Arriving and Convert Times in Hyper-networks

Linli Zhu ${ }^{\text {* }}$, Yun $\mathbf{G a o}^{2}$, Wei Gao ${ }^{3}$

${ }^{1}$ School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China
${ }^{2}$ Department of Editorial, Yunnan Normal University, Kunming 650092, China
${ }^{3}$ School of Information, Yunnan Normal University, Kunming 650500, China

*Corresponding Author:

Linli Zhu
Email: zhulinli@163.com

Abstract

In hyper-networks, arriving time and the convert distance are used to measure the structure of hyper-graphs. For two vertices u and v, the arriving time $H_{u v}$ is defined as the expected time for it takes a random walk to travel from u to v. The convert distance is a symmetrized version denoted as $C_{u v}=H_{u v}+H_{v u}$. In this article, we consider the characters of arriving times and convert distances when the number n of vertices in the hyper-networks tends to ∞. We discuss random geometric hyper-graphs, such as \mathcal{E}-hyper-graphs, k-NN hyper-graphs and Gaussian similarity hypergraphs, and the hyper-graphs with a given expected degree distribution or other special hyper-graphs structures. Several results on convergence are determined, and these illustrate the promising application prospects for hyper-networks algorithm.

Keywords: arriving time, convert time, hyper-networks, random hyper-graph, spectral gap.

INTRODUCTION

Let $H=(V, E)$ be a fixed an undirected, weighted hyper-graph with n vertices, which express a hyper-networks. The convert distance between two vertices u and v is denoted as the expected time it takes the natural random walk from vertex u to vertex v and then back to vertex u. It is equivalent to the resistance distance, which interprets the hyper-graph as an electrical hyper-network and denotes the distance between vertices u and v as the effective resistance between these vertices.

In our paper, we learn the convergence for convert distance when the order of the hyper-networks increases. We focus on the special cases such that the random geometric hyper-networks can be expressed as k-nearest neighbor hypergraphs, ε-hyper-graphs, and Gaussian similarity hyper-graphs. For two vertices u and v, the arriving time $H_{u v}$ is defined as the expected time for it takes a random walk to travel from u to v. The convert distance is a symmetrized version denoted as $C_{u v}=H_{u v}+H_{v u}$. Let $\operatorname{vol}(H)=\sum_{v \in V(H)} d(v)$ be the volume of the hyper-graph H. The main result in this paper to show the fact that in hyper-networks setting, as the number n of vertices tends to ∞, there exist a scaling term c such that the arriving times and convert distances in random geometric hyper-graphs meet

$$
c \cdot\left|\frac{H_{u v}}{\operatorname{vol}(H)}-\frac{1}{d_{v}}\right| \rightarrow 0, \quad c \cdot\left|\frac{C_{u v}}{\operatorname{vol}(H)}-\left(\frac{1}{d_{u}}+\frac{1}{d_{v}}\right)\right| \rightarrow 0,
$$

and simultaneously $c d_{u}$ and $c d_{v}$ converge to positive constants. It reveals that the rescaled convert distance approximated by the sum of the inverse rescaled degrees.

The organization of this paper is as follows: the terminologies and notations for this setting are given in Section 2; and in Section 3, we present the main results in our paper.

HINTSSETTING AND DEFINETIONS

Let $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a limited set, E is family of subset of V, i.e., $E \subseteq 2^{V}$. Then $H=(V, E)$ is a hyper-graph on V. the element of V is called a vertex, the elements of E is called a hyper-edge. Let $|V|$ be the order of $H,|E|$ be the scale of H.
$|e|$ is basic number of hyper-edge $e . r(H)=\max _{j}\left|e_{j}\right|$ is rank of hyper-edge e, and $s(H)=\min _{j}\left|e_{j}\right|$ lower rank of hyperedge e. If $|e|=k$ for each hyper-edge e of E (that is $r(H)=s(H)=k)$, then H is a k-uniform hyper-graph. If $k=2$, then H is just a normal graph.

