
Citation: Taisong Xiong, Zhipeng Yang, Tao Liu, Yifei Zhao. Research on Case-Based Teaching of Digital Image
Processing Implemented with Python Language. Sch J Arts Humanit Soc Sci, 2024 Dec 12(12): 361-365.

361

Scholars Journal of Arts, Humanities and Social Sciences

Abbreviated Key Title: Sch J Arts Humanit Soc Sci

ISSN 2347-9493 (Print) | ISSN 2347-5374 (Online)

Journal homepage: https://saspublishers.com

Research on Case-Based Teaching of Digital Image Processing Implemented

with Python Language
Taisong Xiong1*, Zhipeng Yang1, Tao Liu1, Yifei Zhao1

1Chengdu University of Information Technology, Chengdu, 610225, P.R. China

DOI: https://doi.org/10.36347/sjahss.2024.v12i12.001 | Received: 06.11.2024 | Accepted: 13.12.2024 | Published: 16.12.2024

*Corresponding author: Taisong Xiong
Chengdu University of Information Technology, Chengdu, 610225, P.R. China

Abstract Review Article

Digital image processing is a course with strong theoretical backgrounds and also has wide applications in reality.
However, traditional teaching method only focuses on delivering abstract theories, which leads to a decrease in students'

interest in the course. To resolve this problem, this paper studies the characteristics of basic image processing algorithms

from the perspective of combining theory with practice. We investigate the characteristics of fundamental image

processing algorithms. We implement some teaching cases using Python.
Keywords: Digital Image Processing, Python Programming, Teaching Methodology, Algorithm Implementation,

Practical Application.
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

1. INTRODUCTION
Digital image processing is a course that is

relatively abstract in theory but also has strong

practicality. The course requires students to master basic

image processing algorithms and implement them using

a programming language. The course of image
processing holds an important position in information-

related majors. With the rapid development of artificial

intelligence technology, the related technologies of

image processing are also continuously evolving and
updating. Traditional image processing courses teach

concepts that are relatively abstract, and the

mathematical principles behind the algorithms are also

complex for the students. The students often find it
difficult to understand and master these digit image

processing algorithms. Furthermore, the students don't

the applications of the knowledge points they learn,

which leads to a decrease in their interest in the course.

Based on the characteristics of the digital image

processing course, many teachers construct some

relevant cases. They introduce these algorithm principles
by combining their implementations. The method

induces better effects. However, most image processing

cases are implemented based on the Matlab language.

However, with the rapid developments of artificial
intelligence, Python is an interpretable language. Its code

syntax is concise and readable, and it has powerful third-

party libraries that enable to implement powerful

functionalities. The Python programming language has
begun to rise in popularity and has been widely applied

in both industry and scientific research fields. According

to the latest TIOBE index, Python has consistently

ranked first in both 2023 and 2024, and its ratings are
more than double that of C++, which is ranked second.

The TIOBE index for programming languages is shown

in Figure 1.

Taisong Xiong et al, Sch J Arts Humanit Soc Sci, Dec, 2024; 12(12): 361-365

© 2024 Scholars Journal of Arts, Humanities and Social Sciences | Published by SAS Publishers, India 362

Figure 1: The TIOBE index for programming languages

We design image processing algorithm cases

based on the fact that many algorithms in digital image

processing have numerous applications in real life. We
explain the principles of the algorithms and demonstrate

their effects in the classroom. This method can

effectively help students understand the basic principles

of image processing algorithms; at the same time, we
help students learn about the innovative applications of

image processing algorithms. These cases allow students

to gain a deeper understanding of the application and
implementation of basic algorithm theories, methods,

and models in practical scenarios, guiding students to

discover, analyze, and solve problems.

These digital image processing cases based on

Python programming not only enables students to firmly

grasp the basic principles of digital image processing

algorithms. Implementing algorithms with Python
programming enables students to master the basic syntax

and programming skills of Python, enhancing their

hands-on abilities. The students obtain a deeper

understanding of the application and implementation of
algorithm theories, methods, and models in practical

scenarios. The method can gradually guide students to

discover, analyze, and solve problems, cultivate their

practical skills, and broaden their intellectual horizons.

2. Specific Cases

In this section, we list three digital image

processing cases implemented using the Python
programming language. The three cases are very

representative in the course of digital image processing.

