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Abstract: In hyper-networks, arriving time and the convert distance are used to measure the structure of hyper-graphs.
For two vertices u and v, the arriving time H , is defined as the expected time for it takes a random walk to travel from

u to v. The convert distance is a symmetrized version denoted as C,= H,, +H,, . In this article, we consider the

characters of arriving times and convert distances when the number n of vertices in the hyper-networks tends to co. We
discuss random geometric hyper-graphs, such as & -hyper-graphs, k-NN hyper-graphs and Gaussian similarity hyper-
graphs, and the hyper-graphs with a given expected degree distribution or other special hyper-graphs structures. Several
results on convergence are determined, and these illustrate the promising application prospects for hyper-networks
algorithm.
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INTRODUCTION

Let H=(V, E) be a fixed an undirected, weighted hyper-graph with n vertices, which express a hyper-networks. The
convert distance between two vertices u and v is denoted as the expected time it takes the natural random walk from
vertex u to vertex v and then back to vertex u. It is equivalent to the resistance distance, which interprets the hyper-graph
as an electrical hyper-network and denotes the distance between vertices u and v as the effective resistance between these
vertices.

In our paper, we learn the convergence for convert distance when the order of the hyper-networks increases. We
focus on the special cases such that the random geometric hyper-networks can be expressed as k-nearest neighbor hyper-

graphs, & -hyper-graphs, and Gaussian similarity hyper-graphs. For two vertices u and v, the arriving time H , is
defined as the expected time for it takes a random walk to travel from u to v. The convert distance is a symmetrized

version denoted as C,,= H,, +H,, . Let vol(H)= Z d (V) be the volume of the hyper-graph H. The main result in
veV (H)

this paper to show the fact that in hyper-networks setting, as the number n of vertices tends to oo, there exist a scaling

term ¢ such that the arriving times and convert distances in random geometric hyper-graphs meet

H 1 C 1 1
W ()

vol(H) d, vol(H) 'd
and simultaneously cd, and cd, converge to positive constants. It reveals that the rescaled convert distance
approximated by the sum of the inverse rescaled degrees.

—0, c- —0,

u \

The organization of this paper is as follows: the terminologies and notations for this setting are given in Section 2;
and in Section 3, we present the main results in our paper.

HINTSSETTING AND DEFINETIONS
Let V={vy,Va,...,vi} be a limited set, E is family of subset of V, i.e., EC 2". Then H=(V,E) is a hyper-graph on V. the

element of V is called a vertex, the elements of E is called a hyper-edge. Let|V'| be the order of H, |E| be the scale of H.
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|e| is basic number of hyper-edge e. r(H)=max ‘ej ‘ is rank of hyper-edge e, and s(H)= min ‘ej‘ lower rank of hyper-
J J

edge e. If |e|=k for each hyper-edge e of E (that is r(H)=s(H)=k), then H is a k-uniform hyper-graph. If k=2, then H is
just a normal graph.

Hyper-graph as a expansion concept of graph, it applied in many fields of computer science. Several results can
refer to [1-7]. A hyper-graph H is called a simple hyper-graph or a sperner hyper-graph, if any two hyper-edges are not

contained with each other. Let H =(V, E ) is a hyper-graph on V, if E' —E, then H' is a part-hyper-graph of H. For S
CV, H[S]={e€ E:e C S} is called a sub-hyper-graph of H induced by S.

Hyper-graph H can be represented by graph by using the set of vertices to represent the elements of V. If ‘e i ‘ =2,
using a continuous curve which attach to the elements of e; to representing e;; If ‘ej‘ =1, using a loop which contain e; to

represent e;; If ‘ej ‘ 23, using a simple close curve which contains all the elements of e; to represent e;.

