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Abstract: Various proof complexity characteristics are investigated in three propositional proof systems, based on 

determinative disjunctive normal forms. The comparative analysis for size, time, space, width of proofs is given. For 
some formula family we obtain in our systems simultaneously bounds for different proof complexity measures 

(asymptotically the same upper and lower bounds for each measures). These results can be generalized for the other 

formulas and for the other systems also.. 
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1.0 INTRODUCTION 

 One of the most fundamental problems of the proof complexity theory is to find an efficient proof system for 

propositional calculus. During the last decade an active line of research in classical propositional proof complexity has 

been to study space complexity and size-time-space-width trade-offs for proofs. The space of proving a formula 

corresponds to the minimal size of a blackboard needed to verify all steps in the proof. Besides being an interesting 

natural complexity measure, space has connection to the memory consumption of SATISFIABILITY (SAT) problem 

solving, and so research has mostly focused on weak systems that are used by SAT solvers. 

 
Using the notion of determinative disjunctive normal form (dDNF), introduced by first coauthor in [1] and two 

proof systems introduced in [2] on the base of dDNF, we describe a new propositional proof systems also, and 

investigate the comparative analysis for mentioned proof complexity characteristics in them. First two systems are 

polynomially equivalent to well-known resolution system R and cut-free sequent system 
LK  (see in [2]), it is easy to 

show that the third system is polynomially equivalent to resolution over linear equations R(lin), but we ought to note that 

for some formulas it is very easy to obtain the lower bounds of proof complexity measures using the properties of dDNF. 

 
It is known that some of complexity measures (for example space and time) sometimes display a trade-off: there 

are formulas having proofs in both short length and small space, but for which there can not exist proofs in short length 

and small space simultaneously [4]. Analogous situation can be for space and size [5]. For some formula family in our 

systems we obtain simultaneously bounds for different proof complexity measures (asymptotically the same upper and 

lower bounds for each measures). 

 

The upper bounds for size, time, space and width are obtained on the base of some normal forms of proofs in 

mentioned systems. The "good" lower bounds are obtained using the properties of dDNF of our tautologies. 

 

Using the notion of strong equality of tautologies and comparative analysis for their proof complexities, given in 

[6], we can generalize our results for the other formulas and for some other systems. The results can be used for SAT 

problem solving. 
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2.0 MAIN NOTIONS AND NOTATIONS 

 We use the well-known notions of the unit Boolean cube 
nE  ( ),,,{(= 21 n

nE    / 

}{0,1},1 nii  ), a propositional formula with the logical connectives  , & ,  ,  , a tautology, a proof 

system for classical propositional logic [7]. 

 

2.1.Determinative disjunctive normal form 

 Following the usual terminology we call the variables and negated variables  literals. The conjunct K  can be 

represented simply as a set of literals (no conjunct contains a variable and its negation simultaneously).  

 
In [1] the following notions were introduced. 

 

We call a  replacement-rule each of the following trivial identities for a propositional formula  :  

 

.=0,=11,=0

1,=1,=1,=01,=0

1,=11,=1,=0,=0

,=1&,=&10,=0&0,=&0












 

 

           Application of a replacement-rule to some word consists in replacing some its subwords, having the form of the 

left-hand side of one of the above identities, by the corresponding right-hand side. 

Let   be a propositional formula, },,,{= 21 npppP   be the set of all variables of  , and 

},,,{=
21 m

iii pppP   ( nm 1 ) be some subset of P . 

  Given 
m

m E},,{= 1   , the conjunct  m

m
iii pppK
 ,,,= 2

2

1

1
 1 is called 1 -determinative (

0 -determinative) if assigning 
j  ( mj 1 ) to each 

j
ip  and successively using replacement-rules we obtain the 

value of   (1 or 0) independently of the values of the remaining variables.  

1 -determinative conjunct and 0 -determinative conjunct are called also  -determinative or 

determinative for  . 

  A DNF },,,{= 21 lKKKD   is called determinative DNF  ( dDNF ) for   if   and D  are 

semantically equivalent and every conjunct jK  ( ji 1 ) is 1-determinative for  .  

It is obvious that for every propositional formula   perfect DNF  is  -determinative. 

