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Abstract  Original Research Article 
 

The paper continues to consider the state of a system consisting of a crystalline semiconductor doped with donor and 

acceptor impurities. Based on the general equation of state of the system that we derived earlier and its solution, a 

method for calculating the singular points of the system's state is proposed. These singular points include equivalence 
points and points of maximum buffer capacity. This development can find practical application in the design of 

semiconductor devices and equipment, as well as for assessing changes occurring in semiconductor crystals due to 

diffusion and electro-diffusion of impurities. 
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INTRODUCTION 
When creating semiconductor devices, a certain 

amount of electron-acceptor (p) or electron-donor (n) 
type impurities is introduced into a pure semiconductor 

crystal, forming p- and n-type semiconductors (Electrons 

and Holes in Semiconductors. 2020). At the point of 

contact between p and n semiconductors, mutual 
diffusion of impurities from one semiconductor to 

another occurs (Microelectronic Materials and 

Processing. 1989). Our previous work (Yefimov S. 2024) 

is devoted to the problem of determining the 
concentration of charge carriers in a doped 

semiconductor. This work considers the determination of 

the singular points of the concentration dependence, 

namely, the equivalence points of charge carriers of 
opposite signs, and the points of maximum buffer 

capacity. The identity of the equations derived here, and 

the equations derived for aqueous solutions (Yefimov S. 

2023) is indicated. 
 

MATERIALS AND METHODS 
The basis of the calculations is the General 

Equation of State of a doped semiconductor that we 

derived. We derived the equations for the singular points 

of semiconductors by analogy with the derivation made 

for determining the singular points of aqueous solutions 
of electrolytes (Yefimov S. 2023). The Microsoft 

EXCEL spreadsheet was used for calculations and the 

creation of graphs. 

 

RESULTS AND DISCUSSION 
The General Equation of State for a doped 

semiconductor, which we use here to find singular 
points, is presented in Table 1. The derivation of these 

equations is given in (Yefimov S 2024). 

 

Table 1: Polynomial coefficients of the General Equation of State. A semiconductor is doped with a donor and a 

fully ionizing acceptor *** 

Max. 

degree. 

The mix of two-stage ionizing 

donor D1(K1, K2) and one-

stage ionizing donor. D2(K3). 

n⁵ + a*n⁴ + b*n³ + c*n² +d* n 
+ e = 0 

Three-stage ionizing 

donor. 

n⁵ + a*n⁴ + b*n³ + c*n² 

+d* n + e = 0 

Two-stage 

ionizing donor.  

n⁴ + a*n³ + 

b*n² +c* n + d 
= 0 

One-stage 

ionizing 

donor 

n³ + a*n² 
+b* n + c 

= 0 

Completely 

ionizing 

donor. 

n² +a* n + b 
= 0 

n⁵ 1 1 0 0 0 

n⁴ A + K1+K2+K3 A + K1+K2+K3 1 0 0 
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n³ K1*K2 + K1*K3 + K2*K3 + 

A*(K1 + K2 + K3) – S – 
D1*K1 - D2*K3 

K1*K2 + K1*K3 + 

K2*K3 + A*(K1 + K2 + 
K3) – S – D*K1 

A + K1 + K2 1 0 

n² K1*K2*K3 + A*(K1*K2 + 

K1*K3 + K2*K3) – S*(K1 + 

K2 + K3) – D1*(2*K1*K2 + 

K1*K3) - D2*(K1*K3 + 
K2*K3) 

K1*K2*K3 + A*(K1*K2 

+ K1*K3 + K2*K3) – 

S*(K1 + K2 + K3) – 

D*(2*K1*K2 + K1*K3) 

A*(K1 + K2) + 

K1*K2 - S – 

D*K1 

A + K1 1 

n A*K1*K2*K3 – S*(K1*K2 + 

K1*K3 + K2*K3) – 

2*D1*K1*K2*K3 – 

D2*K1*K2*K3 

A*K1*K2*K3 – 

S*(K1*K2 + K1*K3 + 

K2*K3) – 

3*D*K1*K2*K3 

A*K1*K2 – 

S*(K1 + K2) -

2*D*K1*K2 

A*K1 – S 

– D*K1 

A - D 

n0 
(const.) 