In this paper, we assume H is a weighted hyper-graph, each edge given a wight w(e). The degree of vertex v; in

hyper-graph H is denoted as
d;(H)=> w(e)h(v,e),

ecE
where
1 if vee
h(v,e) = s
0, if vege

Let &(e) =Zh(v, e) . Then, the normalized laplacian L(H)e [J ™™ on hyper-graph H is defined by :

veV
apIRUC ) I ]
Li(H)=1 g5~ 8(e) .
d;(H) otherwse
Let d,;, and d__, be the minimal and maximal degrees, respectively. Let D be a diagonal matrix with diagonal entries

di. The unnormalized hyper-graph Laplacian is denoted as L= D-W, and the normalized one as LSym = D YLD,

Consider the natural random walk on hyper-graph H. Its transition matrix is expressed as P= D™W . Then, 1 is an
eigenvalue of LSym if and only if 1- 4 is an eigenvalue of P. Set 1= 4, > 4, >...> A, > -1 the eigenvalues of P. The

spectral gap of P is defined as 1—max{4,, |/1n |}

Let U be the projection on the eigenspace corresponding to eigenvalue 0, then the Moore-Penrose inverse of
symmetric, non-invertible matrix A is defined as A" =(A+U)™ —U . Reset ¢ as the i-th unit vector in [] ", then

convert times can be expressed by virtue of the Moore-Penrose inverse L' of the unnormalized hyper-graph Laplacian:
_ i
C,=vol(H)(g —e;, L'(e —¢))),

Our first result present the closed form expression for arriving and convert times.

Lemma 1. Let H be a connected, undirected hyper—graph with order n. For i # j, we infer

H; =vol(H){ —¢;,LL,,(

1 1
j* Ssym ej - ei)
o ﬁ
,_ J’ I-iym ,_
\/»

Proof of Lemma 1. For the arriving time presentatlon, set Ug,... ,Up @s an orthonormal set of eigenvectors of the matrix

C, =Vol(H)
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D YWD 2 corresponding to the eigenvalues £ ,..., 4, . Let u; be the j-th entry of u;. Then, we deduce
2
u.u.
H, =Vvol(H) S ).
Z -4 d./dd

J i

In terms of the spectral representation of LSym , We yield

1 L1 1 1 1 1
H; =vol(H) e, U,—=—¢€ ——=—¢ M, )=Vvol(H){ —=e, L (—=e -—¢)
) ’dj ] él_luk k ’dj ] ¢d| ’ ] y! idj J ¢d|
The result for the convert time can be obtained in similar way. O

Then, we introduce some geometric hyper-graphs. Consider a given set of points Xy,...,X, € [J ¢ for a deterministic
geometric hyper-graph. These points form the vertex set V in the hyper-graph. In the & -hyper-graph, any two vertices in
the same hyper-edge satisfies that their Euclidean distance is less than or equal to &. In the undirected symmetric k-
nearest neighbor hyper-graph, two vertices v; to v; in the same hyper-edge if X; is among the k nearest neighbors of X;. For
the undirected mutual k-nearest neighbor hyper-graph, two vertices v; to v; in the same hyper-edge if X; is among the k
nearest neighbors of X;. For a general similarity hyper-graph, we define the weight matrix W with entries w;= k(X;,X;). In

% -x,[
0_2

large applications, this weight function is the Gaussian similarity function wi=exp(— ), where o> 0 is

called bandwidth parameter.

Assume that the underlying set of vertices V has been drawn i.i.d. according to certain probability density p on [] ¢If
the vertices are known, the hyper-edges in the hyper-graphs are constructed as described above. A connected subset X <

1% is called a valid region if it meets following characters:

e ForanyxeXwegetthat 0 < P, < p(X) < Ppa < o0 for certain constants P, and P, -

e X has bottleneck larger than certain positive value h: the collection {x & X: dist(x, 0X ) > h/2} is connected.

e The boundary of X is regular in the following sense. Assume that there exist positive constants & and &, satisfies that

if £<g&,, then for all points xe 0X meet Vol(B,(x) " X) = avol(B,(x)) (here vol is the Lebesgue volume).

In what follows, we assume that X := supp(p) is a valid region, X does not contain any holes and does not become
arbitrarily narrow: there exist a homeomorphism h : X— [0, 1]° and constant 0 < L;, < L, < oo satisfies that for
any x, y € X, we get

Lo D Y1 <1000 =] < Ly x|

Let 77, be the volume of the unit ball in [J ¢ Positive constants c; are independent of n and the hyper-graph
connectivity parameter (& or k or h, respectively) but rely on the dimension, the geometry of X, and p.

