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Abstract: The Bi-quadratic Equation with four unknowns given by  𝑥 − 𝑦  𝑥2 + 𝑦2 +  𝑥2 − 𝑥𝑦 + 𝑦2 𝑧 = 12𝑧𝑤3  is 
analyzed for its patterns of non –zero distinct integral solutions. A few interesting relations between the solutions and 

special polygonal numbers are exhibited. 
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INTRODUCTION 

 There is a great interest for Mathematicians since ambiguity in homogeneous and non- homogeneous Bi-

quadratic Diophantine Equations [1-5].  In the context, so many references [6-19] available  for varieties of problems on 

the diophantine equations with two, three and four variables. This communication concerns with the problems of 

determining non-zero integral solutions of yet another biquadratic equation in four unknowns represented by 

 𝑥 − 𝑦  𝑥2 + 𝑦2 +  𝑥2 − 𝑥𝑦 + 𝑦2 𝑧 = 12𝑧𝑤3. A few interesting relations between the solutions and special polygonal 
numbers are presented. 

 

NOTATIONS  

                   n,mt  : Polygonal number of rank n  with size m  

                    
m
nP  : Pyramidal number of rank n  with size m  

                    
m
nCP  : Centered Pyramidal number of rank n with size m. 

                    nS  : Star number of rank n  

                    nJ  :Jacobsthal number of rank n   

                    nj  : Jacobsthal-Lucas number of rank n   

                   nky  : keynea number of rank n.   

 

METHOD OF ANALYSIS 

 The non-homogeneous biquadratic Diophantine equation to be solved for its distinct non-zero integral solutions 

is 

                           𝑥 − 𝑦  𝑥2 + 𝑦2 +  𝑥2 − 𝑥𝑦 + 𝑦2 𝑧 = 12𝑧𝑤3                                     (1)   
 

We present below different patterns of solution of (1) 

 

Pattern 1 

Introduction of the linear transformations 

  x=u+v,  y=u-v,  z=4v                                                                               (2) 

 

in (1) leads to  𝑢2 + 2𝑣2 = 6𝑤3                                                                                    (3) 
 

Let     𝑤 = 𝑎2 + 2𝑏2                                                                                         (4) 
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Using (4) in (3) and applying the method of factorization, define  

 𝑢 + 𝑖 2𝑣 = (2 + 𝑖 2) 𝑎 + 𝑖 2𝑏 
3
                

 

Equating real and imaginary parts, we get 

 𝑢 = 2𝑎3 − 12𝑎𝑏2 − 6𝑎2𝑏 + 4𝑏3

𝑣 = 𝑎3 − 6𝑎𝑏2 + 6𝑎2𝑏 + 4𝑏3
                                                                        (5) 

 

Using (5) in (2), we have the integer solutions of (1) to be given by 

 𝑥 𝑎, 𝑏 = 3𝑎3 − 18𝑎𝑏2      
 𝑦 𝑎, 𝑏 = 𝑎3 − 6𝑎𝑏2 − 12𝑎2𝑏 + 8𝑏3   

 𝑧 𝑎, 𝑏 = 4(𝑎3 − 6𝑎𝑏2 + 6𝑎2𝑏 + 4𝑏3) 

  𝑤(𝑎, 𝑏) = 𝑎2 + 2𝑏2 

 

Properties 

 𝑖  𝑥 𝑛 + 1, 𝑛 + 𝑦 𝑛 + 1, 𝑛 − 𝑧 𝑛 + 1, 𝑛 = −12(2𝐶𝑃𝑛
3 + 𝐶𝑃4,𝑛 + 4𝑡4,𝑛 − 1) 

 𝑖𝑖  𝑧 𝑛 + 1, 𝑛 − 𝑦 𝑛 + 1, 𝑛 = 3(𝐶𝑃𝑛
6 + 𝐶𝑃30,𝑛 + 6𝑡4,𝑛 ) 

 𝑖𝑖𝑖  𝑥 𝑛, 𝑛 − 1 + 𝑤 𝑛, 𝑛 − 1 = −𝐶𝑃𝑛
5 − 𝐶𝑃4

𝑛 − 𝐶𝑃𝑛
3 + 7𝐶𝑃𝑛

6 + 𝑆𝑛 + 𝑡22,𝑛 + 𝑡10,𝑛 + 𝑡6,𝑛 + 17𝑡4,𝑛 + 1 

 𝑖𝑣  𝑤 2𝑛 , 2𝑛+1 = 3𝐽2𝑛 + 2𝑗2𝑛+2 − 1 

 

