand using time series data from 1950 to 1976. 

 

Sharma and James [23] introduced to marketing fields a biased estimation procedure called “Latent root 

regression”. The procedure, unlike other biased estimation procedures not only provide stable estimates in the presence 

of multicollinearity, but also provides a measure for determining whether or not a biased estimation was appropriate. 

 

Jagpal, [24] proposed a ridge estimator for the treatment of multicollinearity in structural equation models with 

unobservable variables. The method was then applied to a simple model of advertising in the multi product firm. 
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Salinas and Hillmer,[25] investigated the nature of muticollinearity associated with the design matrix X 

associated with the trading-day variation model. 

 

Burt, [26] showed analytically that differencing time series data for the purpose of reducing multicollinearity in 

the data set for the independent variables of a regression equation cannot possibly succeed when its effect on the 

disturbance term is taken into account. The work further revealed that the intuitive basis to justify first differencing of 

multicollinear data contained a flaw, even when the effects of differencing the disturbance terms are ignored. 
 

Mehta, Swamy and Iyengar,[27] proposed a statistic that measure the „distance‟ of a cross-product matrix from 

the diagonal matrix obtained by zeroing its off-diagonal elements and they found it useful in detecting near 

multicollinearity regression problems. It can also distinguished between apparent and real multicollinearity with positive 

probability. 

 

Buse,[28] worked out the statistical implications of the orthogonalization procedure in the general linear model. 

His work demonstrated that orthogonalization can worsen collinearity if measured by its effect on estimated variances. 

 

Clements and Hendry,[7]  reported that parameter estimates may be poorly determined in-sample due to the 

sheer number of variables, perhaps worsened by the high degree of collinearity manifested in the levels of integrated 
data. 

 

Hendry, [6] investigated the non-uniqueness of collinearity using the static regression model and reported that 

any collinearity in the explanatory variables is irrelevant to forecasting so long as the marginal process remains constant. 

 

Greenberg and Parks,[29] noted that since non-experimental data in general and economics data in particular, 

are often highly correlated, then from Bayesian viewpoint model specification is closely related to the problem of 

multicollinearity. In their approach they compared the predictive densities for an equation with and without the set of 

variables in question in order to gauge that the set may be safely omitted if the omission has little or no effect on the 

predictive densities. They concluded that examination of changes in predictive means and of Generalized Variance Ratio 

(GVR) is a useful method of investigation model specification. 

 
Grewal, Cote and Baumgartner,[30] revealed through their Monte Carlo simulation experiment that 

multicollinearity can cause problems in theory testing (Type II errors) under certain conditions which includes: when 

multicollinearity is extreme; when multicollinearity is between 0.6 and 0.8, and when multicollinearity is between 0.4 

and 0.5. 

 

Friedman and Wall,[31] studied graphical views of suppressor variables and multicollinearity in multiple linear 

regression. 

 

Alabi, et al [32] investigated the Type II error rate of the OLS estimators at different levels of multicollinearity 

and sample sizes through Monte-Carlo studies. Their work revealed that increasing the sample size reduces the type II 

error rate of the OLS estimator at all levels of multicollinearity. 
 

Ayyangar, [33] considered the available options available to researchers when one or more assumptions of an 

ordinary Least Squares (OLS) regression model are violated. Ayyangar paid particular attention on the problems of 

skewness, multcollinearity and heteroskedasticity and autocorrelated error terms on OLS models using SAS with 

illustration to health care cost data. 

 

Johnson [34] studied the effects of correlation and identification status on methods of estimating parameters of 

system of simultaneous equations model using Monte Carlo approach. The Monte Carlo approach for the performances 

of the estimating methods at different levels of correlation, sample sizes and identification status were reported. 

 

Ijomah and Nduka,[35] considered the various performances of Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and Mallow Cp statistic in the presence of a multicollinear regression using simulated data 
from SAS programme. Their work revealed that the performances of AIC and BIC in choosing the correct model among 

collinear variables are better when compared with the performances of Mallow‟s Cp. 

 

Agunbiade, [36] studied the effects of multicollinearity and the sensitivity of the estimation methods in 

simultaneous equation model for different levels of different levels of multicollinearity. He considered Ordinary Least 
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Squares (OLS), 2 stage least squares (2SLS) and three Stage Least squares (3SLS) methods of estimation. His result 

revealed preference of 3SLS over 2SLS and OLS. 

 

Taylor, [37] noted that multicollinearity problems are almost always present in time-series data generated by 

natural experiments. He also noted that multicollinearity becomes „harmful‟ when there is an R
2
 in the predictor matrix 

that is of the same order of magnitude as the R2 of the overall model. 

 

Olanrewaju,[38] studied the effect of multicollinearity on some estimators (Ordinary Least Squares, Cochran-
Orcut (GLS2), Maximum Likelihood Estimator (MLE), Multivariate Regression, Full Information Maximum Likelihood, 

Seemingly Unrelated Regression (SUR) and Three Stage Least Squares (3SLS)). Results showed that multivariate 

regression, FIML, SUR and 3SLS estimators are preferred at all levels of sample size.  

 

Yahya and Olaniran, [39] studied the performances of Bayesian Linear regression, Ridge Regression and OLS 

methods for modeling collinear data. Also Garba et al,[40] studied the effect of multicollinearity and other assumptions 

as it relate to panel data modeling.  

 

Adenomon and Oyejola,[41] compared the forecasting performances of the Reduced form Vector 

Autoregression (VAR) and Sims-Zha Bayesian VAR (BVAR) in a situation where the Endogenous variables are 

collinear at different levels and at different short terms time series lengths. There simulation study revealed that the 
BVAR forecast seems to be superior. 

 

Sources of multicollinearity includes: the data collection method employed; constraints on the model or in the 

population being sampled; model specification; and overdetermined model. Multicollinearity especially in time series 

data, may occur if the regressors included in the model share a common trend - that is, they all increase or decrease over 

time. 

