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Abstract: In hyper-networks, arriving time and the convert distance are used to measure the structure of hyper-graphs. 

For two vertices u and v, the arriving time 
uvH  is defined as the expected time for it takes a random walk to travel from 

u to v. The convert distance is a symmetrized version denoted as 
uvC = 

uvH  +
vuH  . In this article, we consider the 

characters of arriving times and convert distances when the number n of vertices in the hyper-networks tends to  . We 

discuss random geometric hyper-graphs, such as  -hyper-graphs, k-NN hyper-graphs and Gaussian similarity hyper-

graphs, and the hyper-graphs with a given expected degree distribution or other special hyper-graphs structures. Several 

results on convergence are determined, and these illustrate the promising application prospects for hyper-networks 

algorithm.  

Keywords: arriving time, convert time, hyper-networks, random hyper-graph, spectral gap. 

INTRODUCTION 

Let H=(V, E) be a fixed an undirected, weighted hyper-graph with n vertices, which express a hyper-networks. The 

convert distance between two vertices u and v is denoted as the expected time it takes the natural random walk from 

vertex u to vertex v and then back to vertex u. It is equivalent to the resistance distance, which interprets the hyper-graph 

as an electrical hyper-network and denotes the distance between vertices u and v as the effective resistance between these 
vertices.  

 

In our paper, we learn the convergence for convert distance when the order of the hyper-networks increases. We 

focus on the special cases such that the random geometric hyper-networks can be expressed as k-nearest neighbor hyper-

graphs,  -hyper-graphs, and Gaussian similarity hyper-graphs. For two vertices u and v, the arriving time 
uvH  is 

defined as the expected time for it takes a random walk to travel from u to v. The convert distance is a symmetrized 

version denoted as uvC = uvH  + vuH  . Let vol(H)=

( )

( )
v V H

d v


  be the volume of the hyper-graph H. The main result in 

this paper to show the fact that in hyper-networks setting, as the number n of vertices tends to  , there exist a scaling 

term c such that the arriving times and convert distances in random geometric hyper-graphs meet 

                                       
1

vol( )

uv

v

H
c

H d
  0,             

1 1
( )

vol( )

uv

u v

C
c

H d d
   0, 

and simultaneously ucd  and vcd converge to positive constants. It reveals that the rescaled convert distance 

approximated by the sum of the inverse rescaled degrees. 

 

The organization of this paper is as follows: the terminologies and notations for this setting are given in Section 2; 

and in Section 3, we present the main results in our paper. 

 

HINTSSETTING AND DEFINETIONS 

Let V={v1,v2,…,vm} be a limited set, E is family of subset of V, i.e., E 2V. Then H=(V,E) is a hyper-graph on V. the 

element of V is called a vertex, the elements of E is called a hyper-edge. Let V  be the order of H, E be the scale of H. 
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e  is basic number of hyper-edge e. r(H)=
j

max je is rank of hyper-edge e, and s(H)= 
j

min je  lower rank of hyper-

edge e. If e =k for each hyper-edge e of E (that is r(H)=s(H)=k), then H is a k-uniform hyper-graph. If k=2, then H is 

just a normal graph. 

 

Hyper-graph as a expansion concept of graph, it applied in many fields of computer science. Several results can 
refer to [1-7]. A hyper-graph H is called a simple hyper-graph or a sperner hyper-graph, if any two hyper-edges are not 

contained with each other. Let 
'H =(V,

'E ) is a hyper-graph on V, if 
'E E, then 

'H  is a part-hyper-graph of H. For S

V, H[S]={eE:e S} is called a sub-hyper-graph of H induced by S. 

 

Hyper-graph H can be represented by graph by using the set of vertices to represent the elements of V. If je =2, 

using a continuous curve which attach to the elements of ej to representing ej; If  je =1, using a loop which contain ej to 

represent ej; If je  3, using a simple close curve which contains all the elements of ej to represent ej. 

 

In this paper, we assume H is a weighted hyper-graph, each edge given a wight w(e). The degree of vertex vj in 

hyper-graph H is denoted as           

( )jd H = ( ) ( , )
e E

w e h v e


 ,  

where  

( , )h v e =
1,

0,

if v e

if v e





. 

Let ( )e = ( , )
v V

h v e


 . Then, the normalized laplacian L(H)
m m  on hyper-graph H is defined by： 

( )ijL H = { , }

1
( )

( )

( )

i j e

j

w e i j
e

d H




  





ot her wi se

. 

