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Abstract: The ternary quadratic equation 8 𝑥2 + 𝑦2 − 15𝑥𝑦 = 56𝑧2 representing a cone is analysed for its non-zero 
distinct integer points on it. Employing the integer solutions, a few interesting relations between the solutions and special 

polygonal numbers are presented. Also, knowing an integer solution, formulas for generating sequence of solutions are 

given. 
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INTRODUCTION 

                      The ternary quadratic Diophantine equation offers an unlimited field for research because of their variety 

[1-2]. In particular, one may refer [3-21] for finding integer points on some specific three dimensional surfaces. This 

communication concerns with yet another ternary quadratic equation 8 𝑥2 + 𝑦2 − 15𝑥𝑦 = 56𝑧2  representing cone for 
determining its infinitely many integral solutions. Employing the integral solutions on the given cone, a few interesting 

relations among the special polygonal and pyramidal numbers are given. 

 

Notations 

  𝑡𝑚 ,𝑛 = 𝑛  1 +
 𝑛−1 (𝑚−2)

2
 = Polygonal number of rank n with sides m. 

  𝑃𝑛
𝑚 =  

𝑛(𝑛+1)

6
   𝑚 − 2 𝑛 +  5 −𝑚  = Pyramidal number of rank n with sides m. 

 

METHOD OF ANALYSIS 

 Consider the equation 

                      8 𝑥2 + 𝑦2 − 15𝑥𝑦 = 56𝑧2              (1) 
The substitution of linear transformations  

    

     𝑥 = 𝑢 + 𝑣     and      𝑦 = 𝑢 − 𝑣    𝑢 ≠ 𝑣 ≠ 0                                            (2) 

 

In (1) leads to 

                      𝑢2 + 31𝑣2 = 56𝑧2                                                                  (3) 
  

 The above equation is solved through different methods and using (2), different patterns of integer solutions to 

(1) are obtained. 

 

PATTERN 1  

Write 56 as 

                      56 =  5 + 𝑖 3 (5− 𝑖 3)                                                                (4) 

Assume  𝑧 =   𝑎2 + 31𝑏2  where a,b> 0                                                                (5) 
Using (4) and  (5) in (3),and applying the method of factorization, define 

                     𝑢 + 𝑖 31𝑣 = (5 + 𝑖 31) 𝑎 + 𝑖 31𝑏 
2
                                         (6) 

Equating the real and imaginary  parts, we have 

           𝑢 = 𝑢 𝑎, 𝑏 = 5𝑎2 − 155𝑏2 − 62𝑎𝑏 

           𝑣 = 𝑣 𝑎, 𝑏 = 𝑎2 − 31𝑏2 + 10𝑎𝑏 
Substituting the above u and v in equation (2), the values of x and y are given by 
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𝑥 = 𝑥 𝑎, 𝑏 = 6𝑎2 − 186𝑏2 − 52𝑎𝑏

𝑦 = 𝑦 𝑎,𝑏 = 4𝑎2 − 124𝑏2 − 72𝑎𝑏
                                           (7) 

Thus (5) and (7) represent non-zero distinct integral solution of (1) in two parameters                  

 

Properties 

1.𝑥 𝑎 + 1,𝑎 − 𝑇 362,𝑎 + 52𝑝𝑟𝑎 ≡ 6 𝑚𝑜𝑑167  

2.𝑦 𝑎, 1 − 𝑇 10,𝑎 ≡ 57 𝑚𝑜𝑑67  

3.𝑦 𝑎 + 1,𝑎2 − 𝑇 10,𝑎 + 124𝑇 4,𝑎2 + 144𝑝𝑎
5 ≡ 49 𝑚𝑜𝑑11  

 

PATTERN 2 

               Instead of (4), we write 56 as 

                  56 =
 37+𝑖 31 (37−𝑖 31)

25
                                                                 (8) 

Following the procedure presented above in pattern 1, the corresponding values of x and y  are obtained as  