-S*K1*K2*K3 -S*K1*K2*K3 -S*K1*K2 -S*K1 -S 

Note 1: The equation of state of a semiconductor doped with a stepwise ionizing acceptor and a fully ionizing donor is 

symmetrical to this [***]. The donor ionization constants are replaced by the acceptor ionization constants, D is 

replaced by A, A is replaced by D, and n is replaced by p—the molarity of holes in the semiconductor. 

 
The dependencies pn=f(A, D, Ge, K1, K2)T, 

obtained by solving the General Equation of State 

(Yefimov S, 2024) are shown in Figure 1. We are 

interested in the position of the singular points of the 
curve, which include the equivalence points (the 

concentrations of n and p are equivalent) and the points 

of maximum buffer capacity, at which small variations 

in the impurity concentration led to minimal variations 
in the concentration of charge carriers. 

 

In our case, the singular points of the curve are 

the inflection points. In the simplest case, the curve has 
one inflection point which can be visually determined 

(Figure 1a). In general, to find the inflection points, you 

need to differentiate the function whose graph we are 

considering twice, equate the second derivative to zero, 
and solve the resulting equation. 

 

The function pn=f(A, D, Ge, K1, K2)T, whose graph 

we are considering, is continuous and monotone (Figure 
1 a, b, c), which means that the inverse function A=A(pn) 

is also continuous and monotone and has the same 

inflection points. The inverse function (its analytical 

expression) can be obtained directly from the equation of 

state (see below) because the terms A and D are 

presented in the General Equation of State in the first 
degree (Table 1). The inverse function A=A(pn) 

inflection points are easier to find (Yefimov S. 2023), so 

we will work with this inverse function. 

 
Here is an example of the transformation of the 

function P = f(n, A, D) = 0 into the inverse function A = 

A(n, D): P = n⁴ + (A + K1 + K2)*n³ + (A*(K1 + K2) + 

K1*K2 - S – D*K1)*n² +( A*K1*K2 – S*(K1 + K2) -
2*D*K1*K2)*n -S*K1*K2 = 0, so, we can express A as 

function of n and D: 

 

A = [(S*K1*K2 – n4 - n3*(K1 + K2) – 
n2*(K1*K2 – S – D*K1) + n*(K1*S + K2*S + 

2*D*K1*K2)]/(n3 + n2*(K1 + K2) +n*K1*K2). 

Replacing n with pn we obtain the desired function A = 

A(pn) or, more simply, use a logarithmic scale for the o-
n axis to display A=A(n). 

 

a b c 

   
Figure 1 A, b, C: Dependence of the (pn) on the change in acceptor concentration. (a) -Silicon. Donor ionization occurs in one 

stage with the constant K1. (b) – Germanium. Donor ionization occurs in two stages with the constants K1 and K2. (c) - 

Germanium. The General Equation of State contains three ionization constants K1, K2, and K3 (Yefimov S. 2024) 
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Determination of equivalence points by double 
differentiation of the equation of state. The equivalence 

point corresponds to the inflection of the curve 

(A=A(pn)). To find this point, we need to calculate the 

second derivative (A") concerning pn of the equation of 
state A=A(n), equate it to zero, and find the roots of the 

resulting equation (BYU’S Inflection point 2023). 

Finding the roots of equation A”=0 is somewhat easier 

than finding the roots of the Equation of State (Yefimov 
S 2023) since we only need the numerical values of the 

singular points, that is, we can use any numerical 

method, for example, Newton’s root-finding algorithm. 

Here we will apply an illustrative method of finding the 
roots, the Scaling Method. We will not calculate 

anything, but we will scale the plot of A" =A"(pn) and 

find the coordinate of the point of intersection of the 

curve with the O-pn axis. 
 

To find out the first and second derivative of A, let's 

make a change of variables: n=10-y, where y=pn.  

The derivative of n concerning y is equal to -10-y*ln(10), 
i.e. n'= -n*&, where &=ln(10). 

The procedure for finding derivatives consists of 5 

consecutive operations: 

1) From the equation of state in normal form 
(P=0=n⁵ + a*n⁴ + b*n³ + c*n² +d* n + e) extract 

A=A(n). 

2) Find the first derivative of P concerning pn, 
given that n'= -n*&. 