Hyper-graph as a expansion concept of graph, it applied in many fields of computer science. Several results can refer to [1-7]. A hyper-graph H is called a simple hyper-graph or a sperner hyper-graph, if any two hyper-edges are not contained with each other. Let $H^{\prime}=\left(V, E^{\prime}\right)$ is a hyper-graph on V, if $E^{\prime} \subset E$, then H^{\prime} is a part-hyper-graph of H. For S $\subseteq V, H[S]=\{e \in E: e \subseteq S\}$ is called a sub-hyper-graph of H induced by S.

Hyper-graph H can be represented by graph by using the set of vertices to represent the elements of V. If $\left|e_{j}\right|=2$, using a continuous curve which attach to the elements of e_{j} to representing e_{j}; If $\left|e_{j}\right|=1$, using a loop which contain e_{j} to represent e_{j}; If $\left|e_{j}\right| \geq 3$, using a simple close curve which contains all the elements of e_{j} to represent e_{j}.

In this paper, we assume H is a weighted hyper-graph, each edge given a wight $w(e)$. The degree of vertex v_{j} in hyper-graph H is denoted as

$$
d_{j}(H)=\sum_{e \in E} w(e) h(v, e),
$$

where

$$
h(v, e)=\left\{\begin{array}{lll}
1, & \text { if } & v \in e \\
0, & \text { if } & v \notin e
\end{array} .\right.
$$

Let $\delta(e)=\sum_{v \in V} h(v, e)$. Then, the normalized laplacian $L(H) \in \square^{m \times m}$ on hyper-graph H is defined by :

$$
L_{i j}(H)=\left\{\begin{array}{l}
-\sum_{\{i, j\rangle \subseteq e} w(e) \frac{1}{\delta(e)} \quad i \neq j \\
d_{j}(H) \quad \text { ot herwi se }
\end{array} .\right.
$$

Let $d_{\text {min }}$ and $d_{\text {max }}$ be the minimal and maximal degrees, respectively. Let D be a diagonal matrix with diagonal entries d_{i}. The unnormalized hyper-graph Laplacian is denoted as $L=D-W$, and the normalized one as $L_{\text {sym }}=D^{-1 / 2} L D^{-1 / 2}$. Consider the natural random walk on hyper-graph H. Its transition matrix is expressed as $P=D^{-1} W$. Then, λ is an eigenvalue of $L_{\text {sym }}$ if and only if $1-\lambda$ is an eigenvalue of P. Set $1=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}>-1$ the eigenvalues of P. The spectral gap of P is defined as $1-\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$.

Let U be the projection on the eigenspace corresponding to eigenvalue 0 , then the Moore-Penrose inverse of symmetric, non-invertible matrix \boldsymbol{A} is defined as $\boldsymbol{A}^{\dagger}=(A+U)^{-1}-U$. Reset e_{i} as the i-th unit vector in \square^{n}, then convert times can be expressed by virtue of the Moore-Penrose inverse L^{\dagger} of the unnormalized hyper-graph Laplacian:

$$
C_{i j}=\operatorname{vol}(H)\left\langle e_{i}-e_{j}, L^{\dagger}\left(e_{i}-e_{j}\right)\right\rangle,
$$

Our first result present the closed form expression for arriving and convert times.
Lemma 1. Let H be a connected, undirected hyper-graph with order n. For $i \neq j$, we infer

$$
\begin{gathered}
H_{i j}=\operatorname{vol}(H)\left\langle\frac{1}{\sqrt{d_{j}}} e_{j}, L_{s \mathrm{sm}}^{\dagger}\left(\frac{1}{\sqrt{d_{j}}} e_{j}-\frac{1}{\sqrt{d_{i}}} e_{i}\right)\right\rangle, \\
C_{i j}=\operatorname{vol}(H)\left\langle\frac{1}{\sqrt{d_{i}}} e_{i}-\frac{1}{\sqrt{d_{j}}} e_{j}, L_{s \mathrm{sm}}^{\dagger}\left(\frac{1}{\sqrt{d_{j}}} e_{j}-\frac{1}{\sqrt{d_{i}}} e_{i}\right)\right\rangle .
\end{gathered}
$$