                   
𝑥 = 𝑥 𝑎, 𝑏 =

1

5
 38𝑎2 − 1178𝑏2 + 12𝑎𝑏 

  𝑦 = 𝑦 𝑎,𝑏 =
1

5
[36𝑎2 − 1116𝑏2 − 136𝑎𝑏]

                                (9) 

Replacing ‘a’ by 5A and ‘b’ by 5B in (5) and (9), the integer values of x, y, z satisfying (1) are given by 

                     𝑥 = 𝑥 𝐴,𝐵 = 190𝐴2 − 5890𝐵2 + 60𝐴𝐵 

                    𝑦 = 𝑦 𝐴,𝐵 = 180𝐴2 − 5580𝐵2 − 680𝐴𝐵 

                     𝑧 = 𝑧 𝐴,𝐵 = 25𝐴2 + 775𝐵2 
Properties 

1.𝑥 𝑎, 1 − 𝑆𝑎 ≡ −3 𝑚𝑜𝑑46  
2.𝑦 2𝑛 , 1 = 6𝐽2𝑛 + 2𝑗2𝑛 − 108𝐽𝑛 + 36𝑗𝑛 − 124 

3.𝑥 𝑎, 1 − 𝑧 𝑎, 1 − 10𝑡3,𝑎−1 ≡ 18 𝑚𝑜𝑑47  
 

PATTERN 3 

                 Int𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑡𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 

 

         ‘                 𝑢 = 5𝛼   and          
𝑧 = 𝑋 + 31𝑇
𝑣 = 𝑋 + 56𝑇

                                                              (10) 

                In (3),     we get         𝑋2 = 𝛼2 − 1736𝑇2                                                           (11) 
which is satisfied by  

                                    
𝑇 = 𝑇 𝑟, 𝑠 = 2𝑟𝑠

𝑋 = 𝑋 𝑟, 𝑠 = 1736𝑟2 + 𝑠2

𝛼 = 𝛼 𝑟, 𝑠 = 1736𝑟2 − 𝑠2

                                                             (12)          

 

Substituting  (12) in (10) and using (2), the corresponding integer solutions to (1) are given by 

𝑥 = 𝑥 𝑟, 𝑠 = 10416𝑟2 − 4𝑠2 + 112𝑟𝑠 

𝑦 = 𝑦 𝑟, 𝑠 = 6944𝑟2 − 6𝑠2 − 112𝑟𝑠 

                             𝑧 = 𝑧 𝑟, 𝑠 = 1736𝑟2 + 𝑠2 + 62𝑟𝑠   
Properties 

1.𝑥 2𝑛 , 1 = 15624𝐽2𝑛 + 5208𝑗2𝑛 + 168𝐽𝑛 + 56𝑗𝑛 − 4             

2.
1

2
 𝑥 𝑎, 1 − 𝑦 𝑎, 1  − 3472𝑡3,𝑎−1 ≡ −1847 𝑚𝑜𝑑1848  

3.
1

5
 𝑧 1,𝑎 − 𝑥 1, 𝑎  − 10𝑡3,𝑎−1 ≡ −1725 𝑚𝑜𝑑11  

Note 

        In addition to (10), one may also consider the linear transformations = 𝑋 − 31𝑇, 𝑣 = 𝑋 − 56𝑇. Following the 

method presented above a different set of solutions is obtained. 