 

Gujarati, [14] identified some consequences of multicollinearity. They include: 

(1) Although BLUE, the OLS estimators have large variances and covariances making precise estimation difficult. 

(2) Because of consequence 1, the confidence interval tends to be much wider, leading to the acceptance of the 

(zero null hypothesis) and the t-ratio of one or more coefficients tends to be statistically insignificant. 

(3) Although the t-ratio of one or more coefficients is statistically insignificant, R2, the overall measure of 
goodness-of-fit can be very high. 

(4) The OLS estimators and their standard errors can be sensitive to small change in the data. 

 

MODEL DESCRIPTION 

Vector Autoregression Model (VAR) 

VAR methodology superficially resembles simultaneous equation modeling in that we consider several 

endogenous variables together. But each endogenous variable is explained by its lagged values and the lagged values of 

all other endogenous variables in the model; usually, there are no exogenous variables in the model [14]. 

 

Given a set of k time series variables, ]y . . . ,[ Kt
 itt yy , VAR models of the form 

      (1)                                            A . . . 
p11 tpttt

uyyAy 


 

provide a fairly general framework for the Data General Process (DGP) of the series. More precisely this model is called 

a VAR process of order p or VAR(p) process. Here ]u  .  .  .[ Kt1
 tt uu  is a zero mean independent white noise process 

with non singular time invariant covariance matrix ∑u and the Ai are (kxk) coefficient matrices. The process is easy to 
use for forecasting purpose though it is not easy to determine the exact relations between the variables represented by the 

VAR model in equation (1) above [42]. Also, polynomial trends or seasonal dummies can be included in the model. 

 

The process is stable if  (2)             1zfor  0)...det(
1

 p

pK
zAzAI

 
 

In that case it generates stationary time series with time invariant means and variance covariance structure. 

Therefore To estimate the VAR model, one can write a VAR(p) with a concise matrix notation as 
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Then the Multivariate Least Squares (MLS) for B yields 

(4)                                                                                                   YZ)(ˆ 1  ZZ  

It can be written alternatively as 

(5)                                                                         )())(()ˆ( 1 YVecIZZZVec k 
 

where  denotes the Kronecker product and Vec the vectorization of the matrix Y. This estimator is consistent and 

asymptotically efficient. It furthermore equals the conditional Maximum Likelihood Estimator (MLE) [43].  

 

As the explanatory variables are the same in each equation, the Multivariate least squares is equivalent to the 

Ordinary Least Squares (OLS) estimator applied to each equation separately, as was shown by Zellner [44]. 

 
In the standard case, the MLE estimator of the covariance matrix differs from the OLS estimator. 

(6)                                                                           ˆˆ
T

1ˆ   estimator  MLE
1





T

t

tt  

 

OLS estimator for a model with a constant, k variables and p lags, in a matrix notation, gives 

(7)                                                                      )ˆ)(ˆ(
1

1ˆ 


 ZYZY
kpT

 

Therefore, the covariance matrix of the parameters can be estimated as 

(8)                                                                            ˆ)())ˆ((ˆ 1  ZZVecvoC  

 

BAYESIAN VECTOR AUTOREGRESSION WITH SIMS-ZHA PRIOR 

The most popular BVAR model is that of the Litterman [45], although other priors have been study. For 

instance, Ni and Sun, [46] explored  the properties of Bayesian estimates of Vector Autoregression (VAR) models under 

several possible choices of sampling distribution of data (normal and Student-t errors), loss functions (for   , ) and 

priors (Jeffreys prior, RAT prior, Yang and Bargers prior, Shrinkage prior and constant prior). They concluded that the 

choice of prior has stronger effect on the Bayesian estimates than the choice of loss function. In this line also, Ni, Sun 
and Sun [47] investigated the properties of the Bayesian estimates of impulse responses through an information-theoretic 

approach. They derived Bayesian estimators from an intrinsic entropy loss function and showed that they are distinctly 

different from the posterior mean. They also proposed an algorithm that uses generated data as latent variables in 

numerical simulation of Bayesian estimates under loss entropy loss. 

 

However, in recent times, the BVAR model of Sims and Zha [48]) has gained popularity both in economic time 

series and political analysis. As stated in Brandt and Freeman [49], Litterman  proposed BVAR for the reduced form of 

the model, while Sims-Zha specified prior for the simultaneous equation of the model. They further noted that Sims-Zha 

has more advantage compared to the BVAR proposed by Litterman. The Sims-Zha BVAR allows for a more general 

specification and can produce a tractable multivariate normal posterior distribution. Again, for the Litterman BVAR, the 

estimation of the VAR coefficients is done on an equation-by-equation basis as in the reduced form version while the 
Sims-Zha BVAR estimates the parameters for the full system in a multivariate regression. 

 

We outline below other advantages of the Sims-Zha BVAR: 

i. In a series of experiments with artificial and actual (macroeconomic) data, Sims and Zha showed that their 

Bayesian shape error bounds are more accurate in terms of location and skewness than the bands produced by 

other methods. In other words, Bayesians like Sims and Zha prefer 68% (approximately one standard deviation) 

coverage or posterior probability intervals to the more familiar 95% confidence interval. 

ii. Regarding error bands of impulse responses, Sims and Zha‟s method is more indicative of the relevant range of 

uncertainty. Also Sims-Zha method is for identified Vector Autoregressions while overidentified models require 
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a modified approach to construct posterior probabilities for impulse responses. Finally, the method of Sims-Zha 

can be extended to any analysis in which one must characterize uncertainty about the values of an estimated 

function of time and uncertainties about the future values of this function are independent. 

iii. Sims-Zha found that the BVAR developed by Litterman was incompatible with their beliefs about 

macroeconomy. Their belief is that macroeconomy is best described by a dynamic simultaneous model in which 

the belief (prior) are specified for the structural rather than the reduced form parameter. They substituted a 