MAIN RESULTS AND PROOFS
The following result drives the Absolute and relative bounds in any given hyper-graph for arriving and convert times.
Lemma 2. Let H be a finite, connected, undirected, possibly weighted hyper-graph that is not bipartite.

Fori#j
1 1
I SRS PP 1) W
vol(H) ' d, Q /12+)d§m
Fori#j
1 1 W,
) 1 W L Dy o D gy Wi
v g, j) Ve ,) ek

_ ~ €, I . . .
Proof of Lemma 2. Let A= DYAWD ™2 and ui:T'. Denote the projectionon the eigenspace of the j-the eigenvalue
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A; of A by P;. we obtain

<ui,Auj>=W—(;j£ ‘(’j"g‘ax ,
i] min
2
A 2 Wik Wmax = Wmax i < Wmax
Iol=2 g, g 072" an o <

[, —upff < B (o < e

min i j min

In terms of Pl(ui —uj) =0, we yield following equation for the arriving time

H. 1

j

vol(H) d

(M ui>>\s ] A —u)

o i M Ve 1y
1/12d \/_ d dd d? = d? "1-4

On the convert time, we deduce

C; 1 1 ,
voI(H)_(d_iJFOTJ_):K“i‘uj"\"(“i—“j)>‘S | vy A )
WmaX
< a (m )(d_.+_) 0

Now, we discuss some classes of random geometric hyper-graphs by view of Lemma 2. Theorem 1 obtains the
spectral gap of the & -hyper-graph and Theorem 2 gets the spectral gap of the KNN-hyper-graph.

Theorem 1. Assume that the general assumptions establish. Then there exist positive constants cj,..., ¢g such that with

c;nexp(—c,ne?)

probability at least 1—c,nexp(—c,ne") — 5 :
£

d+1

— 4,28 1|42 Cﬁgn
d

Furthermore, if

— o0, then this probability converges to 1.
logn

Theorem 2. Assume that the general assumptions establish. Then for both the symmetric and the mutual KNN-hyper-
graph there exist positive constants c,,..., ¢, such that with probability at least1—c,n exp(—czk) ,
2

k 2
1-4,26,()7 1= |4 =

nT
. Kk -
Moreover, if I— — 00, then the probability converges to 1.
ogn
Following corollaries describe the Arriving and convert times on & -hyper-graphs and kNN-hyper-graphs,
respectively.

Corollary 1. Assume that the general assumptions establish. Let H be an unweighted ¢& -hyper-graph constructed from
the sequence Xi,...,X, drawn i.i.d. from the density p. Then there exist positive constants ci,..., C5 such that with
c,nexp(—c,ne?)

probability at least1—c,nexp(—c,ne") — 5
£

, for any i # j, we have
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|ngd ne’ Cs

Hyj| < —a=-
|d,  vol(H) ne
Suppose that the density p is continuous and n— oo, & —0 and ne*? - oo , then following fact almost surely
d
ne 1
——H, > ———.
vol(H) 13 P(X;)

we can get analogous results for the convert times.

i

By Cuv: Huv +H

vu !

Corollary 2. Assume that the general assumptions establish. Let H be an unweighted KNN-hyper-graph constructed from
the sequence Xi,...,X, drawn i.i.d. from the density p. Then for both the symmetric and mutual KNN-hyper-graph there

exist positive constants c;, C;, Cs such that with probability at least1—c,n eXp(—CZk) , for any i # j, we get
d
2

kK H, | < c;n

d. wvol(H) "

i

l+9.
k 2

k 2
If the density p is continuousand n— oo, & —0and k(—)9 — oo, then following fact almost surely
n

H, »>1

vol(H) "
By C, = H,, +H,, we can get analogous results for the convert times.

Now, we discuss the weighted hyper-graphs. The result stated as follows concern fully connected weighted hyper-
graphs.