Let mind  and maxd be the minimal and maximal degrees, respectively. Let D be a diagonal matrix with diagonal entries 

id . The unnormalized hyper-graph Laplacian is denoted as L= D-W, and the normalized one as symL = 
1/2 1/2D LD 

. 

Consider the natural random walk on hyper-graph H. Its transition matrix is expressed as P=
1D W

. Then,   is an 

eigenvalue of symL  if and only if 1-  is an eigenvalue of P. Set 1= 
1 

2 …  
n  > -1 the eigenvalues of P. The 

spectral gap of P is defined as 21 max{ , }n  .  

 

Let U be the projection on the eigenspace corresponding to eigenvalue 0, then the Moore-Penrose inverse of 

symmetric, non-invertible matrix A is defined as 
†

A  =
1( )A U U  . Reset ei as the i-th unit vector in 

n , then 

convert times can be expressed by virtue of the Moore-Penrose inverse 
†L of the unnormalized hyper-graph Laplacian: 

ijC =
†vol( ) , ( )i j i jH e e L e e  , 

Our first result present the closed form expression for arriving and convert times. 

 

Lemma 1. Let H be a connected, undirected hyper-graph with order n. For i j, we infer 

                                             ijH =
†

ym

1 1 1
vol( ) , ( )j s j i

j j i

H e L e e
d d d

 , 

ijC =
†

ym

1 1 1 1
vol( ) , ( )i j s j i

i j j i

H e e L e e
d d d d

  . 

Proof of Lemma 1. For the arriving time presentation, set u1,… ,un as an orthonormal set of eigenvectors of the matrix 
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1/2 1/2D WD 
 corresponding to the eigenvalues 

1 ,… , 
n . Let uij be the j-th entry of ui. Then, we deduce 

                                                             ijH =

2

2

1
vol( ) ( )

1

n
kj ki kj

k k j i j

u u u
H

d d d




 . 

In terms of the spectral representation of symL , we yield 

ijH =
2

1 1 1 1
vol( ) , ,

1

n

j k j i k

k kj j i

H e u e e u
d d d




 =
†

ym

1 1 1
vol( ) , ( )j s j i

j j i

H e L e e
d d d

 . 

The result for the convert time can be obtained in similar way.                                                                                   

 

Then, we introduce some geometric hyper-graphs. Consider a given set of points X1,…,Xn 
d  for a deterministic 

geometric hyper-graph. These points form the vertex set V in the hyper-graph. In the  -hyper-graph, any two vertices in 

the same hyper-edge satisfies that their Euclidean distance is less than or equal to  . In the undirected symmetric k-

nearest neighbor hyper-graph, two vertices vi to vj in the same hyper-edge if Xi is among the k nearest neighbors of Xj. For 

the undirected mutual k-nearest neighbor hyper-graph, two vertices vi to vj in the same hyper-edge if Xi is among the k 

nearest neighbors of Xj. For a general similarity hyper-graph, we define the weight matrix W with entries wij= k(Xi,Xj). In 

large applications, this weight function is the Gaussian similarity function wij=

2

2
exp( )

i jX X




 , where  > 0 is 

called bandwidth parameter. 

   

   Assume that the underlying set of vertices V has been drawn i.i.d. according to certain probability density p on 
d . If 

the vertices are known, the hyper-edges in the hyper-graphs are constructed as described above. A connected subset X 
d  is called a valid region if it meets following characters: 

  For any xX we get that 0 < 
minp   p(x) 

maxp <   for certain constants
minp  and 

maxp . 

 X has bottleneck larger than certain positive value h: the collection {xX: dist(x, X ) > h/2} is connected. 

 The boundary of X is regular in the following sense. Assume that there exist positive constants   and 
0  satisfies that 

if  <
0 , then for all points x X  meet vol( ( ) )B x X   vol( ( ))B x  (here vol is the Lebesgue volume).  

 

  In what follows, we assume that X := supp(p) is a valid region, X does not contain any holes and does not become 

arbitrarily narrow: there exist a homeomorphism h : X  [0, 1]d and constant 0 < 
minL  < 

maxL  <   satisfies that for 

any x, yX, we get 

                                                  minL x y  ( ) ( )h x h y  maxL x y . 

Let d  be the volume of the unit ball in 
d . Positive constants ci are independent of n and the hyper-graph 

connectivity parameter (  or k or h, respectively) but rely on the dimension, the geometry of X, and p.  

 

 MAIN RESULTS AND PROOFS 

     The following result drives the Absolute and relative bounds in any given hyper-graph for arriving and convert times. 

Lemma 2. Let H be a finite, connected, undirected, possibly weighted hyper-graph that is not bipartite. 