Normal-inverse Wishart prior for the whole system of VAR coefficients for the Littterman equation-by-equation 

prior. 
iv. For nonstationarity time series, Sims-Zha prior adds hyperparameters that capture beliefs about the sum of 

coefficients of lagged dependent variables (the number of unit roots in the system of variables) and about the 

possibility of cointegrations among these stochastic trends. 

v. In terms of forecasting, many econometricians have compared the performance of  the Sims-Zha prior to that of 

the Litterman prior and others, they found out that the Sims-Zha performs as well as or better than models of 

commercial forecasters. 

vi. The idea of theoretical structure also surfaced in Bayesian time series forecasting. Sims-Zha showed how to 

incorporate fuller theoretically informed structural model of the innovations in the variables in Bayesian 

forecasting. 

vii. Sims-Zha‟s approach yields a posterior distribution that can be easily sampled while Litterman equation-by-

equation construction of the prior on the reduced form representation of the model does not. 
viii. Lastly, Brandt and Freeman  showed that the error bands computed using the eigenvector decomposition method 

suggested by Sims and Zha provide a better summary of the shape and likelihood of the responses than the 

alternatives.  

 

The procedure for BVAR with Sims-Zha prior is as follows. We consider the following (identified) dynamic 

simultaneous equation model as  

.T . . 1,2, t;             

110 1



 


m
t

mmm
l

p

l m
lt dAy 

 

 

This is an m-dimensional VAR for a sample of size T with yt a vector of observations at time t, Al the 

coefficient matrix for the lth lag; p the maximum number of lags (assumed known), d a vector of constant and 
t

  a vector 

of i.i.d normal structural shocks such that  

mm
stt
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
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The structural model can be transformed into a multivariate regression by defining A0 as the contemporaneous 

conditions of the series and A+ as a matrix of the coefficients on the lagged variables by YA0 + XA+=E where Y is Txm, 

A0 is mxm, X is Tx(mp+1), A+ is (mp+1)xm and E is Txm matrices. 

To define the VAR in a compact form  
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The VAR model can then be written as a linear projection of the residual by letting Z=[Y X], and 

]/[
0




AAA  is a conformable stacking of the parameters in A0 and A+: 

YA0 + XA+=E 

 ZA=E. 

In order to derive the Bayesian estimator for this structural equation model, we have to examine the (conditional) 

likelihood function for normally distributed residuals 
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The prior overall of the structural parameters has the form 
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a~  denotes the mean parameters in the prior for a+,   is the prior covariance for 


a~  and ) ( is a multivariate normal 

density. 
The posterior for the coefficients is then 
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The posterior is conditional multivariate normal, since the prior has a conjugated form. In this case, the posterior 

can be estimated by a multivariate seeming unrelated regression (SUR) model. The forecast and inferences can be 
generated by exploiting the multivariate normality of the posterior distribution of the coefficients. The normal conditional 

prior for the mean of the structural parameters is given by 










0

)/(
0

0

A
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is the 

prior covariance matrix for


a~ . Though complicated, it is specified to reflect the following general beliefs and facts about 

the series being model: 

1. The standard deviations around the first lag coefficients are proportionate to all the other lags.  

2. The weight of each variable's own lags is the same as those of other variables' lags.  

3. The standard deviations of the coefficients of longer lags are proportionately smaller than those of earlier lags. (Lag 

coefficients shrink to zero over time and have smaller variance at higher lags.)  

4. The standard deviation of the intercept is proportionate to the standard deviation of the residuals for the equation.  

5. The standard deviation of the sums of the autoregressive coefficients should be proportionate to the standard deviation 
of the residuals for the respective equation (consistent with the possibility of cointegration).  

6. The variance of the initial conditions should be proportionate to the mean of the series. These are "dummy initial 

observations" that capture trends or beliefs about stationarity and are correlated across the equations.  The summary of 

the Sims-Zha prior is given in Table 1. 

 

Table 1: Hyperparameters of Sims-Zha reference prior 

Parameter       Range                                                    Interpretation  

0
                      [0,1]               Overall scale of the error covariance matrix 

1
                      >0                   Standard deviation around A1 (persistence) 

2
                     =1                   Weight of own lag versus other lags 

3
                     >0                   Lag decay 

4
                     ≥0                   Scale of standard deviation of intercept 

5
                     ≥0                  Scale of standard deviation of exogenous variable coefficients 

µ5                     ≥0                  Sum of coefficients/Cointegration (long-term trends) 

µ6                      ≥0        Initial observations/dummy observation (impacts of initial conditions ) 
v                      >0                 Prior degrees of freedom 

Source: Brandt and Freeman, [49] 

 

Each diagonal element of  therefore corresponds to the variance of the VAR parameters. The variance of 

each of these coefficients is assumed to have the form 
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3 



















l
j

ijl
for the element corresponding to the lth lag of variable j in equation i. 

The overall coefficient covariances are scaled by the value of error variances from m univariate AR(p) OLS regressions 

of each variable on its own lagged values, 
2

j
 for j=1, 2, . . .m. The parameter 

0
  sets an overall tightness across the 

elements of the prior on  
1

0

1

0

  AA . The hyperparameter 
1
  controls the tightness of the beliefs about the random 

walk prior or the standard deviation of the first lags. The 3l  term allows the variance of the coefficients on higher order 

lags to shrink as the lag length increases. The constant in the model receives a separate prior variance of 
2

40
)(   and 

the prior variance on any exogenous variables is 
2

50
)(  . The Sims-Zha prior adds dummy observations to account for 

unit roots, trends, and cointegration which was not possible with the Litterman prior. 

Given the reduced form model 

1

0

1

0

1

0

1

0

1

0

11

 and   , ,...2,1 ,  ,  where

 .  .  . 