Theorem 3. Consider a given fully connected weighted hyper-graph with weight matrix W. Let W, ;. and W, .. be the
upper and lower bound of entries of W. Then, for any i, je {1,...,n} and i # j, we infer

2
n H _1 4nWmax Wmax < Wmaxﬂ
volH) " d.|~  w, d2 ~w n’
j min min min

Proof of Theorem 3. By the hyper-graph learning tricks, we get the following facts:
e For any row-stochastic matrix P,

13 Wy,
A, < =max SRELY
2720 kzl‘ d.

Wi _
d ]

. W W .
<l-nmin—+ <1 —mn
iiod W

1 max

e Let H be a weighted hyper-graph with hyper-edge weights 0 <w_,. < W < W,

i < and A, eignea DE its second

eigenvalue. Consider the corresponding unweighted hyper-graph where the weights of all hyper-edge are 1, and denote
its second eigen value by ﬂZ 4 Then, we yield

unweightel
W._. W
Wmm < (1_/22,unweighted) < (1_/12,unweighted) Wmax :

(1_ ﬂ?,unweighted )
max min

Then, the result follows directly from above facts and Lemma 2. 0
The next theorem discusses the case of Gaussian similarity hyper-graphs with adapted bandwidth.

X

Theorem 4. Let X< 1% be a compact set and p be a continuous, strictly positive density on X. Let H be a fully
connected, weighted similarity hyper-graph constructed from the points Xg,...,X, drawn i.i.d. from density p. Its weight

[x=yI
2

> ) . Suppose the density p is continuous

function is Gaussian similarity function: K_(X, y) =————exp(-
(270%)?
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d+2

nNo .
andn— o, o —0and —> 00, then following fact almost surely

logn
n Cij — L + 1 )
vol(H) p(Xi)  p(X;)

Proof of Theorem 4. Note that
n n

1 1| non 1 1|
nR; — - < +H—t—" - .
p(X;) p(X))| dd| |d d; pX) p(X))

By the given assumption, the second term on the right hand side converges to 0.

1 1 Q;
Let Qij = + , then we have Rij > By virtue of the given conditions, for any two given
di _Wij dj _\Nij 1+WiJQIJ
points X; and X; the Gaussian hyper-edge Weight w;; converges to 0 as o tend to 0. Hence, we get
Q; 1 1
n(Rij————) N—2——-=—-=) >0as
d, 1+w,Q; d; d;

Let H* be the ¢ -truncated Gauss hyper—graph with hyper-edge weights
c_ w0 X=X < e

]
0 else

n
Let df :Zwi‘j . Let R” be the resistance of the & -truncated Gauss hyper-graph. By W;; < W, , we infer R;< R
j=1

Thus, we get
R, — (d”g %) +
J
| 1
A probabilistic bound for term Il can be determined by standard concentration arguments since the degrees in the
truncated hyper-graph converge to the ones in the non-truncated hyper-graph.

n n n n
—+—)—(—+—)|.
GG

i j

n n

<|nR; —(—+—)

' J

nK;

[ j

2

). Let 259" he the eigenvalues of the & -

For bound term I, we assume that that & meets o =w( d+2) .

log(ne

truncated Gauss hyper-graph, and W, W be its minimal and maximal hyper-edge weights, respectively. Let H"

mln !

be a hyper-graph which is the unweighted version of the ¢ -truncated Gauss hyper-graph H . Therefore, H " coincides
with the standard & -hyper-graph. Let A5 welohted o e eigenvalues. In view of Lemma 2 and Corollary 1, we deduce

V\f' 1 w2 Wg 1 n n
nR (L max ST max max 2 — 4+ ).
(d £ d £ ) mm 1 AQS ,unweighted )( J ) dr;m mm 1 ﬂ; ,unweighted )(dig df )

It is not hard to verify that the last factor in above mequality converges to a constant;
( n n 1 1

) >
And, we use the following quantities to deal with the other factors of this inequality:

& + & + "
d° d; p(X;)  p(X))
—, dr‘;in > ngdW;in' :I__X;,unweighted2 82.

W«E‘

min —

max -

2
), we lead to the desired conclusion.

_ &
log(ne®?)”"

By combining these quantities with above inequality and using o= w(
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