Proof of Lemma 1. For the arriving time presentation, set u_{1}, \ldots, u_{n} as an orthonormal set of eigenvectors of the matrix
$D^{-1 / 2} W D^{-1 / 2}$ corresponding to the eigenvalues μ_{1}, \ldots, μ_{n}. Let $u_{i j}$ be the j-th entry of u_{i}. Then, we deduce

$$
H_{i j}=\operatorname{vol}(H) \sum_{k=2}^{n} \frac{1}{1-\mu_{k}}\left(\frac{u_{k j}^{2}}{d_{j}}-\frac{u_{k i} u_{k j}}{\sqrt{d_{i} d_{j}}}\right) .
$$

In terms of the spectral representation of $L_{\text {sym }}$, we yield

$$
H_{i j}=\operatorname{vol}(H)\left\langle\frac{1}{\sqrt{d_{j}}} e_{j}, \sum_{k=2}^{n} \frac{1}{1-\mu_{k}}\left\langle u_{k}, \frac{1}{\sqrt{d_{j}}} e_{j}-\frac{1}{\sqrt{d_{i}}} e_{i}\right\rangle u_{k}\right\rangle=\operatorname{vol}(H)\left\langle\frac{1}{\sqrt{d_{j}}} e_{j}, L_{\mathrm{sym}}^{\dagger}\left(\frac{1}{\sqrt{d_{j}}} e_{j}-\frac{1}{\sqrt{d_{i}}} e_{i}\right)\right\rangle .
$$

The result for the convert time can be obtained in similar way.
Then, we introduce some geometric hyper-graphs. Consider a given set of points $X_{1}, \ldots, X_{n} \in \square^{d}$ for a deterministic geometric hyper-graph. These points form the vertex set V in the hyper-graph. In the ε-hyper-graph, any two vertices in the same hyper-edge satisfies that their Euclidean distance is less than or equal to ε. In the undirected symmetric k nearest neighbor hyper-graph, two vertices v_{i} to v_{j} in the same hyper-edge if X_{i} is among the k nearest neighbors of X_{j}. For the undirected mutual k-nearest neighbor hyper-graph, two vertices v_{i} to v_{j} in the same hyper-edge if X_{i} is among the k nearest neighbors of X_{j}. For a general similarity hyper-graph, we define the weight matrix W with entries $w_{i j}=k\left(X_{i}, X_{j}\right)$. In large applications, this weight function is the Gaussian similarity function $w_{i j}=\exp \left(-\frac{\left\|X_{i}-X_{j}\right\|^{2}}{\sigma^{2}}\right)$, where $\sigma>0$ is called bandwidth parameter.

Assume that the underlying set of vertices V has been drawn i.i.d. according to certain probability density p on \square^{d}. If the vertices are known, the hyper-edges in the hyper-graphs are constructed as described above. A connected subset $X \subset$ \square^{d} is called a valid region if it meets following characters:

- For any $x \in X$ we get that $0<p_{\text {min }} \leq p(x) \leq p_{\text {max }}<\infty$ for certain constants $p_{\text {min }}$ and $p_{\text {max }}$.
- X has bottleneck larger than certain positive value h : the collection $\{x \in X$: dist($\mathrm{x}, \partial X)>h / 2\}$ is connected.
- The boundary of X is regular in the following sense. Assume that there exist positive constants α and ε_{0} satisfies that if $\varepsilon<\varepsilon_{0}$, then for all points $x \in \partial X$ meet $\operatorname{vol}\left(B_{\varepsilon}(x) \cap X\right) \geq \alpha \operatorname{vol}\left(B_{\varepsilon}(x)\right)$ (here vol is the Lebesgue volume).