In the implementation process of the algorithm, we try

not to directly call functions provided by the modules.
We implement the corresponding algorithms using the

Python language. This method can make students more

intuitively understand the principles of the algorithms

and their programming implementation. The students

can gain a deeper understanding and mastery of the entire

algorithm.

2.1 Histogram

The first example is to implement the function

of image histogram. The image histogram counts the

number of different pixel levels in an image. Image
histograms, due to their low computational cost and

numerous advantages such as invariance to image

translation, rotation, and scaling, are widely applied in
various fields of image processing. The hist function in

the matplotlib module, the histogram function in numpy,

and the calcHist function in opencv all implement the

functionality of image histograms. However, merely
demonstrating the effect by calling functions provided by

modules does not let students to deeply understand the

basic principles and specific implementation effects of

image histogram algorithms. We implement the
histogram function for images using the Python

language. The implementation of the entire histogram

function is shown in the function histogram_py. The

results obtained by calling matplotlib's hist function with
the rwidth parameter set to 1, as well as the results of our

own implemented histogram_py function, are shown in

Figure 2. From Figure 2, it can be seen that the results

obtained from both functions are the same, which
indicates that the custom function correctly implements

the image histogram function. The implementation of

this function, not only do students gain a direct

understanding of the meaning of image histograms, but
they also deepen their understanding and application of

various programming concepts in Python, such as

function implementation, arrays, loop statements, and

module invocation.
def histogram_py(imgfile):

static_num=np.zeros(256,dtype=np.int32)

imgdata = cv2.imread(imgfile,

cv2.IMREAD_GRAYSCALE)

Taisong Xiong et al, Sch J Arts Humanit Soc Sci, Dec, 2024; 12(12): 361-365

© 2024 Scholars Journal of Arts, Humanities and Social Sciences | Published by SAS Publishers, India 363

[rows, cols] = imgdata.shape
for r in range(rows):

for c in range(cols):

tmpdata=imgdata[r,c]
static_num[tmpdata]=static_num[tmpdata]+1

return static_num

Figure 2: The image and its histogram

2.2 Frequency Domain Filtering

Image Fourier Transform is the process of
converting an image from the spatial domain to the

frequency domain. Perform filtering operations in the

frequency domain, and then convert back to the spatial
domain through the inverse Fourier transform. The

inverse Fourier transform process is a lossless process.

In this case, we implement the two-dimensional discrete

Fourier transform of an image based on the Python
language, while also performing a centralization

operation. The entire image is completed within one

period of the Fourier transform. In this case, we perform

Gaussian low-pass filtering and Gaussian high-pass
filtering operations in the frequency domain,

respectively. The function of Gaussian low-pass filtering

is to smooth and suppress high-frequency noise, while

Gaussian high-pass filtering is used for sharpening edges

and enhancing details. In the experiment, different
results were obtained by setting the cutoff frequency

values to 10 and 30, respectively. Finally, the results of

the filtering operation are subjected to an inverse Fourier
transform to convert them back to the spatial domain.

The original image, image obtained by Fourier

Transform, the results obtained by Gaussian low-pass

filtering with D=10 and 30, the results obtained by
Gaussian high -pass filtering with D=10 and 30 are

shown in the Figure 2, respectively. As shown in the

Figure 3, the image processed by Gaussian low-pass

filter looks clearer with the higher cutoff frequency
value. The edge information in the image obtained by the

Gaussian high-pass filter with lower cutoff frequency

value is more pronounced.

Figure 3: Frequency domain filtering

Taisong Xiong et al, Sch J Arts Humanit Soc Sci, Dec, 2024; 12(12): 361-365

© 2024 Scholars Journal of Arts, Humanities and Social Sciences | Published by SAS Publishers, India 364

2.3 Image Segmentation Cases

Image segmentation is an important topic in the

field of image processing and has very significant

applications in reality. By case-based image

segmentation, students can not only gain a good
understanding of the basic algorithms of image

segmentation but also become proficient e implementing

these algorithms. This approach exercises students'

hands-on practical skills and enhances their interesting in
digital image processing. We implement threshold

segmentation and K-means segmentation algorithms

using the Python programming language. For the two
algorithms, we do not directly call the threshold function

and k-means function from OpenCV, but instead

implement them using the Python programming

language. This approach allows students to gain a more
intuitive understanding of the principles behind the

algorithms and the specific processes involved in their

implementation, thereby deepening their comprehension

of the algorithms. Thresholding segmentation algorithms
select a threshold based on the overall or partial

information of the image and perform segmentation

operations based on the grayscale levels. In this case, we

provide the original image and its grayscale histogram.
Then, we select threshold values of 120 and 200 for

segmentation to obtain three targets. The original image,

histogram and the segmentation results are shown in
Figures 4. The implementation of Thresholding

algorithm is given in function threshold img.