3) Extract A'=A'(n) 

4) Find the second derivative of P concerning pn, 

given that n'= -n*& 
5) Extract the desired second derivative: 

A"=A"(n) 

 

Silicon. Completely ionizing donor and acceptor.  
n² +(A - D)* n - S = P=0. (here we use the silicon constant 

(S)) 

A=(S + n*D - n2)/n = S/n + D – n 

P’(y) = -2*n2*& - n*A(y)*& + A’(y)*n + n*D*& -> 
A’(y)/& = 2*n + A(y) – D (first derivative) 

P”(y) = 4*n*&2 + n*A(y)*&2 – 2*n* (A’(y)/&)*&2 + n* 

A”(y)* &2 – n*D*&2 -> 

A”(y)/ &2 = D- A(y) + 2*(A’(y)/&) – 4*n (second 
derivative) 

A”(y)/ &
2 = S/n – n 

 

One singular point is the point of equivalence. 
A” (y)/ &

2 = 0 = S/n – n, n= ± sqrt(S), We choose positive 

root; n = sqrt(S), and pn= -Log10(n)=10.6. The Scaling 

Method (Figure 2 c) gives us the same result pn=10.6. 

 

a b c 

 
  

Figure 2 (a, b, c): Silicon. Donor 10-3 M, a- theoretical curve A=A(pn), b – first derivative, and c – second derivative 

 

Silicon. One-stage ionizing donor with the constant K.  
The equation of state, its first and second 

derivatives look like this: P=n3+n2*(A+K)+n*(A*K-W-

D*K)-S*K=0, extract A: A = (S*K + n*(S + D*K) – 

n2*K – n3)/(n2 + K*n). P’= -3*n3*&-
2*n2*(A+K)*&+n2*A’-n*(A*K-S-

D*K)*&+n*A’*K=0, extract A’: 

A'/&= (A * (2n² + K*n) + 3n³ + 2n²*K - n*(S+ D*K))/(n2 

+ K*n) 

P”=9*n3*&2+4*n2*(A+K)*&2-
4*n2*A’*&+A”*n2+n*(A*K-S-D*K)*&2-

2*n*A’*&+A”*n*K=0, extract A”: 

A''/&2= (A'/& *(4*n2 + 2*n*K) - A*(4*n2 +n*K) - 

4*K*n2 - 9*n3 + n*(S + D*K))/(n2 + n*K) 
 

The estimated pn in the equivalence point by Scaling 

Method is 10.7 (Figure 3 c). 
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a b c 

 
  

Figure 3 (a, b, c): Silicon. Donor 1.5*10-5 M, K= 1.75*10-5. a- theoretical curve A=A(pn), b – first derivative, and c – second 

derivative 

 

Germanium. Two-stage ionizing donor with the 
constants K1 and K2, P=n⁴ + a*n³ + b*n² +c* n + d = 0. 

P= n⁴+ A*n³+n³*(K1+K2) + A*a²*(K1+K2) 

+n²*(K1*K2 -Ge - D*K1) + A*n*K1*K2 - 

n*((K1+K2)*Ge+ 2*D*K1*K2) - Ge*K1*K2 = 0, 
extract A: 

 

A=(-n⁴-n³*K1-n³*K2- n²*(K1*K2-S-

K1*D)+n*((K1+K2)*Ge+2*D*K1*K2)+Ge*K1*K2)/( 
n³+ n²*(K1+K2)+n*K1*K2) 

P’= -4*n⁴*& - 3*A*n³*&+ A’*n³ - 3*n³*(K1+K2)*& - 

2*A*n²*(K1+K2)*& + A’*n²*(K1+K2) – 2*n²*(K1*K2 

-Ge - D*K1)*& - A*n*K1*K2*&+ A’*n*K1*K2 + 
n*((K1+K2)*Ge+ 2*D*K1*K2)*& = 0 extract A’: 

A’=(4*n⁴+3*n³*(K1+K2)+2*n²*(K1*K2-Ge-D*K1)-

n*(Ge*(K1+K2)+2*D*K1*K2)+A*(3*n³+2* 

n²*(K1+K2)+n*K1*K2))/(n³+ n²*(K1+K2)+n*K1*K2). 
P”= 16*n⁴*&² + 9*n³*A*&²-6*A'/&*n³*&² + A"*n³ + 

9*n³*(K1+K2) *&² + 4*n²*A*(K1+K2) *&² - 

4*A'/&*n²*(K1+K2) *&² + A"*n²*(K1+K2) + 

4*n²*(K1*K2-Ge-D*K1) *&² + n*A*K1*K2*&² - 
2*A'/&*n*K1*K2*&² + A"*n*K1*K2 - 

n*(Ge*(K1+K2)+2*D*K1*K2) *&²= 0, extract A”: 

A”/ &² = (-16* n⁴-9* n³*(K1+K2)-4* n²*(K1+K2-Ge-

D*K1)+n*(Ge*K1*K2+2*D*K1*K2)+A’/&*(6*n³+4* 
n²*(K1+K2)+2*n*K1*K2)-A*(9*n³+4* 

n²*(K1+K2)+n*K1*K2))/(n³+ n²*(K1+K2)+n*K1*K2). 