In what follows, we assume that $X:=\operatorname{supp}(p)$ is a valid region, X does not contain any holes and does not become arbitrarily narrow: there exist a homeomorphism $h: \mathrm{X} \rightarrow[0,1]^{d}$ and constant $0<L_{\min }<L_{\max }<\infty$ satisfies that for any $x, y \in X$, we get

$$
L_{\min }\|x-y\| \leq\|h(x)-h(y)\| \leq L_{\max }\|x-y\| .
$$

Let η_{d} be the volume of the unit ball in \square^{d}. Positive constants c_{i} are independent of n and the hyper-graph connectivity parameter (ε or k or h, respectively) but rely on the dimension, the geometry of X, and p.

MAIN RESULTS AND PROOFS

The following result drives the Absolute and relative bounds in any given hyper-graph for arriving and convert times.
Lemma 2. Let H be a finite, connected, undirected, possibly weighted hyper-graph that is not bipartite.
(1) For $i \neq j$

$$
\left|\frac{1}{\operatorname{vol}(H)} H_{i j}-\frac{1}{d_{j}}\right| \leq 2\left(\frac{1}{1-\lambda_{2}}+1\right) \frac{w_{\max }}{d_{\min }^{2}} .
$$

(2) For $i \neq j$

$$
\left|\frac{1}{\operatorname{vol}(H)} C_{i j}-\left(\frac{1}{d_{i}}+\frac{1}{d_{j}}\right)\right| \leq\left(\frac{1}{1-\lambda_{2}}+1\right) \frac{w_{\max }}{d_{\min }^{2}}\left(\frac{1}{d_{i}}+\frac{1}{d_{j}}\right) \leq 2\left(\frac{1}{1-\lambda_{2}}+1\right) \frac{w_{\max }}{d_{\min }^{2}} .
$$

Proof of Lemma 2. Let $A=D^{-1 / 2} W D^{-1 / 2}$ and $u_{i}=\frac{e_{i}}{\sqrt{d_{i}}}$. Denote the projectionon the eigenspace of the j-the eigenvalue
λ_{j} of A by P_{j}. we obtain

$$
\begin{gathered}
\left\langle u_{i}, A u_{j}\right\rangle=\frac{w_{i j}}{d_{i} d_{j}} \leq \frac{w_{\max }}{d_{\min }^{2}}, \\
\left\|A u_{i}\right\|^{2}=\sum_{k=1}^{n} \frac{w_{i k}^{2}}{d_{i}^{2} d_{k}} \leq \frac{w_{\max }}{d_{\min } d_{i}^{2}} \sum_{k} w_{i k}=\frac{w_{\max }}{d_{\min }} \frac{1}{d_{i}} \leq \frac{w_{\max }}{d_{\min }^{2}} \\
\left\|A\left(u_{i}-u_{j}\right)\right\|^{2} \leq \frac{w_{\max }}{d_{\min }}\left(\frac{1}{d_{i}}+\frac{1}{d_{j}}\right) \leq \frac{2 w_{\max }}{d_{\min }^{2}} .
\end{gathered}
$$

In terms of $P_{1}\left(u_{i}-u_{j}\right)=0$, we yield following equation for the arriving time

$$
\begin{aligned}
\left|\frac{H_{i j}}{\operatorname{vol}(H)}-\frac{1}{d_{j}}\right| & =\left|\left\langle u_{j}, M\left(u_{j}-u_{i}\right)\right\rangle\right| \leq \frac{1}{1-\lambda_{2}}\left\|A u_{j}\right\| \cdot\left\|A\left(u_{j}-u_{i}\right)\right\|+\left|\left\langle u_{j}, A\left(u_{j}-u_{i}\right)\right\rangle\right| \\
& \leq \frac{1}{1-\lambda_{2}} \frac{w_{\max }}{d_{\min }}\left(\frac{1}{\sqrt{d_{j}}} \sqrt{\left.\frac{1}{d_{i}}+\frac{1}{d_{j}}\right)+\frac{w_{i j}}{d_{i} d_{j}}+\frac{w_{i j}}{d_{j}^{2}} \leq \frac{w_{\max }}{d_{\min }^{2}}\left(\frac{1}{1-\lambda_{2}}+1\right) .} .\right.
\end{aligned}
$$