In [2] it were proved two main conditions of dDNF: 1) if for some tautology   the minimal number of literals, 

contained in  -determinative conjunct, is k , then  -determinative DNF has at least 
k2  conjuncts; 2) if for some 

tautology   there is such m  that every conjunct with m  literals is  -determinative, then there is  -determinative 

DNF with no more than 
m2  conjuncts. 

 

2.2. Main systems 

Here the main proof systems are described. 

 

2.2.1  Elimination system E  

 This system is investigated in [2]. The axioms of E  aren’t fixed, but for every formula   each conjunct from 

some dDNF  of   can be considered as an axiom. 

                                                             

1
 As usual, given a propositional variable p  and 

1E , by 
p  we denote the function 





0.=,

1,=,
=






ifp

ifp
p  
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The  elimination rule (  -rule) infers KK   from conjuncts }{pK   and }{pK  , where K   and 

K   are conjuncts and p  is a variable. 

 

The proof in E  is a finite sequence of conjuncts such that every conjunct in the sequence is one of the axioms 

of E , or is inferred from earlier conjuncts in the sequence by  -rule. 

 

A DNF },,,{= 21 lKKKD   is tautological if using  -rule can be proven the empty conjunct ( ) from 

the axioms },,,{ 21 lKKK  . 

 

2.2.2  Cut-free Frege system 
F  

 This system is investigated also in [2]. The schematic axioms of the system 
F  are the following [I]  

    1.  imm   ))&(&&(& 121  , 1m , mi 1 ,  

    2.  [1.]  

        (a) )))(()(()(   KKK  

        (b) ))(()(   KK  

        (c) ))(()(   KK  

        (d) ))&()(()(   KKK  

        (e) ))&(()(   KK  

        (f) ))&(()(   KK  

        (g) )))(()(()(   KKK  

        (h) )()(   KK  

        (i) )()(   KK  

        (j) )()(   KK  

 

    3.  [1.]  

        (a) ))()&(()&(   KKK  

        (b) ))(()(   ,  

 
 where [a)]  

    1.    is provable formula,  

    2.  i )(1 mi   and   are literals,  ,  ,   are arbitrary formulas,  

    3.  ))&(&&(&= 121  llK   1)( l  for arbitrary literals i )(1 li  ,  

    4.  for every   ))&(&&(& 121  ll  style subformula from some axiom of second group 

conjunct },,{ 1 l   is  -determinable,  

    5.  if },,,{= 21 n

setK    for some subformula kK  &&&= 21   from first axiom of third 

group, then 
setK  and 

setK}{  is subset of some  -determinative conjunct, but 
setK  is not  -determinative.  

 Rule of inference is modus ponens 
B

BAA 
. Note that this systems "repeats" Calmar’s method of classical 

Frege systems completeness proof [8]. 

 

In [2] were proved that the systems E, 
F , R and 

LK  are polynomially equivalent by proof sizes and by 

proof steps (polynomial equivalence means, that transformation of any proof in one system to a proof in the other system 

can be done with no more than polynomial increase of proof complexity). 
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2.2.3  The system E(lin) 

 Now we describe some new proof system, based on dDNF. Let for some formula 

},...,,{= 2
2

1
1

m
imii pppK


 be 1 -determinative conjunct. By 
0K  we denote equation 0=)(

1=

j

ij

m

j

p


 , where  

 





 0=1

1=
=)(

jij

jijj

ij ifx

ifx
p








 

If   is the propositional formula in n variables and },,,{= 21 lKKKD   is dDNF for  , then as axioms of E(lin) we 

consider the system  

 









ljK

axiomsBooleannixx

j

ii

1

)(11=0=
0  

Note that if   is tautology, then this system is unsatisfiable. As inference rules we consider the inference rules of the 

system R(lin) [3]:  

 

Resolution. Let A , B  be two disjunctions of linear equations (possibly the empty disjunctions) and let 1L , 2L  

be two linear equations. From 1LA  and 2LB  derive )( 21 LLBA   ( +resolution) or )( 21 LLBA   (-

resolution).  
 

Weakening. From a disjunction of linear equations A  derive LA , where L  is an arbitrary linear equation.  

