Lattice Points on the Homogeneous Cone $8\left(x^{2}+y^{2}\right)-15 x y=56 z^{2}$

J. Shanthi''M. A. Gopalan, S. Vidhyalakshmi
Department of Mathematics, Shrimathi Indira Gandhi College, Trichy-2, Tamilnadu, India

*Corresponding Author:

J. Shanthi

Email: shanthivishvaa@gmail.com

Abstract

The ternary quadratic equation $8\left(x^{2}+y^{2}\right)-15 x y=56 z^{2}$ representing a cone is analysed for its non-zero distinct integer points on it. Employing the integer solutions, a few interesting relations between the solutions and special polygonal numbers are presented. Also, knowing an integer solution, formulas for generating sequence of solutions are given.

Keywords: Ternary quadratic, Integer solutions, Polygonal numbers.
2010 Mathematics subject classification:11D09

INTRODUCTION

The ternary quadratic Diophantine equation offers an unlimited field for research because of their variety [1-2]. In particular, one may refer [3-21] for finding integer points on some specific three dimensional surfaces. This communication concerns with yet another ternary quadratic equation $8\left(x^{2}+y^{2}\right)-15 x y=56 z^{2}$ representing cone for determining its infinitely many integral solutions. Employing the integral solutions on the given cone, a few interesting relations among the special polygonal and pyramidal numbers are given.

Notations

$$
\begin{aligned}
& t_{m, n}=n\left(1+\frac{(n-1)(m-2)}{2}\right)=\text { Polygonal number of rank } \mathrm{n} \text { with sides } \mathrm{m} . \\
& P_{n}^{m}=\left(\frac{n(n+1)}{6}\right)[(m-2) n+(5-m)]=\text { Pyramidal number of rank } \mathrm{n} \text { with sides } \mathrm{m} .
\end{aligned}
$$

METHOD OF ANALYSIS

Consider the equation

$$
\begin{equation*}
8\left(x^{2}+y^{2}\right)-15 x y=56 z^{2} \tag{1}
\end{equation*}
$$

The substitution of linear transformations

$$
\begin{equation*}
x=u+v \quad \text { and } \quad y=u-v \quad(u \neq v \neq 0) \tag{2}
\end{equation*}
$$

In (1) leads to

$$
\begin{equation*}
u^{2}+31 v^{2}=56 z^{2} \tag{3}
\end{equation*}
$$

The above equation is solved through different methods and using (2), different patterns of integer solutions to (1) are obtained.

PATTERN 1

Write 56 as

$$
\begin{equation*}
56=(5+i \sqrt{3})(5-i \sqrt{3}) \tag{4}
\end{equation*}
$$

Assume $z=a^{2}+31 b^{2}$ where $\mathrm{a}, \mathrm{b}>0$
Using (4) and (5) in (3), and applying the method of factorization, define

$$
\begin{equation*}
(u+i \sqrt{31} v)=(5+i \sqrt{31})(a+i \sqrt{31} b)^{2} \tag{5}
\end{equation*}
$$

Equating the real and imaginary parts, we have

$$
\begin{align*}
& u=u(a, b)=5 a^{2}-155 b^{2}-62 a b \tag{6}\\
& v=v(a, b)=a^{2}-31 b^{2}+10 a b
\end{align*}
$$

Substituting the above u and v in equation (2), the values of x and y are given by

$$
\left.\begin{array}{l}
x=x(a, b)=6 a^{2}-186 b^{2}-52 a b \\
y=y(a, b)=4 a^{2}-124 b^{2}-72 a b \tag{7}
\end{array}\right\}
$$

Thus (5) and (7) represent non-zero distinct integral solution of (1) in two parameters

Properties

$$
\begin{aligned}
& \text { 1. } x(a+1, a)-T_{(362, a)}+52 p r_{a} \equiv 6(\bmod 167) \\
& 2 . y(a, 1)-T_{(10, a)} \equiv 57(\bmod 67) \\
& 3 . y\left(a+1, a^{2}\right)-T_{(10, a)}+124 T_{\left(4, a^{2}\right)}+144 p_{a}^{5} \equiv 49(\bmod 11)
\end{aligned}
$$