Pattern 2 

(3) can be written as 

   𝑢2 + 2𝑣2 = 6𝑤3 ∗ 1                                                                     (6) 
 

Write 1 as  1 =
 1+𝑖2 2 (1−𝑖2 2)

9
                                                                        (7) 

 

Substituting (4) and (7) in (6) and employing the factorization method, define 

𝑢 + 𝑖 2𝑣 = (2 + 𝑖 2) 𝑎 + 𝑖 2𝑏 
3 (1 + 𝑖2 2)

3
 

 

Equating real and imaginary parts, we have 

 
𝑢 =

1

3
[−2𝑎3 + 12𝑎𝑏2 − 30𝑎2𝑏 + 20𝑏3]

𝑣 =
1

3
[5𝑎3 − 30𝑎𝑏2 − 6𝑎2𝑏 + 4𝑏3]

                                                    (8) 

 

Replacing a by 3a and b by 3b in (8) and employing (2), the corresponding non-zero integer solutions to (1) are obtained 

as  

 𝑥 𝑎, 𝑏 = 27𝑎3 − 162𝑎𝑏2 − 324𝑎2𝑏 + 216𝑏3 

𝑦 𝑎, 𝑏 = −63𝑎3 + 378𝑎𝑏2 − 216𝑎2𝑏 + 144𝑏3 

𝑧 𝑎, 𝑏 = 4[45𝑎3 − 270𝑎𝑏2 − 54𝑎2𝑏 + 36𝑏3 

𝑤(𝑎, 𝑏) = 9𝑎2 + 18𝑏2 

 

Properties 

 𝑖  𝑥 𝑛, 1 + 𝑦 𝑛, 1 = 36[𝐶𝑃𝑛
6 − 𝑡16,𝑛 − 8𝑡4,𝑛 + 10] 

 𝑖𝑖  𝑤 2𝑛 , 1 = 9[𝐾𝑦𝑛 − 𝑗𝑛+1 + 2]      if n is even 
 𝑖𝑖𝑖  𝑤 2𝑛 , 1 = 9[𝐾𝑦𝑛 − 𝑗𝑛+1 + 4]   if n is odd 

 𝑖𝑣 𝑥 𝑛, 1 + 𝑤 𝑛, 1 =  9[2𝐶𝑃𝑛
9 − 𝐶𝑃28,𝑛 − 𝐶𝑃6,𝑛 − 18𝑡4,𝑛 + 28] 

 

Note: It is worth to observe that in addition to (7), we write 1 in two different ways as  

1 =
 7 + 𝑖4 2 (7 − 𝑖4 2)

81
 

 

and  

1 =
 1 + 𝑖12 2 (1 − 𝑖12 2)

172
 

 

 Repeating the process as in pattern.2, the corresponding two sets of non-zero distinct integer solutions to (1) are 

found to be as follows; 
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Set 1 

𝑥 𝑎, 𝑏 = 63𝑎3 − 378𝑎𝑏2 − 216𝑎2𝑏 + 144𝑏3 

𝑦 𝑎, 𝑏 = −27𝑎3 + 162𝑎𝑏2 − 324𝑎2𝑏 + 216𝑏3 

𝑧 𝑎, 𝑏 = 4[45𝑎3 − 270𝑎𝑏2 + 54𝑎2𝑏 − 36𝑏3 

𝑤(𝑎, 𝑏) = 9𝑎2 + 18𝑏2 

 

Set 2 

𝑥 𝑎, 𝑏 = 867𝑎3 − 5202𝑎𝑏2 − 62424𝑎2𝑏 + 41616𝑏3 

𝑦 𝑎, 𝑏 = −13583𝑎3 + 81498𝑎𝑏2 − 24276𝑎2𝑏 + 16184𝑏3 

𝑧 𝑎, 𝑏 = 4[7225𝑎3 − 43350𝑎𝑏2 + 19074𝑎2𝑏 − 12716𝑏3 

𝑤(𝑎, 𝑏) = 289𝑎2 + 578𝑏2 
 

CONCLUSION 

 In this paper, a bi-quadratic equation with four unknowns is studied for its non-zero integer solutions by 

employing the linear transformations   x=u+v,  y=u-v,  z=4v.  Instead of z=4v one may also consider z=4kv and attempt 

for getting non-zero integer solutions to the considered equation.  As bi-quadratic diophantine equations are in rich in 

variety, one may consider other forms of bi-quadratic equations with four unknowns to determine their integer solutions 

and obtain their relations with special numbers, namely polygonal numbers, Pyramidal numbers, Jacobsthal numbers and 

so on. 
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