 

The Scaling Method is used to find the roots of 
the equation A”/&2=0 (Figure 4 c). We have three roots 

corresponding to two equivalence points corresponding 

to the first and second ionization stages, respectively, pn 

= 6.4 and pn =8.8, and one inflection point located 
between them (pn=8.1). This last point corresponds to 

the state of the system in which a change in the impurity 

concentration in the semiconductor leads to the smallest 

change in the concentration of free charge carriers. By 
analogy with aqueous solutions, we will call it the point 

of maximum buffer capacity. 

 

a b c 

   
Figure 4 (a, b, c): Germanium. Donor, 1.5*10-5 M, K1= 1*10-3, K2= 1*10-8. a- theoretical curve A=A(pn), b – first 

derivative, and c – second derivative 

 

Germanium. Three-stage ionizing donor with the 
constants K1, K2, and K3. P= n⁵ + a*n⁴ + b*n³ + c*n² 

+d* n + e = 0 (Table 1). 

To reduce the length of formulas, we introduce the 

following notation: 
a=K1+K2+K3 

b=K1*K2+K1*K3+K2+K3 

c=K1*K2*K3 

d=b-Ge-D*K1 

e=c-Ge*a-D*(2*K1*K2+K1*K3) 
f=Ge*b+3*D*c 

g=Ge*c 

Equation of state: 

P=n5+n4*(A+a)+n3*(A*a+d)+n2*(A*b+e)+n*(A*c-f)-
g=0. extract A: 

A= (-n5-n4*a-n3*d-n2*e+n*f+g) / (n4+n3*a+n2*b+n*c) 

Remember: n’=-n*& 
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P’= -5*n5*&-4*n4*(A+a)*&+n4*A’-
3*n3*(A*a+d)*&+n3*A’*a-2*n2*(A*b+e)*&+n2*A’*b- 

n*(A*c -f)*&+ n*A’c= 0. extract A’: 

A’/&= [A*(4*n4+3*n3*a+2*n2*b+n*c) 

+5*n5+4*n4*a+3*n3*d+2*n2*e-n*f)] / 
(n4+n3*a+n2*b+n*c) 

P”=25*n5*&2+16*n4*(A+a)*&2-

8*n4*A’*&+n4*A”+9*n3*(A*a+d)*&2-

6*n2*A’*a*&+n3*A”*a+ 4*n2*(A*b+e)*&2-
4*n2*A*b*&+n2*A”*b+n*(A*c-f)*&2-

2*n*A’*c*&+n*A”*c=0. extract A”: 

A”/&2= [2*A’/&*(4*n4+3*n3*a+2*n2*b+n*c)-
A*(16*n4+9*n3*a+4*n2*b+n*c)-25*n5-16*n4*a-

9*n3*d-4*n2*e+n*f)] / (n4+n3*a+n2*b+n*c) 
 

The Scaling Method finds the roots of the 

A”/&2=0 equation (Figure 5 c). We have four roots 
corresponding to two points of equivalence and two 

points of maximum buffer capacity between them. The 

equivalence points are 5.0 pn, 7.5 pn, and 10.3 pn. The 

points of the maximum buffer capacity are pn=6.0 and 
pn=9.0. 

 

a b c 

   
Figure 5 (a, b, c): Germanium. Donor 7*10-4 M, K1= 1*10-4, K2=1*10-6; K3=1*10-9, a- theoretical curve A=A(pn), 

b – first derivative, and c – second derivative 

 

Figure 6 shows a fragment of the EXCEL spreadsheet used to determine the singular points. 