PATTERN 2

Instead of (4), we write 56 as

$$
\begin{equation*}
56=\frac{(37+i \sqrt{31})(37-i \sqrt{31})}{25} \tag{8}
\end{equation*}
$$

Following the procedure presented above in pattern 1, the corresponding values of x and y are obtained as

$$
\left.\begin{array}{l}
x=x(a, b)=\frac{1}{5}\left[38 a^{2}-1178 b^{2}+12 a b\right] \\
y=y(a, b)=\frac{1}{5}\left[36 a^{2}-1116 b^{2}-136 a b\right] \tag{9}
\end{array}\right\}
$$

Replacing 'a' by 5A and 'b' by 5B in (5) and (9), the integer values of x, y, z satisfying (1) are given by

$$
\begin{gathered}
x=x(A, B)=190 A^{2}-5890 B^{2}+60 A B \\
y=y(A, B)=180 A^{2}-5580 B^{2}-680 A B \\
z=z(A, B)=25 A^{2}+775 B^{2}
\end{gathered}
$$

Properties

$$
\begin{aligned}
& 1 . x(a, 1)-S_{a} \equiv-3(\bmod 46) \\
& 2 . y\left(2^{n}, 1\right)=6 J_{2 n}+2 j_{2 n}-108 J_{n}+36 j_{n}-124 \\
& 3 . x(a, 1)-z(a, 1)-10 t_{3, a-1} \equiv 18(\bmod 47)
\end{aligned}
$$

PATTERN 3

Introducing the linear transformations

$$
\begin{gather*}
\left.u=5 \alpha \text { and } \begin{array}{c}
z=X+31 T \\
v=X+56 T
\end{array}\right\} \tag{10}\\
\text { In (3), we get } \quad X^{2}=\alpha^{2}-1736 T^{2} \tag{11}
\end{gather*}
$$

which is satisfied by

$$
\left.\begin{array}{c}
T=T(r, s)=2 r s \tag{12}\\
X=X(r, s)=1736 r^{2}+s^{2} \\
\alpha=\alpha(r, s)=1736 r^{2}-s^{2}
\end{array}\right\}
$$

Substituting (12) in (10) and using (2), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=x(r, s)=10416 r^{2}-4 s^{2}+112 r s \\
& y=y(r, s)=6944 r^{2}-6 s^{2}-112 r s \\
& z=z(r, s)=1736 r^{2}+s^{2}+62 r s
\end{aligned}
$$

Properties

$$
\begin{aligned}
& \text { 1. } x\left(2^{n}, 1\right)=15624 J_{2 n}+5208 j_{2 n}+168 J_{n}+56 j_{n}-4 \\
& 2 . \frac{1}{2}[x(a, 1)-y(a, 1)]-3472 t_{3, a-1} \equiv-1847(\bmod 1848) \\
& 3 \cdot \frac{1}{5}[z(1, a)-x(1, a)]-10 t_{3, a-1} \equiv-1725(\bmod 11)
\end{aligned}
$$

Note

In addition to (10), one may also consider the linear transformations $=X-31 T, v=X-56 T$. Following the method presented above a different set of solutions is obtained.

PATTERN 4

Consider (3) as

$$
\begin{equation*}
u^{2}-25 z^{2}=31\left(z^{2}-v^{2}\right) \tag{13}
\end{equation*}
$$

Write (13) in the form of ratio as

$$
\frac{u+5 z}{z+v}=\frac{31(z-v)}{u-5 z}=\frac{A}{B}, \mathrm{~B} \neq 0
$$

which is equivalent to the following two equations

$$
\begin{aligned}
& B u-A v+(5 B-A) z=0 \\
& -A u-31 B v+(31 B+5 A) z=0
\end{aligned}
$$