AAAuplAABdAc

uByBycy

ttll

tppttt


 

The matrix representation of the reduced form is given as 

),0(~ ,  
)1()1(




MVNUUXY
mTmmpmpTmT

  

We can then construct a reduced form Bayesian SUR with the Sims-Zha prior as follows. The prior means for the 

reduced form coefficients are that B1=I and B2, . . . Bp=0. We assume that the prior has a conditional structure that is 
multivariate Normal-inverse Wishart distribution for the parameters in the model. To estimate the coefficients for the 

system of the reduced form model with the following estimators 

),(~ and ),(~/

 is tscoefficien for theprior  Wishart inverse-Normal  thewhere

)ˆ)(ˆ(ˆ

)()(ˆ

111

111

vSIWN

SXXYYT

YXXX

















 

This representation translates the prior proposed by Sims and Zha form from the structural model to the reduced form 

[49-51].  

 

Since our focus in this research is to compare the forecasting performance of the reduced form VAR and the 

reduced form BVAR models, we will just mention the error band methods and their interval for constructing the impulse 

responses. The impulse responses provide a summary of the general trend and shapes of the responses. In Bayesian time 

series methods provides meaningful error bands for these impulse responses. The error band methods are presented in 

Table 2. 

 

Table 2: Impulse response error band computation 

Error Band Method                                    Error Band Interval 

Gaussian approximation                                   )()(ˆ tztc
ijij




  

Pointwise quantiles                                          )]( ),([
2/)1.(2/.

tctc
ijij  

 

Gaussian Linear eigenvector                           
kkij

Wztc 
 .

)(ˆ   

Likelihood-based eigenvector                            
84.0,16.0,

ˆ , ˆ
kijkij

cc    

Likelihood-based stacked eigenvector                
84.0,16.0,

ˆ , ˆ
kijkij

cc    

                                                                 (with 
k

 computed from the stacked covariance) 

Source: Brandt and Freeman, [49] 
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Brandt and Freeman [49] noted the following benefits of impulse responses from Sims-Zha methods.  

(i) They provide a better and more intuitive representation of the dynamic of the series in the model than the AR 

representation. 

(ii) The coefficients are a function of time and they provide a good method for seeing how the multivariate process 

behaves over time. 

(iii) Constructing measures of uncertainty for the Cij(t) is difficult. Also, the Cij(t) are high dimensional and thus hard to 

summarize. 

Lastly, we consider an h-step forecast equation for the reduced form VAR model 

,...2,1 ,  , 

,...3,2 ,...,2,1 , )()(

,...,2,1 , )1(

. . . 1,2,i ,  ,K

where

. . . 1,2.h ,)(
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

 

 

Where we use the convention that Bj=0 for j>p, Cl are the impulse response matrices for lag l, Ki describe the 

evolution of the constants in the forecasts, and Nl(h) define the evolution of the autoregressive coefficients over the 

forecast horizon. The h-step forecast equation above gives the dynamic forecasts produced by a model with structural 

innovations.  

 

Brandt et al. [52] used the structural Bayesian time series approach to evaluate Bystander, Follower, 

Accountability and credibility in a macropolitical economy with relation to Israel and Palestine conflict and intervention 

on the part of the United States. In their approach they further addressed the problems of model scale, endogeneity and 

specification uncertainty. They finally used the reduced Bayesian VAR models to forecast the Israeli-Palestinians 

conflict. The study revealed the ability of the Bayesian time series model to capture complex dynamic situations. Some 

literature on BVAR can also be found in Ciccarelli and Alessandro,[53]. 

 

SETTING OF HYPERPARAMETERS FOR BVAR MODEL WITH SIMS-ZHA PRIOR 

The setting of hyperparameters for BVAR Model has received a lot of attention in Bayesian time series 

literature. For instance, in the work of Kadiyala & Karlsson, [54], the values of the hyperparameters were chosen based 

on the forecast performance over a calibration period. Also in Sims & Zha [48,51], and in Leeper, Sims & Zha[55], the 

Sims-Zha proposed a benchmark prior for empirical macroeconomics with values 

5 0.07,  0.1,  1,  0.1,
655431
  . Brandt & Freeman [49-50] also exploited the Sims-Zha 

prior in forecasting macro political dynamics. They found that the Sims-Zha prior performed well in forecasting macro 

political time series data. In addition, Brandt, Colaresi and Freeman  [52] set the hyperparameter values for the Sims-Zha 

prior based on experience with events data and discussing with leading international relations scholars. Suppes[56] 

recommended that such priors from experience provide better fits. Brandt & Freeman[49] argue that the presence of unit 

roots and the special nature of the time series sample therefore argue against testing for prior. Brandt & Freeman stated 

that instead, prior should reflect our beliefs based on past analyses, history and expectations about the future. The prior 

should not then be estimated from the data, as this is only on realization of the data generation process. In addition, 

Brandt & Freeman,[52] noted that strictly speaking, empirical estimation of the prior is a violation of Bayesian 

philosophy: the subsequent prior-to-posterior updating would use the data twice (first in the prior, and again in the 

likelihood). The resulting inference would thus be „overconfident‟. Brandt & Freeman also noted another complicating 
issue about the assessment of prior specification is the nature of the time series data itself. That time series data are not 

repeated sample. The classical inference is based on inferring something about a population from a sample of data while 

in time series, the sample is not, and the population contains both the future as well as the past.  

 

In view of this, several authors have recommended in the literature how the hyperparameter can be formed. For 

instance, Brandt & Freeman (2006) recommended that the choice of the hyperparameters should come from both 
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experience and theory. In addition, the selection of the parameters for the prior must not and should not depend on the 

data alone, but should be informed by the properties of the data and their dynamics. Brandt & Freeman also noted that if 

the prior is derived from the data, the resulting forecasts will be too closely mirrored the sample data rather than the 

population. They further suggest that the prior must be consistent with the data such that it reflect the general beliefs 

analyst have about the data‟s variation, dynamic properties, and the general interrelationship of the time series data. 

 

Park, [57] and Brandt,[58] suggested a grid search for setting of the hyperparameters for the BVAR model. The 

idea behind this, is that BVAR models are fitted for several combinations of the hyperparameters and forecast are 
generated over some period ahead. The forecast are then compared with the set of data, and the root mean square error 

and the mean absolute error measures are computed. Then the BVAR model with the minimum RMSE and MAR is 

considered as the best fitted model. Lutkepohl,[59] also affirmed that in practice, different values for the hyperparameters 

are sometimes tried. All these also follow the philosophy of the time series analysis which says “Let the data speak” [14]. 