 

PATTERN 4 

Consider (3) as  

   𝑢2 − 25𝑧2 = 31(𝑧2 − 𝑣2)                                                                               (13) 
Write (13) in the form of ratio as 

 
𝑢+5𝑧

𝑧+𝑣
=

31(𝑧−𝑣)

𝑢−5𝑧
=

𝐴

𝐵
  , B≠ 0   

which is equivalent to the following two equations 

             𝐵𝑢 − 𝐴𝑣 +  5𝐵 − 𝐴 𝑧 = 0 

             −𝐴𝑢 − 31𝐵𝑣 +  31𝐵 + 5𝐴 𝑧 = 0 
 On employing the method of cross multiplication, we get 
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                           𝑢 = −5𝐴2 + 155𝐵2 − 62𝐴𝐵
𝑣 = 𝐴2 − 31𝐵2 − 10𝐴𝐵

                                                                     (14) 

                              𝑧 = −𝐴2 − 31𝐵2                                                                                     (15) 
 

Substituting the values of 𝑢  and 𝑣 from  (14) in (2), the non-zero distinct integral values of x,y are given by 

                          
𝑥 = 𝑥 𝐴,𝐵 = −4𝐴2 + 124𝐵2 − 72𝐴𝐵

𝑦 = 𝑦 𝐴,𝐵 = −6𝐴2 + 186𝐵2 − 52𝐴𝐵
                                                 (16) 

 

Thus (16) and (15) represent the non-zero distinct integer solution of equation (1) in two parameters. 

 

Properties 

1. 𝑥 𝑎 + 1,𝑎2 − 𝑇 18,𝑎 + 124𝑇 4,𝑎2 − 144𝑝𝑎
5 ≡ 4 𝑚𝑜𝑑11  

2. 𝑧 𝑎, 𝑎 + 1 − 𝑇 66,𝑎 ≡ 31 𝑚𝑜𝑑93  

3. 𝑥 𝑎, 1 − 𝑇 18,𝑎 ≡ −26 𝑚𝑜𝑑75              
Note 

         (13) can also be expressed in the form of ratio in 𝑡𝑟𝑒𝑒 different ways as follows. 

                𝑖    
𝑢+5𝑧

31(𝑧+𝑣)
=

𝑧−𝑣

𝑢−5𝑧
=

𝐴

𝐵
,𝐵 ≠ 0 

                𝑖𝑖    
𝑢+5𝑧

𝑧−𝑣
=

31 𝑧+𝑣 

𝑢−5𝑧
=

𝐴

𝐵
,𝐵 ≠ 0 

               𝑖𝑖𝑖    
𝑢+5𝑧

31 𝑧−𝑣 
=

𝑧+𝑣

𝑢−5𝑧
=

𝐴

𝐵
,𝐵 ≠ 0 

Repeating the analysis as above, we get different patterns of solutions to (1). 

 

Remarkable observation:   

If (𝑥0 ,𝑦0 ,𝑧0) is any given integer solutions of (1), then each of the following triples satisfies (1) 

Triple 1: (52𝑛𝑢0 + 52𝑛𝑣0, 52𝑛𝑢0 − 52𝑛𝑣0 , 52𝑛𝑧0)       

Triple 2:   52𝑛−1𝑢0 + 52𝑛−2𝑀1𝑣0 , 52𝑛−1𝑢0 − 52𝑛−2𝑀1𝑣0, 5−2𝑛−2𝑀1𝑧0 ,𝑀1 =  625 −840
465 −625

 . 

Triple 3:     52𝑛𝑢0 + 52𝑛𝑣0, 52𝑛𝑢0 − 52𝑛𝑣0, 52𝑛𝑧0  

Triple 4:    52𝑛−2𝑀2𝑢0 + 52𝑛−1𝑣0 , 52𝑛−2𝑀2𝑢0 − 52𝑛−1𝑣0, 52𝑛−2𝑀2𝑧0 ,𝑀2 =  75 −560
10 −75

              

In the above Triples 1 – 4, (𝑢0 ,𝑣0 , 𝑧0) is the initial solutions of (3). 

 

CONCLUSION 

            In this paper, we have presented different patterns of integer solutions to the ternary quadratic equation 8 𝑥2 +
𝑦2−15𝑥𝑦=56𝑧2 representing the cone. As this Diophantine equations are rich in variety, one may attempt to find integer 

solutions to other choices of equations along with suitable properties. 
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