On employing the method of cross multiplication, we get

$$
\left.\begin{array}{c}
u=-5 A^{2}+155 B^{2}-62 A B \\
v=A^{2}-31 B^{2}-10 A B \\
z=-A^{2}-31 B^{2} \tag{15}
\end{array}\right\}
$$

Substituting the values of u and v from (14) in (2), the non-zero distinct integral values of x, y are given by

$$
\left.\begin{array}{l}
x=x(A, B)=-4 A^{2}+124 B^{2}-72 A B \\
y=y(A, B)=-6 A^{2}+186 B^{2}-52 A B \tag{16}
\end{array}\right\}
$$

Thus (16) and (15) represent the non-zero distinct integer solution of equation (1) in two parameters.

Properties

1. $x\left(a+1, a^{2}\right)-T_{(18, a)}+124 T_{\left(4, a^{2}\right)}-144 p_{a}^{5} \equiv 4(\bmod 11)$
2. $z(a, a+1)-T_{(66, a)} \equiv 31(\bmod 93)$
3. $x(a, 1)-T_{(18, a)} \equiv-26(\bmod 75)$

Note

(13) can also be expressed in the form of ratio in three different ways as follows.
(i) $\frac{u+5 z}{31(z+v)}=\frac{z-v}{u-5 z}=\frac{A}{B}, B \neq 0$
(ii) $\frac{u+5 z}{z-v}=\frac{31(z+v)}{u-5 z}=\frac{A}{B}, B \neq 0$
(iii) $\frac{u+5 z}{31(z-v)}=\frac{z+v}{u-5 z}=\frac{A}{B}, B \neq 0$

Repeating the analysis as above, we get different patterns of solutions to (1).

Remarkable observation:

If (x_{0}, y_{0}, z_{0}) is any given integer solutions of (1), then each of the following triples satisfies (1)
Triple 1: $\left(5^{2 n} u_{0}+5^{2 n} v_{0}, 5^{2 n} u_{0}-5^{2 n} v_{0}, 5^{2 n} z_{0}\right)$
Triple 2: $\left(5^{2 n-1} u_{0}+5^{2 n-2} M_{1} v_{0}, 5^{2 n-1} u_{0}-5^{2 n-2} M_{1} v_{0}, 5^{-2 n-2} M_{1} z_{0}\right), M_{1}=\left[\begin{array}{ll}625 & -840 \\ 465 & -625\end{array}\right]$.
Triple 3: $\left(5^{2 n} u_{0}+5^{2 n} v_{0}, 5^{2 n} u_{0}-5^{2 n} v_{0}, 5^{2 n} z_{0}\right)$
Triple 4: $\left(5^{2 n-2} M_{2} u_{0}+5^{2 n-1} v_{0}, 5^{2 n-2} M_{2} u_{0}-5^{2 n-1} v_{0}, 5^{2 n-2} M_{2} z_{0}\right), M_{2}=\left[\begin{array}{cc}75 & -560 \\ 10 & -75\end{array}\right]$
In the above Triples $1-4,\left(u_{0}, v_{0}, z_{0}\right)$ is the initial solutions of (3).

CONCLUSION

In this paper, we have presented different patterns of integer solutions to the ternary quadratic equation $8\left(x^{2}+\right.$ $y 2-15 x y=56 z 2$ representing the cone. As this Diophantine equations are rich in variety, one may attempt to find integer solutions to other choices of equations along with suitable properties.