In line with previous work and recommendation in the literature formed our choice of the hyperparameters used in this 

work. 

 

SIMULATION PROCEDURE 

The simulated data will be generated for time series lengths of 16, 32 and 64. The choice of the length chosen is 

to be able to study the models in the short run [60]. We also considered ten (10) multicollinearity levels as ρ=(0.8, -0.8, 

0.85, -0.85, 0.9, -0.9, 0.95, -0.95, 0.99, -0.99). 
The simulation procedure is given in the following steps 

 

Step1: we generated a VAR (2) process that obeys the following form 

tttt
u
u

y
y

y
y

y
y




















































 2

1

22

1

12

1

2

1

3.0        1.0
7.0      3.0

5.0    2.0
2.0          5.0

0.10
0.5  

Our choice for this form model is to obtain a stable process and a VAR process that is not affected by 

overparameterization[61].  

Step2: let the desired correlation matrix be 






1   

    1
R




then the Choleski factor P is 







 2-1     

0        1


P  

and then the simulated data in step 1 is pre-multiplied by the Choleski factor so that the simulated data is scaled to have 

the desired correlation level[60]. 

 

Step 3: the VAR and BVAR models of lag length of 2 was be used for modeling and forecasting simulated data to obtain 

the RMSE and MAE. 

 

Step 4: Step 1 to step 3 was repeated for 1000 times, and the averages of the criteria were used to access the preferred 

model. 

Table-3: Sample of Generated data for different levels of collinearity for T=16 

ρ=0.8 ρ= -0.8 

              y1        y2 

 1  3.5158326  7.260136 

 2  7.9156946  8.196781 

 3  2.8175090  7.797546 

 4  3.2759166  5.495379 

 5  1.7148837  7.074573 

 6  4.4553466  8.248478 

 7 -0.5267808  3.506520 

 8  0.2203239  4.865553 

 9  5.1875188 10.452788 

10  4.7598151  7.718817 
11 -1.4372751  3.936642 

12  0.7850790  5.145656 

13  1.8281761  5.690600 

14  0.3119562  5.509374 

15  2.7533802  6.839297 

16  2.6578408  6.709557 

             y1        y2 

 1  6.4389612  1.150354 

 2 10.8804266 -6.935628 

 3  2.2493752  2.937686 

 4  0.8037202  1.696078 

 5  1.0537601  5.550753 

 6  3.5617301  1.288237 

 7 -0.7925606  4.814620 

 8  1.2181963  4.045936 

 9  2.4056657  2.566840 

10  2.9355888  3.601462 
11  0.9108888  2.832962 

12 -0.9623041  6.351088 

13  2.9435275  2.363781 

14  1.3780844  3.186184 

15  1.4095769  3.557838 

16  2.1246557  3.460277 

Estimated correlation 

r= 0.8360603 

Estimated correlation 

r= -0.9109091 
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Model Specification  

We will model the generated data using a VAR model with lag 2. The choice here is to avoid overfitted VAR 

model while the VAR and BVAR models of lag length of 2 will be used for modeling and forecasting purpose.  

 

For the BVAR model with Sims-Zha prior, we will consider the following range of values for the 

hyperparameters given below and the Normal-Inverse Wishart prior. 

We consider two tight priors and two loose priors as follows: 

 
2) 0.07,  0.15,  1,  0.15, ,8.0( BVAR4
2) 0.07,  0.15,  1,  0.15, ,6.0( BVAR3

follows as are priors Loose The
5) 0.07,  0.1,  1,  0.1, ,8.0(BVAR2
5) 0.07,  0.1,  1,  0.1, ,6.0( BVAR1

follows as are priorsTight  The

6554310

6554310

6554310

6554310













  

where nµ is prior degrees of freedom given as m+1 where m is the number of variables in the multiple time series data. 

In work nµ is 3 (that is two (2) time series variables plus 1(one)). 

 

Our choice of Normal-Inverse Wishart prior for the BVAR models follow the work of Kadiyala & Karlsson[54], 

that Normal-Inverse Wishart prior tends to performed better when compared to other priors. Our choice of the overall 

tightness 0.8 and 6.0
0
  is in line with work of Brandt, Colaresi and Freeman[52]. 

 

Methods of Estimation  

The methods of estimation of the model are as follows:  

The equation-by-equation seemingly unrelated regression (SUR) method is used to estimates the reduced form VAR 

model. 

 

The multivariate seeming unrelated regression (SUR) method is used in the estimation of the Bayesian VAR 
models for just identified VARs[48].  

 

Forecast Assessment  

The following are the criteria for Forecast assessments used: 

(1) Mean Absolute Error or Deviation (MAE or MAD) has a formular 1

n

i

i
j

e

MAE
n




 . This criterion measures 

deviation from the series in absolute terms, and measures how much the forecast is biased. This measure is one of 

the most common ones used for analyzing the quality of different forecasts.  

(2) For the RMSE is given as 

2(y y )

n
f

i

i

j n
RMSE


  where yi is the time series data and yf is the forecast 

value of y [4]. 

 

For the two measures above, the smaller the value, the better the fit of the model[62]. 

In our simulation study,  and 

N N

j j

j j

RMSE MAE

RMSE MAE
N N

 

 
 where N=1000. Therefore, the model with 

the minimum RMSE and MAE result as the preferred model. 

 

Statistical Packages (R)   
In this study three procedures in the R package will be used. They are: Dynamic System Estimation (DSE)[63, 

58,12].  