On the convert time, we deduce

$$
\begin{aligned}
\left|\frac{C_{i j}}{\operatorname{vol}(H)}-\left(\frac{1}{d_{i}}+\frac{1}{d_{j}}\right)\right| & \left|\left|\left\langle u_{i}-u_{j}, M\left(u_{i}-u_{j}\right)\right\rangle\right| \leq \frac{1}{1-\lambda_{2}}\left\|A\left(u_{i}-u_{j}\right)\right\|^{2}+\left|\left\langle u_{i}-u_{j}, A\left(u_{i}-u_{j}\right)\right\rangle\right|\right. \\
& \leq \frac{w_{\max }}{d_{\min }}\left(\frac{1}{1-\lambda_{2}}+2\right)\left(\frac{1}{d_{i}}+\frac{1}{d_{j}}\right) .
\end{aligned}
$$

Now, we discuss some classes of random geometric hyper-graphs by view of Lemma 2. Theorem 1 obtains the spectral gap of the ε-hyper-graph and Theorem 2 gets the spectral gap of the $k \mathrm{NN}$-hyper-graph.

Theorem 1. Assume that the general assumptions establish. Then there exist positive constants c_{1}, \ldots, c_{6} such that with probability at least $1-c_{1} n \exp \left(-c_{2} n \varepsilon^{d}\right)-\frac{c_{3} n \exp \left(-c_{4} n \varepsilon^{d}\right)}{\varepsilon^{d}}$,

$$
1-\lambda_{2} \geq c_{5} \varepsilon^{2}, 1-\left|\lambda_{n}\right| \geq \frac{c_{6} \varepsilon^{d+1}}{n}
$$

Furthermore, if $\frac{n \varepsilon^{d}}{\log n} \rightarrow \infty$, then this probability converges to 1 .
Theorem 2. Assume that the general assumptions establish. Then for both the symmetric and the mutual $k N N-h y p e r-$ graph there exist positive constants c_{1}, \ldots, c_{4} such that with probability at least $1-c_{1} n \exp \left(-c_{2} k\right)$,

$$
1-\lambda_{2} \geq c_{3}\left(\frac{k}{n} \frac{2}{d}^{\frac{2}{d}}, 1-\left|\lambda_{n}\right| \geq \frac{c_{4} k^{\frac{2}{d}}}{n^{\frac{d+2}{d}}}\right.
$$

Moreover, if $\frac{k}{\log n} \rightarrow \infty$, then the probability converges to 1 .
Following corollaries describe the Arriving and convert times on ε-hyper-graphs and $k N N$-hyper-graphs, respectively.

Corollary 1. Assume that the general assumptions establish. Let H be an unweighted ε-hyper-graph constructed from the sequence X_{1}, \ldots, X_{n} drawn i.i.d. from the density p. Then there exist positive constants c_{1}, \ldots, c_{5} such that with probability at least $1-c_{1} n \exp \left(-c_{2} n \varepsilon^{d}\right)-\frac{c_{3} n \exp \left(-c_{4} n \varepsilon^{d}\right)}{\varepsilon^{d}}$, for any $i \neq j$, we have

$$
\left|\frac{n \varepsilon^{d}}{d_{j}}-\frac{n \varepsilon^{d}}{\operatorname{vol}(H)} H_{i j}\right| \leq \frac{c_{5}}{n \varepsilon^{d+2}}
$$