REFERENCES

1. Dickson LE; History of theory of numbers. Volume 2, Chelsea Publishing Company, New York, 1952.
2. Mordell LJ; Diophantine equations. Academic Press, New York, 1969.
3. Gopalan MA, Geetha D; Lattice points on the Hyperboloid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=$ $z^{2}+4$. Impact J Sci Tech., 2010; 4: 23-32.
4. Gopalan MA, Vidhyalakshmi S, Kavitha A; Integral points on the Homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$. The Diophantus J Math., 2012; 1(2): 127-136.
5. Gopalan MA, Vidhyalakshmi S, Sumathi G; Lattice points on the Hyperbolid of one sheets $4 z^{2}=2 x^{2}+3 y^{2}-$ 4, Diophantus J Math., 2012; 1(2): 109-115.
6. Gopalan MA, Vidhyalakshmi S, Lakshmi K; Integral points on the Hyperbolid of two sheets $3 y^{2}=7 x^{2}-z^{2}+$ 21. Diophantus J Math., 2012; 1(2): 99-107.
7. Gopalan MA, Vidhyalakshmi S, Mallika S; Observation on Hyperboloid of one sheet $x^{2}+2 y^{2}-z^{2}=2$. Bessel J Math., 2012; 2(3): 221-226.
8. Gopalan MA, Vidhyalakshmi S, Usharani TR, Mallika S; Integral points on the Homogeneous cone $6 z^{2}+$ $3 y^{2}-2 x^{2}=0$. Impact J Sci Tech., 2012; 6(1): 7-13.
9. Gopalan MA, Vidhyalakshmi S, Sumathi G; Lattice points on the Elliptic paraboloid $9 x^{2}+4 y^{2}=z$. Advances in Theoretical and Applied Mathematics, 2012; 7(4): 379-385.
10. Gopalan MA, Vidhyalakshmi S, Usharani TR; Integral points on the Non-homogeneous cone $2 z^{2}+4 x y+$ $8 x-4 z=0$. Global Journal of Mathematics and Mathematical Sciences, 2012; 2(1): 61-67.
11. Gopalan MA, Vidhyalakshmi S, Lakshmi K; Lattice points on the elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$. Bessel J Math., 2013; 3(2): 137-145.
12. Gopalan MA, Vidhyalakshmi S, Umarani J; Integral points on the Homogeneous cone $x^{2}+4 y^{2}=$ $37 z^{2}$. Cayley J Math., 2013; 2(2): 101-107.
13. Gopalan MA, Sangeetha V, Somamath M; On the Ternary Quadratic equation $5\left(x^{2}+y^{2}\right)-9 x y=19 z^{2}$. International Journal of Innovative Research in Science, Engineering and Technology, 2008; 2(6): 2008-2010.
14. Gopalan MA, Vidhyalakshmi S, Kavitha A; Observations on the Hyperboloid of two sheets $7 x^{2}-3 y^{2}=z^{2}+$ $z(y-x)+4$. International Journal of Latest Research in Science and technology, 2013; 2(2): 84-86.
15. Gopalan MA, Sivakami B; Integral points on the Homogeneous cone, $z^{2}=3 x^{2}+6 y^{2}$. IOSR Journal of Mathematics, 2013; 8(4): 24-29.
16. Gopalan MA, Geetha V; Lattice points on the Homogeneous cone, $z^{2}=2 x^{2}+8 y^{2}-6 x y$. Indian Journal of Science, 2013; 2: 93-96.
17. Gopalan MA, Vidhyalakshmi S, Maheswari D; Integral points on the Homogeneous cone $2 x^{2}+3 y^{2}=35 z^{2}$. Indian Journal of Science, 2014; 7: 6-10.
18. Gopalan MA, Vidhyalakshmi S, Umarani J; On the Ternary Quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-$ $8 x y=21 z^{2}$. Sch J Eng Tech., 2014; 2(2A): 108-112.
19. Meena K, Vidhyalakshmi S, Gopalan MA, Priya IK; Integral points on the cone $3\left(x^{2}+y^{2}\right)-5 x y=47 z^{2}$. Bulletin of Mathematics and Statistic Research, 2014; 2(1): 65-70.
20. Gopalan MA, Vidhyalakshmi S, Nivethitha S; On Ternary Quadratic equation $4\left(x^{2}+y^{2}\right)-7 x y=31 z^{2}$. Diophantus J Math., 2014; 3(1): 1-7.
21. Meena K, Vidhyalakshmi S, Gopalan MA, Thangam SA; integer solutions on the Homogeneous Cone $4 x^{2}+$ $3 y^{2}=28 z^{2}$. Bulletin of Mathematics and statistics Research, 2014; 2(1): 47-53.