 

DATA ANALYSIS AND INTERPRETATION OF RESULTS 

We summarize our results using the ranks of the criteria for the level of autocorrelation and collinearity . For 

instance rank of 1 is used to denote the preferred forecasting model; rank of 2 is used to denote the 2nd the preferred 

forecasting model and so on. In our work we used two criteria for accessing the preferred forecasting model which 
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includes Roots Mean Square (RMSE) and Mean Absolute Error (MAE). The values of the forecast assessment criteria 

are presented in Tables 4.1 to 4.10 at the appendix. The result revealed the following: 

(1) The values of the criteria increase as a result of increase in the time series length. 

(2) The values of the criteria for negative collinearity levels are greater than the values of the criteria for positive 

collinearity levels. 

(3) The values of the criteria increase as result of increase in the collinearity levels (for both positive and negative 

collinearity levels) 

 
In this section also, we presented the ranks of the forecasting model for each criterion in Tables 5 and 6 while the 

preference of the models are presented in Tables 5 and 7 

 

Table 4: The Ranks of the models at different levels of collinearity and different Time Series Length using the 

RMSE Criterion 

Time 

series 

length 

(T) 

 Multicollinearity levels (ρ) 

 Positive  Negative  

Models  0.8 0.8

5 

0.9 0.9

5 

0.9

9 

-0.8 -

0.85 

-0.9 -

0.95 

-

0.99 

16 VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

3 

5 

4 

2 

1 

2 

1 

3 

5 

4 

5 

3 

1 

2 

4 

4 

5 

2 

1 

3 

1 

3 

5 

2 

4 

5 

1 

2 

4 

3 

3 

2 

1 

5 

4 

3 

1 

4 

5 

2 

4 

3 

2 

1 

5 

4 

2 

5 

3 

1 

32 VAR(2) 

BVAR1 
BVAR2 

BVAR3 

BVAR4 

3 

4 
5 

2 

1 

1 

4 
5 

2 

3 

2 

4 
1 

3 

5 

4 

3 
1 

5 

2 

1 

4 
2 

3 

5 

1 

3 
4 

5 

2 

4 

2 
1 

3 

5 

2 

5 
3 

4 

1 

5 

3 
2 

1 

4 

1 

5 
4 

3 

2 

64 VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

4 

1 

5 

3 

2 

4 

1 

3 

2 

5 

2 

1 

3 

4 

5 

4 

3 

2 

5 

1 

4 

3 

2 

1 

5 

4 

1 

2 

3 

5 

5 

1 

3 

2 

4 

3 

4 

5 

2 

1 

4 

1 

3 

5 

2 

2 

3 

4 

5 

1 

 

Table 5: Preferred Forecasting Models at Different Levels of Collinearity and Different Time Series using RMSE 

Criterion 

Time 

series 

length(
T)  

Multicollinearity levels (ρ) 

Positive  Negative  

0.8 0.85 0.9 0.95 0.99 -0.8 -0.85 -0.9 -0.95 -0.99 

16 BVAR

4 

BVAR

1 

BVAR

2 

BVAR

3 

VAR(2

) 

BVAR

1 

BVAR

2 

BVAR1 BVAR

3 

BVAR

4 

32 BVAR

4 

VAR(2

) 

BVAR

2 

BVAR

2 

VAR(2

) 

VAR(2

) 

BVAR

2 

BVAR4 BVAR

3 

VAR(2

) 

64 BVAR

1 

BVAR

1 

BVAR

1 

BVAR

4 

BVAR

3 

BVAR

1 

BVAR

1 

BVAR4 BVAR

1 

BVAR

4 

 

With reference to Table 5 the preferred  models are reported using the RMSE Criterion.  

 

At collinearity level of ρ=0.8, BVAR4 model is preferred when T=16 and T=32, while when T=64 the BVAR1 

model is preferred. While on the other hand, at collinearity level of ρ= -0.8, the BVAR1 model is preferred when T=16 

and T=64, while when T=32 the VAR(2) model is preferred.  

 

At collinearity level of ρ=0.85, BVAR1 model is preferred when T=16 and T=64, while when T=32 the VAR(2) 

model is preferred. While on the other hand, at collinearity level of ρ= -0.85, the BVAR2 model is preferred when T=16 
and T=32, while when T=64 the BVAR1 model is preferred.  

 

At collinearity level of ρ=0.9, BVAR2 model is preferred when T=16 and T=32, while when T=64 the BVAR1 

model is preferred. While on the other hand, at collinearity level of ρ= -0.9, the BVAR1 model is preferred when T=16, 

while when T=32 and T=64 the BVAR4 model is preferred.  
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At collinearity level of ρ=0.95, BVAR3 model is preferred when T=16, and when T=32 the BVAR2 model is 

preferred, while when T=64 the BVAR4 model is preferred. While on the other hand, at collinearity level of ρ= -0.95, the 

BVAR3 model is preferred when T=16 and T=32, while when T=64 the BVAR1 model is preferred.  

 

 

At collinearity level of ρ=0.99, VAR(2)  model is preferred when T=16 and T=32, while when T=64 the 

BVAR3 model is preferred. While on the other hand, at collinearity level of ρ= -0.99, the BVAR4 model is preferred 

when T=16 and T=64, while when T=32 the VAR(2)  model is preferred.  
 

Table 6: The Ranks of the models at different levels of collinearity and different Time Series Length using the 

MAE Criterion 

Time 

series 

length 

(T) 

 Multicollinearity levels (ρ) 

 Positive  Negative  

Models  0.8 0.8

5 

0.9 0.9

5 

0.9

9 

-0.8 -

0.85 

-0.9 -

0.95 

-

0.99 

16 VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

3 

5 

4 

2 

1 

2 

1 

4 

5 

3 

5 

3 

1 

4 

2 

4 

5 

2 

1 

3 

1 

5 

3 

2 

4 

5 

1 

2 

4 

3 

1 

5 

2 

3 

4 

2 

1 

4 

5 

3 

4 

1 

3 

2 

5 

3 

4 

5 

2 

1 

32 VAR(2) 

BVAR1 

BVAR2 

BVAR3 
BVAR4 

3 

4 

5 

2 
1 

1 

4 

5 

2 
3 

3 

2 

1 

4 
5 

4 

3 

2 

5 
1 

1 

2 

3 

4 
5 

1 

2 

5 

3 
4 

1 

5 

2 

4 
3 

4 

5 

3 

1 
2 

4 

2 

3 

5 
1 

1 

5 

4 

3 
2 

64 VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

4 

1 

5 

3 

2 

4 

1 

3 

2 

5 

2 

1 

3 

4 

5 

4 

3 

2 

5 

1 

4 

2 

3 

1 

5 

2 

1 

4 

3 

5 

4 

1 

3 

2 

5 

4 

5 

3 

2 

1 

5 

1 

3 

4 

2 

3 

2 

4 

5 

1 

 