 

 
Figure 6: An example of an EXCEL spreadsheet for calculating A, A’/&, and A”/&2 

 

Ge= 1.60E-15 a= 0.000101 f= 2.1E-22

K1= 1.0E-04 b= 1.001E-10 g= 1.6E-34

K2= 1.0E-06 c= 1E-19 pK1= 4

K3= 1.0E-09 d= -6.99E-08 pK2= 6

D= 7.00E-04 e= -1.4E-13 pK3= 9

# n(mol) pn A (M) A'/& A"/&²

1 1.00E-04 4.0 2.5E-04 2.8E-04 -9.3E-05

2 7.08E-05 4.2 3.4E-04 2.5E-04 -9.0E-05

3 5.01E-05 4.3 4.3E-04 2.2E-04 -8.8E-05

4 3.55E-05 4.5 5.0E-04 1.9E-04 -8.1E-05

5 2.51E-05 4.6 5.6E-04 1.6E-04 -6.8E-05

6 1.78E-05 4.8 6.1E-04 1.4E-04 -4.8E-05

7 1.26E-05 4.9 6.5E-04 1.3E-04 -2.5E-05

8 8.91E-06 5.1 7.0E-04 1.3E-04 -1.2E-06

9 6.31E-06 5.2 7.4E-04 1.3E-04 2.0E-05

10 4.47E-06 5.4 7.9E-04 1.4E-04 3.7E-05

11 3.16E-06 5.5 8.4E-04 1.5E-04 4.5E-05

12 2.24E-06 5.7 8.9E-04 1.7E-04 4.2E-05

13 1.58E-06 5.8 9.5E-04 1.8E-04 2.6E-05

14 1.12E-06 6.0 1.0E-03 1.9E-04 2.2E-06

15 7.94E-07 6.1 1.1E-03 1.8E-04 -2.5E-05

16 5.62E-07 6.3 1.1E-03 1.7E-04 -4.9E-05

17 3.98E-07 6.4 1.2E-03 1.5E-04 -6.3E-05

18 2.82E-07 6.6 1.2E-03 1.3E-04 -6.8E-05

19 2E-07 6.7 1.3E-03 1.0E-04 -6.3E-05

20 1.41E-07 6.9 1.3E-03 8.3E-05 -5.4E-05

21 1E-07 7.0 1.3E-03 6.6E-05 -4.2E-05

22 7.08E-08 7.2 1.4E-03 5.4E-05 -2.9E-05

23 5.01E-08 7.3 1.4E-03 4.6E-05 -1.6E-05

A = [Ge*K12*K2*K3 – n
5
-n

4
*(K1 + K2 + K3) – n

3
*(K1*K2 + 

K1*K3 + K2*K3 – Ge – D*K1) – n
2
*(K1*K2*K3 – Ge*(K1 + 

K2 + K3) – D*(2*K1*K2 + K1*K3)) + n*(W*(K1*K2 + 

K1*K3 + K2*K3) + 3*D*K1*K2*K3)]/(n
4
 + n

3
*(K1 + K2 + 

K3) + n
2
*(K1*K2 + K1*K3 + K2*K3) + n*K1*K2*K3)

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

4.0 6.0 8.0 10.0 12.0

A
'/

&

pn

-1.5E-04

-1.0E-04

-5.0E-05

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

4.0 6.0 8.0 10.0 12.0

A
"/

&
²

pn

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0 6.0 8.0 10.0 12.0

A
 (

M
)

pn
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CONCLUSION 
This paper completes a series of two papers 

devoted to quantitative regularities of the state of charge 

carriers in doped semiconductors. The results of these 
studies may be useful to developers of semiconductor 

devices. For practical application of the obtained 

theoretical regularities, it is necessary to supplement 

them with experimentally determined values of the 
diffusion constants, electro diffusion, and impurity 

ionization constants. Having a complete set of data, it is 

possible to model the behavior of semiconductor devices, 

determine the limits of their applicability, and predict 
their lifetime. 

 

Abbreviations: 

K1, K2, and K3 – dopant ionization constants. 
A – a molar concentration of acceptor in crystal. 

D – a molar concentration of donor in crystal. 

n – a molar concentration of electrons in the conduction 

band. 
p - a molar concentration of holes in the conduction band. 

S – the Silicon Constant (S= n*p = 2.25*1020 cm6 = 

6.25*10-22 M2) 

Ge – the Germanium Constant (Ge= n*p = 16*10-16 M2) 
pn = - log10(n) 

P – normal polynomial. 

&=ln(10) – constant. 
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