(1) For i j 

1 1

vol( )
ij

j

H
H d

  max

2

2 min

1
2( 1)

1

w

d



. 

(2) For i j 

1 1 1
( )

vol( )
ij

i j

C
H d d

   max

2

2 min

1 1 1
( 1) ( )
1 i j

w

d d d
 


 max

2

2 min

1
2( 1)

1

w

d



. 

 

Proof of Lemma 2. Let A= 
1/2 1/2D WD 

and ui=
i

i

e

d
. Denote the projectionon the eigenspace of the j-the eigenvalue 
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j  of A by Pj. we obtain 

   ,i ju Au =
ij

i j

w

d d
 max

2

min

w

d
, 

2

iAu =

2

2
1

n
ik

k i k

w

d d

  max

2

min

ik

ki

w
w

d d
 = max

min

1

i

w

d d
 max

2

min

w

d
 

2

( )i jA u u  max

min

1 1
( )

i j

w

d d d
  max

2

min

2w

d
. 

In terms of 1( )i jP u u =0, we yield following equation for the arriving time 

1

vol( )

ij

j

H

H d
 = , ( )j j iu M u u 

2

1
( ) , ( )

1
j j i j j iAu A u u u A u u


   


 

 max

2

2 min

1 1 1 1
( )

1

ij ij

i j i j jj

w ww

d d d d d dd
  




min

max

2

2

1
( 1)
1

w

d 



. 

On the convert time, we deduce 

1 1
( )

vol( )

ij

i j

C

H d d
  = , ( )i j i ju u M u u  

2

2

1
( ) , ( )

1
i j i j i jA u u u u A u u


   


 

 max

min 2

1 1 1
( 2)( )
1 i j

w

d d d
 


.                                                                                     

     Now, we discuss some classes of random geometric hyper-graphs by view of Lemma 2. Theorem 1 obtains the  

spectral gap of the  -hyper-graph and Theorem 2 gets the spectral gap of the kNN-hyper-graph. 

 

Theorem 1. Assume that the general assumptions establish. Then there exist positive constants c1,…, c6  such that with 

probability at least 3 4
1 2

exp( )
1 exp( )

d
d

d

c n c n
c n c n







   , 

2

2 51 c   , 

1

61
d

n

c

n






  . 

Furthermore, if  
log

dn

n


  , then this probability converges to 1. 

 

Theorem 2.  Assume that the general assumptions establish. Then for both the symmetric and the mutual kNN-hyper-

graph there exist positive constants c1,…, c4  such that with probability at least 1 21 exp( )c n c k  , 

  

2

2 31 ( )d
k

c
n

  , 

2

4

2
1

d

n d

d

c k

n




  . 

Moreover, if 
log

k

n
  , then the probability converges to 1. 

    Following corollaries describe the Arriving and convert times on  -hyper-graphs and kNN-hyper-graphs, 

respectively. 

 

Corollary 1. Assume that the general assumptions establish. Let H be an unweighted  -hyper-graph constructed from 

the sequence X1,…,Xn drawn i.i.d. from the density p. Then there exist positive constants c1,…, c5 such that with 

probability at least 3 4
1 2

exp( )
1 exp( )

d
d

d

c n c n
c n c n







   , for any i j, we have  
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vol( )

d d

ij

j

n n
H

d H

 
  5

2d

c

n 
. 

Suppose that the density p is continuous and n  ,   0 and 
2dn 
  , then following fact almost surely 

                                                               
vol( )

d

ij

n
H

H




1

( )d jp X
. 

By 
uvC = 

uvH  +
vuH , we can get analogous results for the convert times. 

 

Corollary 2. Assume that the general assumptions establish. Let H be an unweighted kNN-hyper-graph constructed from 

the sequence X1,…,Xn drawn i.i.d. from the density p. Then for both the symmetric and mutual kNN-hyper-graph there 

exist positive constants c1, c2, c3 such that with probability at least
1 21 exp( )c n c k  , for any i j, we get 

                                                                         
vol( )

ij

j

k k
H

d H
 

2
3

1
2

d

d

c n

k


. 

If the density p is continuous and n  ,   0 and 

2

( )d
k

k
n

  , then following fact almost surely 

                                                                              
vol( )

ij

k
H

H
1. 

By 
uvC = 

uvH  +
vuH , we can get analogous results for the convert times. 

      Now, we discuss the weighted hyper-graphs. The result stated as follows concern fully connected weighted hyper-

graphs. 