Suppose that the density p is continuous and $n \rightarrow \infty, \varepsilon \rightarrow 0$ and $n \varepsilon^{d+2} \rightarrow \infty$, then following fact almost surely

$$
\frac{n \varepsilon^{d}}{\operatorname{vol}(H)} H_{i j} \rightarrow \frac{1}{\eta_{d} p\left(X_{j}\right)}
$$

By $C_{u v}=H_{u v}+H_{v u}$, we can get analogous results for the convert times.
Corollary 2. Assume that the general assumptions establish. Let H be an unweighted $k \mathrm{NN}$-hyper-graph constructed from the sequence X_{1}, \ldots, X_{n} drawn i.i.d. from the density p. Then for both the symmetric and mutual $k N N$-hyper-graph there exist positive constants c_{1}, c_{2}, c_{3} such that with probability at least $1-c_{1} n \exp \left(-c_{2} k\right)$, for any $i \neq j$, we get

$$
\left|\frac{k}{d_{j}}-\frac{k}{\operatorname{vol}(H)} H_{i j}\right| \leq \frac{c_{3} n^{\frac{d}{2}}}{k^{1+\frac{d}{2}}} .
$$

If the density p is continuous and $n \rightarrow \infty, \varepsilon \rightarrow 0$ and $k\left(\frac{k}{n}\right)^{\frac{2}{d}} \rightarrow \infty$, then following fact almost surely

$$
\frac{k}{\operatorname{vol}(H)} H_{i j} \rightarrow 1
$$

By $C_{u v}=H_{u v}+H_{v u}$, we can get analogous results for the convert times.
Now, we discuss the weighted hyper-graphs. The result stated as follows concern fully connected weighted hypergraphs.

Theorem 3. Consider a given fully connected weighted hyper-graph with weight matrix \boldsymbol{W}. Let $w_{\min }$ and $w_{\max }$ be the upper and lower bound of entries of \boldsymbol{W}. Then, for any $i, j \in\{1, \ldots, n\}$ and $i \neq j$, we infer

$$
\left|\frac{n}{\operatorname{vol}(H)} H_{i j}-\frac{n}{d_{j}}\right| \leq 4 n \frac{w_{\max }}{w_{\min }} \frac{w_{\max }}{d_{\min }^{2}} \leq \frac{w_{\max }^{2}}{w_{\min }^{3}} \frac{4}{n}
$$

Proof of Theorem 3. By the hyper-graph learning tricks, we get the following facts:

- For any row-stochastic matrix P,

$$
\lambda_{2} \leq \frac{1}{2} \max _{i, j} \sum_{k=1}^{n}\left|\frac{w_{i k}}{d_{i}}-\frac{w_{j k}}{d_{j}}\right| \leq 1-n \min _{i, j} \frac{w_{i j}}{d_{i}} \leq 1-\frac{w_{\min }}{w_{\max }} .
$$

- Let H be a weighted hyper-graph with hyper-edge weights $0<w_{\min } \leq w_{i j} \leq w_{\max }$ and $\lambda_{2, \text { weighted }}$ be its second eigenvalue. Consider the corresponding unweighted hyper-graph where the weights of all hyper-edge are 1 , and denote its second eigen value by $\lambda_{2, \text { unweighted }}$. Then, we yield

$$
\left(1-\lambda_{2, \text { unweighted }}\right) \frac{w_{\min }}{w_{\max }} \leq\left(1-\lambda_{2, \text { unweighted }}\right) \leq\left(1-\lambda_{2, \text { unweighted }}\right) \frac{w_{\max }}{w_{\min }}
$$