 

Simplification. From )=(0 kA  derive A , where A  is a disjunction of linear equations and 0)( k . An 

E(lin) refutation of a formula   is a proof of the empty disjunction from above constructed system. 

 

We shall sometimes speak about refutation and proofs interchanging. 

 

Note that polynomial equivalence of the systems E(lin) and R(lin) by sizes and by steps can be proved with the 

methods, which are used in [2] by transformation of any proof in the system E into some refutation in the system R and 

vice versa. 

 

2.3  Proof complexity measures 

 In the theory of proof complexity two main characteristics of the proof are: complexityt  , defined as the 

number of proof steps (time) and complexityl  , defined as total number of proof symbols (size). Now we consider 

two measures (space and width) also. complexitys  (space), informal defined as maximum of minimal number of 

symbols on blackboard needed to verify all steps in the proof and complexityw  (width), defined as the maximum of 

widths of proof formulas. 

 

Follow [9] we give the formal definitions of mentioned proof complexity measures. 

  

 If a proof in the system   is a sequence of lines Li (lines, for example, are conjuncts in E, formulas in 
F  

and disjunctions of linear equations in E(lin)), where each line is an axiom, or is derived from previous lines by one of a 

finite set of allowed inference rules, then a  -configuration is a set of such lines. A sequence of  -configurations 

},,,{ 10 rDDD   is said to be  -derivation if =0D  and for all t )(1 rt   the set tD  is obtained from 1tD  by 

one of the following derivation steps: 

 

Axiom Download }{= 1 Att LDD  , where AL  is an axiom of  . 

 

Inference }{= 1 LDD tt  , for some L  inferred by one of the inference rules for   from a set of 

assumptions, belonging to 1tD . 

Erasure 1 tt DD .  

http://saspjournals.com/sjpms
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A  -proof of a tautology   is a  -derivation },,,{ 10 rDDD   such that =0D  and rD~ , where ~  

is empty conjunct in E, ~  is   in 
F , ~  is empty disjunct in E(lin). 

 

By ||  we denote the size of a formula   (or some its representation, for example, as equation), defined as the 

number of all variable entries. It is obvious that the full size of a formula, which is understood to be the number of all 

symbols or the number of all entries of logical signs, is bounded by some linear function in || . 

 

  The size ( l ) of a  -derivation is a sum of the sizes of all lines in a derivation, where lines that are derived 

multiple times are counted with repetitions. The steps ( t ) of a  -derivation is the number of axioms downloads and 

inference steps in it. The space ( s ) of a  -derivation is the maximal space of a configuration in a derivation, where the 

space of a configuration is the total number of literals in a configuration, counted with repetitions. The width ( w ) of a 

 -derivation is the size of the widest line in a derivation.  
 

Let   be a proof system and   be a tautology. We denote by ),,( 

 wslt  the minimal possible value of 

),,( complexitywcomplexityscomplexitylcomplexityt   for all proofs of tautology   in  .  

Some results on complexityt   and complexityl   are obtained for the systems E  and 
F  in [2]. Here 

we add for E  and 
F  the results on complexitys  and complexityw  measures and investigate all above 

complexity measures in the system E(lin) also. 
 

3. MAIN RESULTS 

 In further consideration the following tautologies (Topsy-Turvy Matrix) play key role  

 i
ij

n

i

m

jnE
n

mn pTTM


 1=1=),,
1

(, &= 


 

 

 1).21,1(  nmn  

         For all fixed 1n  and m  in above-indicated intervals every formula of this kind expresses the following true 

statement: given a 0,1-matrix of order n x m we can â€œtopsy-turvyâ€� some strings (writing 0 instead of 1 and 1 

instead of 0) so that each column will contain at least one 1.  

 

Main Property of mnTTM , . The minimal number of literals in any determinative conjunct of mnTTM ,  is m , 

therefore each dDNF of mnTTM ,  has at least 
m2  conjuncts.  

Let 
1,2

=
nnn TTM . 

1)(22|=| nn

n n  and )(|=|log nn   

Note that in [10] it is proved that 
12)( 2>
nlinR

n
t , 

121)( )2(2>
 nnlinR

n
l . 