 

Theorem 3. Consider a given fully connected weighted hyper-graph with weight matrix W. Let 
minw  and 

maxw  be the 

upper and lower bound of entries of W. Then, for any i, j{1,…,n} and i j, we infer 

                                     
vol( )

ij

j

n n
H

H d
  max max

2

min min

4
w w

n
w d


2

max

3

min

4w

w n
. 

 
Proof of Theorem 3. By the hyper-graph learning tricks, we get the following facts: 

  For any row-stochastic matrix P, 

2 
,

1

1
max

2

n
jkik

i j
k i j

ww

d d

 
,

1 min
ij

i j
i

w
n

d
  min

max

1
w

w
 . 

  Let H be a weighted hyper-graph with hyper-edge weights 0 < minw   ijw 
maxw  and 2,weighted  be its second 

eigenvalue. Consider the corresponding unweighted hyper-graph where the weights of all hyper-edge are 1, and denote 

its second eigen value by 2,unweighted . Then, we yield 

min
2,

max

(1 )unweighted

w

w
  2,(1 )unweighted  max

2,

min

(1 )unweighted

w

w
 . 

Then, the result follows directly from above facts and Lemma 2.                                                                                 

The next theorem discusses the case of Gaussian similarity hyper-graphs with adapted bandwidth.  

 

Theorem 4. Let X
d  be a compact set and p be a continuous, strictly positive density on X. Let H be a fully 

connected, weighted similarity hyper-graph constructed from the points X1,…,Xn drawn i.i.d. from density p. Its weight 

function is Gaussian similarity function: ( , )k x y  =

2

2
2 2

1
exp( )

2
(2 )

d

x y





 . Suppose the density p is continuous 
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and n  ,   0 and 

2

log

dn

n

 

  , then following fact almost surely 

                                                                      
vol( )

ij

n
C

H


1 1

( ) ( )i jp X p X
 . 

Proof of Theorem 4. Note that 

1 1

( ) ( )
ij

i j

nR
p X p X

   ij

i j

n n
nR

d d
  +

1 1

( ) ( )i j i j

n n

d d p X p X
   . 

By the given assumption, the second term on the right hand side converges to 0. 

    Let ijQ =
1 1

i ij j ijd w d w


 
, then we have   ijR 

1

ij

ij ij

Q

w Q
. By virtue of the given conditions, for any two given 

points Xi and Xj the Gaussian hyper-edge weight wij converges to 0 as   tend to 0. Hence, we get 

1 1
( )ij

i j

n R
d d

  
1 1

( )
1

ij

ij ij i j

Q
n

w Q d d
 


0 a.s. 

Let H 
be the  -truncated Gauss hyper-graph with hyper-edge weights 

                                                                        ijw
=

  if 

0     else

ij i jw X X   



. 

Let id 
 =

1

n

ij

j

w



  . Let R
 be the resistance of the  -truncated Gauss hyper-graph. By ijw  ijw , we infer Rij ijR

. 

Thus, we get 

ij

i j

n n
nR

d d
   ( )ij

i j

n n
nR

d d
   ( )ij

i j

I

n n
nR

d d 
 



+ ( ) ( )
i j i j

II

n n n n

d d d d 
  



. 

A probabilistic bound for term II can be determined by standard concentration arguments since the degrees in the 
truncated hyper-graph converge to the ones in the non-truncated hyper-graph. 

 

For bound term I, we assume that that   meets 
2 =

2

2
( )
log( )d

w
n



 
. Let 

,weighted be the eigenvalues of the  -

truncated Gauss hyper-graph, and minw
, maxw

 be its minimal and maximal hyper-edge weights, respectively. Let ''H  

be a hyper-graph which is the unweighted version of the  -truncated Gauss hyper-graph H 
. Therefore, ''H  coincides 

with the standard  -hyper-graph. Let 
,weighted  be its eigenvalues. In view of Lemma 2 and Corollary 1, we deduce 

( )ij

i j

n n
nR

d d 
   max

,unweighted

min 2

1
( 2)( )
1 i j

w n n

d d d



   
 


 max max

,unweighted

min min 2

1
( 2)( )

1 i j

w w n n

d d d d

 

    
 


. 

It is not hard to verify that the last factor in above inequality converges to a constant: 

                                                                   ( )
i j

n n

d d 
 

1 1

( ) ( )i jp X p X
 . 

And, we use the following quantities to deal with the other factors of this inequality: 

                  minw 
2

2

1
exp( )

2d



 
 , maxw 

1
d

, mind   min

dn w , 
,unweighted

21   2 . 

 

By combining these quantities with above inequality and using
2 =

2

2
( )
log( )d

w
n



 
, we lead to the desired conclusion.                                                                                                                                                                           
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