Then, the result follows directly from above facts and Lemma 2.
The next theorem discusses the case of Gaussian similarity hyper-graphs with adapted bandwidth.
Theorem 4. Let $X \subset \square^{d}$ be a compact set and p be a continuous, strictly positive density on X. Let H be a fully connected, weighted similarity hyper-graph constructed from the points X_{1}, \ldots, X_{n} drawn i.i.d. from density p. Its weight function is Gaussian similarity function: $k_{\sigma}(x, y)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{d}{2}}} \exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right)$. Suppose the density p is continuous
and $n \rightarrow \infty, \sigma \rightarrow 0$ and $\frac{n \sigma^{d+2}}{\log n} \rightarrow \infty$, then following fact almost surely

$$
\frac{n}{\operatorname{vol}(H)} C_{i j} \rightarrow \frac{1}{p\left(X_{i}\right)}+\frac{1}{p\left(X_{j}\right)}
$$

Proof of Theorem 4. Note that

$$
\left|n R_{i j}-\frac{1}{p\left(X_{i}\right)}-\frac{1}{p\left(X_{j}\right)}\right| \leq\left|n R_{i j}-\frac{n}{d_{i}}-\frac{n}{d_{j}}\right|+\left|\frac{n}{d_{i}}+\frac{n}{d_{j}}-\frac{1}{p\left(X_{i}\right)}-\frac{1}{p\left(X_{j}\right)}\right|
$$

By the given assumption, the second term on the right hand side converges to 0 .
Let $Q_{i j}=\frac{1}{d_{i}-w_{i j}}+\frac{1}{d_{j}-w_{i j}}$, then we have $R_{i j} \geq \frac{Q_{i j}}{1+w_{i j} Q_{i j}}$. By virtue of the given conditions, for any two given points X_{i} and X_{j} the Gaussian hyper-edge weight $w_{i j}$ converges to 0 as σ tend to 0 . Hence, we get

$$
n\left(R_{i j}-\frac{1}{d_{i}}-\frac{1}{d_{j}}\right) \geq n\left(\frac{Q_{i j}}{1+w_{i j} Q_{i j}}-\frac{1}{d_{i}}-\frac{1}{d_{j}}\right) \rightarrow 0 \text { a.s. }
$$

Let H^{ε} be the ε-truncated Gauss hyper-graph with hyper-edge weights

$$
w_{i j}^{\varepsilon}= \begin{cases}w_{i j} & \text { if }\left\|X_{i}-X_{j}\right\| \leq \varepsilon \\ 0 & \text { else }\end{cases}
$$

Let $d_{i}^{\varepsilon}=\sum_{j=1}^{n} w_{i j}^{\varepsilon}$. Let R^{ε} be the resistance of the ε-truncated Gauss hyper-graph. By $w_{i j}^{\varepsilon} \leq w_{i j}$, we infer $R_{i j} \leq R_{i j}^{\varepsilon}$. Thus, we get

$$
\left.n R_{i j}-\frac{n}{d_{i}}-\frac{n}{d_{j}} \leq\left|n R_{i j}-\left(\frac{n}{d_{i}}+\frac{n}{d_{j}}\right)\right| \leq \underbrace{\left\lvert\, n R_{i j}-\left(\frac{n}{d_{i}^{\varepsilon}}+\frac{n}{d_{j}^{\varepsilon}}\right)\right.}_{I} \right\rvert\,+\underbrace{\left|\left(\frac{n}{d_{i}^{\varepsilon}}+\frac{n}{d_{j}^{\varepsilon}}\right)-\left(\frac{n}{d_{i}}+\frac{n}{d_{j}}\right)\right|}_{I I}
$$

A probabilistic bound for term II can be determined by standard concentration arguments since the degrees in the truncated hyper-graph converge to the ones in the non-truncated hyper-graph.