 Let   be one of the systems )(,, linEE F  then  

 )(=loglog1.
22

nt
n



  

 )(=loglog2.
22

nl
n



  

 )(=log3.
2

nw
n



  

 )(=log4.
2

ns
n



  

 

Proof. The statements 1. and 2. for the systems E  and 
F  are given in [2]. Using the method of resolution 

refutation transformation into )(linR  refutation, given in [3], we can transform E -proof into )(linE -proof, therefore 

the upper bounds from 1. and 2. for )(linE  are also valid. The lower bounds from 1. and 2. for )(linE  are obtained on 

http://saspjournals.com/sjpms


 

 

Armen Mnatsakanyan et al.; Sch. J. Phys. Math. Stat., 2014; Vol-1; Issue-2(Sep-Nov); pp-111-117 

Available Online:  http://saspjournals.com/sjpms   116 

 

the base of Main Property of n . Using the fact that at least two determinative conjunct must be in every  -proof and 

Main Property of 
n , we obtain the lower bounds for s-complexity and both upper and lower bounds for w-complexity 

3.. In order to prove the upper bound for s-complexity in above three systems, we use the following Lemma.  If   is the 

tautology in k  variables, then )(= 2kOsE

  

 

Proof. Let kD  is the perfect DNF of   

 i
i

k

ikE
k

k pD


 1=),,
1

(
&=





 

           

         We consider the following tree like refutation of kD  in the system E, where as axioms from the left to the right are 

00

2

0

1 ... kppp , 
10

2

0

1 ... kppp , ..., 
11

2

1

1 ... kppp  conjuncts. Number of conjuncts used as axioms will be 
k2 . In first stage we 

can take first two axioms and make elimination rule on them, then next two and so on. As result we will have 
12 k

 

conjuncts without kp  variable. Then on next stage we will eliminate 1kp  in same way. Consequentially eliminating all 

variables we will have tree like proof with height 1k , where each node of tree will be one conjunct which is result of 

elimination rule of two conjuncts from previous level. Let number of levels of tree like proof be from 0  to k  (all 

conjuncts on the level of number 0  have size k , the empty conjunct is on the last level with number k ). Let lc  (

kl 1 ) be on of conjuncts on level l  of tree like proof, it is result of elimination rule on two conjuncts 
'

1lc  and 
'

1



lc  

from level 1l . By proving 
'

1lc  and 
'

1



lc  separately we will have following )( lcs  space usage for proving lc  in 

above described tree like proof:  

 )(||=||)(=)( '

1

'

1

'

1

'

1







  lllll cscccscs  

All conjuncts on the same level l  of tree like proof have same size lk  . So above equation will look like this:  

 1)()(=)( '

1  lkcscs ll
 

As all conjuncts on same level have same space usage, we denote by )(lS  the space used for each conjunct on level l :  

 11)(=)(  lklSlS  

Total space usage will be space usage on level k:  

)(=1)/2(=12...)(=122)(=11)(=)( 2kOkkllkSkSkSkSsE   

 

 The number of variables in n  is 1)(2 nn , so the upper bound for space complexity will be:  

 )2(= 22 n

n
nOs  

And taking into consideration the lower bound proved above we can prove the last statement of the main theorem:  

 )(=log
2

ns
n



  

 

Remarks.  

1. If for any sequence of tautologies n  the minimal size of determinative conjunct is |)(| n , then 

|)(|=log2 n
n

t  
, |)(|=log2 n

n
l  

, |)(|= n
n

w  
, |)(|= n

n
s  

. 

2.In [1] the notion of strongly equal classical tautologies was introduced and in [6] the comparative analysis of strongly 

equal tautologies in some weak proof systems was given. 

 

         The classical tautologies   and   are strongly equal if every  -determinative conjunct is also  -determinative 

and vice versa.  Main results of [6] are the following: above mentioned proof complexity measures of the strongly equal 

tautologies i) are the same in E and E(lin); ii) in 
F  and 

LK  some measures are the same, some of them differ from 
each other only by the sizes of tautologies; iii) the measures differ from each other only with polynomial increase in R. 

 

       The information of two above remarks with the results of this paper can be useful for SAT problem solving. 
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4. CONCLUSION 

For some formula family in our systems we obtain simultaneously bounds for different proof complexity 

measures (asymptotically the same upper and lower bounds for each measures). 
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