Figure 4: Threshold processing

def threshold_img(imgfile):

 imgdata = cv2.imread(imgfile,
cv2.IMREAD_GRAYSCALE)

 [rows, cols] = imgdata.shape

 result_img=np.zeros([rows,cols],dtype=np.uint8)

 for r in range(rows):
 for c in range(cols):

 colorval=imgdata[r,c]

 if colorval<=85:

 result_img[r,c]=0
 elif colorval<=180:

 result_img[r,c]=120

 else:

 result_img[r, c] = 200
 return result_img

K-Means is an unsupervised image

segmentation algorithm and is also a well-known

clustering algorithm. It mainly uses Euclidean distance

as the metric to measure the similarity between data
objects. Similarity is inversely proportional to the

distance between data objects. The smaller distance

represents greater similarity. It generally randomly

selects K center points, then compares the distance
between image pixels and each center point, then

classifies those closest to the same center point into the

same category. After the division, the center points of

each cluster are recalculated, and this operation is
repeated until the change in the center points' distance is

less than a certain value. One challenge of the K-Means

algorithm is determining the number of center points.

The original image and the segmentation results obtained
by K-Means with the numbers of center points are 2,3,4

are shown in Figure 5.

Figure 5: The results obtained by k-means

Taisong Xiong et al, Sch J Arts Humanit Soc Sci, Dec, 2024; 12(12): 361-365

© 2024 Scholars Journal of Arts, Humanities and Social Sciences | Published by SAS Publishers, India 365

def knn_py(imgfile,knum):

imgdata = cv2.imread(imgfile,

cv2.IMREAD_GRAYSCALE)

[rows, cols] = imgdata.shape
trandata=np.reshape(imgdata,(1,rows*cols))

totalnum=rows*cols

cluster_center =

np.sort(trandata[0,np.random.choice(rows * cols,
knum)])

distance=np.zeros((totalnum,knum),dtype=np.float32)

new_center = np.float32(cluster_center.copy())
absval=100

iternum=0

while absval>0.01 and iternum<30:

iternum=iternum+1
for k in range(knum):

distance[:,k]=np.sqrt((trandata - cluster_center[k])**2)

class_data=np.argmin(distance, axis=1)

cluster_center=np.sort(new_center.copy())
for k in range(knum):

tmpdata=np.mean(trandata[0,class_data==k])

new_center[k]=tmpdata

new_center=np.sort(new_center)
absval=np.sqrt(np.sum((cluster_center-

new_center)**2))/knum

return class_data

3. CONCLUSION
We have demonstrated the fundamental

principles of digital image processing and the flexible
application of various Python syntax and knowledge

points by implementing three representative cases of

digital image processing, which helps students to master

the course. By implementing the corresponding

algorithms, students have deepened their understanding

of the principles behind the algorithms and enhanced

their practical hands-on abilities. Through these
implemented cases, students can become proficient in

knowledge such as loops, list and string operations, and

the definition and invocation of functions in the Python

language. By integrating the knowledge learned, students
enhance their ability to analyze and solve practical

problems using the acquired knowledge. This lays a solid

foundation for students to use the Huawei Cloud
platform and CodeArts tools in their subsequent work or

research in the field of artificial intelligence.

Funding

This work was supported by Undergraduate

Teaching and Educational Research and Reform Project

JYJG2023216 and Construction of the Teaching Team

for Intelligent Meteorological Detection Technology
JYJG2024208.

REFERENCE
• Eric Matthes. Python Crash Course A Hands-on,

Project-Based Introduction to Programming.

William Pollock. 2016.

• Gonzalez, C., & Richard, E. Woods’ Digital Image

Processing, Fourth Edition, Global Edition.

• https://docs.opencv.org/

• https://matplotlib.org/

• Taisong, X., & Yuanyuan, H. (2021). Research on
Python Language Teaching Based on Case. Sch J

Arts Humanit Soc Sci, 9(10), 513-515.