Table -7: Preferred Forecasting Models at different levels of collinearity and different Time Series Length using 

the MAE Criterion 

Time 

series 

length(

T)  

Multicollinearity levels (ρ) 

Positive  Negative  

0.8 0.85 0.9 0.95 0.99 -0.8 -0.85 -0.9 -0.95 -0.99 

16 BVAR

4 

BVAR

1 

BVAR

2 

BVAR

3 

VAR(2

) 

BVAR

1 

VAR(2

) 

BVAR1 BVAR

1 

BVAR

4 

32 BVAR
4 

VAR(2
) 

BVAR
2 

BVAR
4 

VAR(2
) 

VAR(2
) 

VAR(2
) 

BVAR3 BVAR
4 

VAR(2
) 

64 BVAR

1 

BVAR

1 

BVAR

1 

BVAR

4 

BVAR

3 

BVAR

1 

BVAR

1 

BVAR4 BVAR

1 

BVAR

4 

 

With reference to Table 7 the preferred  models are reported using the MAE Criterion.  

 

At collinearity level of ρ=0.8, BVAR4 model is preferred when T=16 and T=32, while when T=64 the BVAR1 

model is preferred. While on the other hand, at collinearity level of ρ= -0.8, the BVAR1 model is preferred when T=16 

and T=64, while when T=32 the VAR(2) model is preferred.  

 

At collinearity level of ρ=0.85, BVAR1 model is preferred when T=16 and T=64, while when T=32 the VAR(2) 

model is preferred. While on the other hand, at collinearity level of ρ= -0.85, the VAR(2) model is preferred when T=16 

and T=32, while when T=64 the BVAR1 model is preferred.  

 
At collinearity level of ρ=0.9, BVAR2 model is preferred when T=16 and T=32, while when T=64 the BVAR1 

model is preferred. While on the other hand, at collinearity level of ρ= -0.9, the BVAR1 model is preferred when T=16, 

when T=32 the BVAR3 is preferred and when T=64 the BVAR4 model is preferred.  

 

http://saspjournals.com/sjpms


 

 

Adenomon MO et al.; Sch. J. Phys. Math. Stat., 2014; Vol-1; Issue-1(Jun-Aug); pp-4-21 

Available Online:  http://saspjournals.com/sjpms   17 

 

At collinearity level of ρ=0.95, BVAR3 model is preferred when T=16, when T=32 and T=64 the BVAR4 

model is preferred. While on the other hand, at collinearity level of ρ= -0.95, the BVAR1  model is preferred when T=16 

and T=64, while when T=32 the BVAR4  model is preferred.  

 

At collinearity level of ρ=0.99, VAR(2)  model is preferred when T=16 and T=32, while when T=64 the 

BVAR3 model is preferred. While on the other hand, at collinearity level of ρ= -0.99, the BVAR4 model is preferred 

when T=16 and T=64, while when T=32 the VAR(2)  model is preferred.  

 

SUMMARY 

The evidences from our simulation study revealed the performances of the forecasting models at different levels 

of collinearity (both positive and negative) for different time series length.  

 

Using the RMSE Criterion, for a collinearity level of ρ=0.8, the BVAR4 forecast is preferred except when 

T=64. For a collinearity level of ρ=0.85, the BVAR1 forecast is preferred except when T=32. For a collinearity level of 

ρ=0.9, the BVAR2 forecast is preferred except when T=64. For a collinearity level of ρ=0.99, the VAR(2) forecast is 

preferred except when T=64. for a collinearity level of ρ= -0.8, the BVAR1 forecast is preferred except when T=32. For a 

collinearity level of ρ= -0.85, the BVAR2 forecast is preferred except when T=64. For a collinearity level of ρ= -0.9, the 

BVAR4 forecast is preferred except when T=16. For a collinearity level of ρ= -0.95, the BVAR3  forecast is preferred 

except when T=64. For a collinearity level of ρ= -0.99, the BVAR4  forecast is preferred except when T=32. 
 

While on the other hand, using the MAE Criterion, for a collinearity level of ρ=0.8, the BVAR4 forecast is 

preferred except when T=64. For a collinearity level of ρ=0.85, the BVAR1 forecast is preferred except when T=32. For 

a collinearity level of ρ=0.9, the BVAR2 forecast is preferred except when T=64. For a collinearity level of ρ=0.95, the 

BVAR4 forecast is preferred except when T=64. For a collinearity level of ρ=0.99, the VAR(2) forecast is preferred 

except when T=64. for a collinearity level of ρ= -0.8, the BVAR1 forecast is preferred except when T=32. For a 

collinearity level of ρ= -0.85, the VAR(2) forecast is preferred except when T=64. For a collinearity level of ρ= -0.95, the 

BVAR1  forecast is preferred except when T=32. For a collinearity level of ρ= -0.99, the BVAR4  forecast is preferred 

except when T=32.  

 

Using both criteria, when T=64 BVAR1  forecast is preferred for all the collinearity levels except in few cases 

when ρ =0.95; 0.99; -0.9 and -0.99.  
 

Using both criteria, The values of the criteria increase as a result of increase in the time series length and in the 

collinearity levels (for both positive and negative collinearity levels). In addition, the values of the criteria for negative 

collinearity levels are greater than the values of the criteria for positive collinearity levels. 