For bound term I, we assume that that ε meets $\sigma^{2}=w\left(\frac{\varepsilon^{2}}{\log \left(n \varepsilon^{d+2}\right)}\right)$. Let $\lambda^{\varepsilon, \text { weighted }}$ be the eigenvalues of the ε truncated Gauss hyper-graph, and $w_{\min }^{\varepsilon}, w_{\max }^{\varepsilon}$ be its minimal and maximal hyper-edge weights, respectively. Let $H^{\text {" }}$ be a hyper-graph which is the unweighted version of the ε-truncated Gauss hyper-graph H^{ε}. Therefore, $H^{\prime \prime}$ coincides with the standard ε-hyper-graph. Let $\lambda^{\varepsilon, \text { weighted }}$ be its eigenvalues. In view of Lemma 2 and Corollary 1 , we deduce

$$
\left|n R_{i j}-\left(\frac{n}{d_{i}^{\varepsilon}}+\frac{n}{d_{j}^{\varepsilon}}\right)\right| \leq \frac{w_{\max }^{\varepsilon}}{d_{\min }^{\varepsilon}}\left(\frac{1}{1-\lambda_{2}^{\varepsilon, \text { unweighted }}}+2\right)\left(\frac{n}{d_{i}^{\varepsilon}}+\frac{n}{d_{j}^{\varepsilon}}\right) \leq \frac{w_{\max }^{\varepsilon}}{d_{\min }^{\varepsilon}}\left(\frac{w_{\max }^{\varepsilon}}{d_{\min }^{\varepsilon}} \frac{1}{\left.1-\lambda_{2}^{\varepsilon, \text { unweighted }}+2\right)\left(\frac{n}{d_{i}^{\varepsilon}}+\frac{n}{d_{j}^{\varepsilon}}\right)}\right.
$$

It is not hard to verify that the last factor in above inequality converges to a constant:

$$
\left(\frac{n}{d_{i}^{\varepsilon}}+\frac{n}{d_{j}^{\varepsilon}}\right) \rightarrow \frac{1}{p\left(X_{i}\right)}+\frac{1}{p\left(X_{j}\right)}
$$

And, we use the following quantities to deal with the other factors of this inequality:

$$
w_{\min }^{\varepsilon} \geq \frac{1}{\sigma^{d}} \exp \left(-\frac{\varepsilon^{2}}{2 \sigma^{2}}\right), w_{\max }^{\varepsilon} \leq \frac{1}{\sigma^{d}}, d_{\min }^{\varepsilon} \geq n \varepsilon^{d} w_{\min }^{\varepsilon}, 1-\lambda_{2}^{\varepsilon, \text { unweighted }} \geq \varepsilon^{2}
$$

By combining these quantities with above inequality and using $\sigma^{2}=w\left(\frac{\varepsilon^{2}}{\log \left(n \varepsilon^{d+2}\right)}\right)$, we lead to the desired conclusion.

REFERENCES

1. Gao W, Liang L, Zhang C; The research on fractional chromatic number of hypergraph, Journal of Yunnan Normal University (Natural Science Edition), 2009; 29(1): 33-36.
2. Wang YY, Jia ZY, Gao W; Generalization bound analysis for classification algorithm under semi-supervised hypergraph normalization laplacian dimension reduction, Journal of Nantong University (Natural Science Edition), 2013; 12(2): 57-61.
3. Zhu LL, Gao W; Analysis for classification algorithm on hypergraph, Open Cybernetics and Systemics Journal, In press.
4. Zhou D, Huang J, Scholkopf B; Beyond pair-wise classification and clustering using hypergraphs, Canada: University of Waterloo, 2005.
5. Zhou D, Huang J, Scholkopf B; Learning with hypergraphs, clustering, Classification, and Embedding, Proceedings of 20th Annual Conference on Neural Information Processing Systems, 2006, Vancouver / Whistler, Canada: IEEE, 2006; 1601-1608.
6. Liang S, Ji S, Ye J; Hypergraph spectral learning for multi-label classification, Proceeding of the 14th ACM SIGKDD international conference on Know ledge discovery and data mining . Las Vegas, Nevada, USA: ACM, 2008; 668-676.
7. Chen G, Zhang J, Wang F; Efficient multi- label classification with hypergraph regularization, IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009;9: 1658-1665.