 

CONCLUSION AND RECOMMENDATION 

The various results reported in this paper revealed that the forecasting performances of the models vary as the 

collinearity level varies. Also the values of the criteria (RMSE and MAE) increases as the time series and the collinearity 

levels increased. The values of the criteria (RMSE and MAE) for negative collinearity levels are greater than the values 

of the criteria for positive collinearity levels. 

 
We therefore recommend that if VAR modelers and econometricians know that collinearity is acting upon the 

model, one can choose the forecasting that is preferred for the criteria and the desired time series length selected. 
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APPENDIX 

Table -I: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=0.8 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

5.944947  

5.955027  

5.950172  

5.942064  

5.932330  

5.223351 

5.231829 

5.227514 

5.222570 

5.210486 

8.681807  

8.686889  

8.689276  

8.680416  

8.677362  

8.174890 

8.178201 

8.184529 

8.171187 

8.171151 

20.71093  

20.70335 

20.71127 

20.70845  

20.70668  

20.52558 

20.51888 

20.52658 

20.52351 

20.52200 

 
Table II: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=-0.8 

 Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

7.301465  

7.288099  

7.294073  

7.297135  

7.296082  

6.841694 

6.833397 

6.835263 

6.840034 

6.837071 

9.826192  

9.829202  

9.830657  

9.831626  

9.828199  

9.528671 

9.529294 

9.530028 

9.529774 

9.529865 

21.80770  

21.80545  

21.80692  

21.80744  

21.80858  

21.69558 

21.69381 

21.69678 

21.69593 

21.69711 

 

Table III: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=0.85 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

6.090411  

6.079255  

6.094382  

6.112983  

6.096075  

5.452392 

5.446204 

5.459815 

5.474805 

5.459584 

8.863075  

8.870502 

8.875071  

8.866864 

8.868954  

8.418649 

8.429512 

8.431168 

8.423040 

8.426819 

20.9421  

20.93501  

20.94113  

20.93950  

20.94490  

20.7834 

20.77609 

20.78305 

20.78101 

20.78611 

 

Table IV: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=-0.85 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 
BVAR1 

BVAR2 

BVAR3 

BVAR4 

7.607295  
7.607116  

7.600942  

7.609343  

7.607440  

7.177085 
7.180642 

7.177709 

7.179344 

7.179565 

10.131151  
10.128771 

10.127585  

10.129663  

10.131595   

9.859581 
9.862367 

9.860571   

9.862353 

9.861678 

22.12035  
22.11824  

22.11917  

22.11898 

22.12005  

22.02396 
22.02210 

22.02329 

22.02272 

22.02406 

 

Table V: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=0.9 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

6.306290  

6.292205  

6.274667  

6.288587  

6.292849  

5.763989 

5.748694 

5.728456 

5.750875 

5.746301 

9.117992  

9.118740  

9.111497  

9.118048  

9.123637  

8.743905 

8.742548 

8.735942 

8.745025 

8.747928 

21.23163  

21.22970  

21.23842  

21.23875  

21.24211  

21.10063 

21.09888 

21.10711 

21.10752 

21.11090 

 

 Table VI: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=-0.9 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 
BVAR2 

BVAR3 

BVAR4 

7.995479  

7.993814  
7.999466 

8.003289  

7.994211  

7.583535 

7.582740 
7.585706 

7.588065 

7.583650 

10.50547  

10.50744  
10.50635  

10.50672  

10.50469  

10.26386 

10.26464 
10.26297 

10.26232 

10.26290 

22.50651  

22.50692 
22.50702  

22.50616  

22.50513  

22.42261 

22.42281 
22.42243 

22.42190 

22.42137 
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Table VII: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=0.95 

 Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

6.642924 

6.648193  

6.627917  

6.622997  

6.639005  

6.192261 

6.198923 

6.182536 

6.172850 

6.188634 

9.486636  

9.485406  

9.479047  

9.494074  

9.480729  

9.179957 

9.178486 

9.176038 

9.189341 

9.173462 

21.66685  

21.66044  

21.65747 

21.66780  

21.65124  

21.56520 

21.55873 

21.55596 

21.56539 

21.54905 

 

Table VIII: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=-0.95 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 
BVAR3 

BVAR4 

8.539304  

8.538264  

8.537425  
8.531616  

8.543170  

8.122451 

8.117379 

8.118822 
8.117703 

8.123485 

11.03330  

11.03100  

11.03071  
11.02994 

11.03144  

10.79439 

10.79334 

10.79433 
10.79445 

10.79329 

23.03094  

23.02792  

23.03002  
23.03099  

23.02975  

22.95235 

22.94968 

22.95145 
22.95174 

22.95118 

 

Table IX: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=0.99 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 

BVAR3 

BVAR4 

7.153009  

7.167651  

7.168340  

7.155232  

7.168335  

6.774761 

6.790131 

6.787391 

6.779545 

6.789046 

10.072495  

10.079401 

10.075360  

10.079003 

10.091377   

9.823372 

9.825968 

9.826229  

9.828823 

9.841807     

22.29085  

22.28772  

22.28757  

22.28578  

22.30184  

22.21318 

22.20960 

22.20978 

22.20785 

22.22388 

 

 Table X: FORECASTING PERFORMANCES OF THE MODELS WHEN COLLINEARITY LEVEL IS ρ=-0.99 

Models T=16 T=32 T=64 

 RMSE MAE RMSE MAE RMSE MAE 

VAR(2) 

BVAR1 

BVAR2 

BVAR3 
BVAR4 

9.298521  

9.295183  

9.299091 

9.297124  
9.292962  

8.828682 

8.828971 

8.830511 

8.828097 
8.826009 

11.76372  

11.76888  

11.76842 

11.76809  
11.76556  

11.50353 

11.50417 

11.50412 

11.50398 
11.50358 

23.75086  

23.75158  

23.75191  

23.75259  
23.75073  

23.66195 

23.66192 

23.66226 

23.66267 
23.66175 
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