Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2014; 1(2):81-83
ISSN 2393-8056 (Print)
ISSN 2393-8064 (Online)
©Scholars Academic and Scientific Publishers (SAS Publishers)
(An International Publisher for Academic and Scientific Resources)

Integer Points on the Hyperbola $x^{2}-4 x y+y^{2}+16 x=0$

M.A. Gopalan*, S. Mallika, S. Vidhyalakshmi

Department of mathematics, Shrimathi Indira Gandhi College, Trichy.620002, Tamilnadu, India

*Corresponding Author:

M.A. Gopalan

Email: mayilgopalan@gmail.com

Abstract: The binary quadratic equation $x^{2}-4 x y+y^{2}+16 x=0$ representing hyperbola is considered. Different patterns of solutions are obtained. A few relations between the solutions are exhibited.
Keywords: Binary quadratic, Hyperbola, Integer solutions.

INTRODUCTION

There is an unlimited field of research in binary quadratic equations because of their large variety [1-5]. There are some already available literature in the field of binary quadratic equations [6-19].This communication concerns with yet another interesting binary quadratic equation $x^{2}-4 x y+y^{2}+16 x=0$ for determining its infinitely many nonzero integral solutions. Also a few interesting relations between the solutions are presented.

NOTATIONS

Polygonal Number of rank n with size m

$$
t_{m, n}=n\left(1+\frac{(n-1)(m-2)}{2}\right)
$$

Pentagonal pyramidal number of rank n

$$
P_{n}^{5}=\frac{n^{2}(n+1)}{2}
$$

Pronic number of rank n

$$
P r_{n}=n(n+1)
$$

METHOD OF ANALYSIS

The hyperbola under consideration is

$$
\begin{equation*}
x^{2}-4 x y+y^{2}+16 x=0 \tag{1}
\end{equation*}
$$

To start with, it is seen that (1) is satisfied by the following pairs of integers $\quad(8,8),(8,24),(-16,-64),(72,24),(-256,-64)$.
However, we have other choices of solutions satisfying (1) and they are illustrated below:
Treating (1) as a quadratic in x and solving for x , we get

$$
\begin{equation*}
x=(2 y-8) \pm \sqrt{3 y^{2}-32 y+64} \tag{2}
\end{equation*}
$$

Let $\alpha^{2}=3 y^{2}-32 y+64$
and substituting $y=\frac{Y+16}{3}$
in (3), we have $Y^{2}=3 \alpha^{2}+8^{2}$
Consider the Pellian equation

$$
\begin{equation*}
Y^{2}=3 \alpha^{2}+1 \tag{5}
\end{equation*}
$$

whose general solution is given by

$$
\begin{equation*}
\tilde{Y}_{n}=\frac{1}{2}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\alpha}_{n}=\frac{1}{2 \sqrt{3}}\left[(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{n+1}\right] \tag{7}
\end{equation*}
$$

From (4) and (5), we have the general solutions of the equation

$$
\begin{equation*}
y_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right]+\frac{16}{3} \tag{8}
\end{equation*}
$$

Substituting (7) and (8) in (2) and taking the negative sign, the corresponding integer solutions to (1) are given by

$$
\begin{array}{ll}
x_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right]+\frac{8}{3}, & \mathrm{n}=1,3,5, \ldots . \\
y_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right]+\frac{16}{3}, & \mathrm{n}=1,3,5, \ldots .
\end{array}
$$

Some numerical examples are presented below:

n	xn	y_{n}
1	8	24
3	72	264
5	968	3608
7	13448	50184

Also, taking the positive sign in (2), the other set of solutions to (1) is given by

$$
\begin{aligned}
& x_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+2}+(2-\sqrt{3})^{n+2}\right]+\frac{8}{3}, n=1,3,5 \ldots \\
& y_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right]+\frac{16}{3} n=1,3,5 \ldots
\end{aligned}
$$

Properties

* $3 x_{2 n}$ is a square integer
* $\quad x_{n+4}-14 x_{n+2}+x_{n}=-32$
* $y_{n+4}-14 y_{n+2}+y_{n}=-64$

Alternatively, treating (1) as a quadratic in y and solving for y , we get

$$
\begin{equation*}
y=2 x \pm \sqrt{3 x^{2}-16 x} \tag{9}
\end{equation*}
$$

Let $\quad \alpha^{2}=3 x^{2}-16 x$
And substituting $x=\frac{X+8}{3}$
in (9), we have $X^{2}=3 \alpha^{2}+8^{2}$
whose general solution of the pellian equation

$$
\begin{equation*}
X^{2}=3 \alpha^{2}+1 \tag{12}
\end{equation*}
$$

is given by

$$
\begin{align*}
& \tilde{X}_{n}=\frac{1}{2}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right] \tag{13}\\
& \tilde{\alpha}_{n}=\frac{1}{2 \sqrt{3}}\left[(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{n+1}\right] \tag{14}
\end{align*}
$$

From (10) and (12) we have

$$
\begin{equation*}
x_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right]+\frac{8}{3} \tag{15}
\end{equation*}
$$

Substituting (13) and (14) in (9) and taking the positive sign, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right]+\frac{8}{3}, n=0,2,4 \ldots \\
& y_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+2}+(2-\sqrt{3})^{n+2}\right]+\frac{16}{3}, n=0,2,4 \ldots
\end{aligned}
$$

Some numerical examples are presented below:

n	x_{n}	y_{n}
0	8	24
2	72	264
4	968	3608
6	13448	50184

Also, taking the negative sign in (9), the other set of solutions to (1) is given by

$$
\begin{aligned}
& x_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right]+\frac{8}{3}, n=0,2,4 \ldots . \\
& y_{n}=\frac{4}{3}\left[(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}\right]+\frac{16}{3}, n=0,2,4 . .
\end{aligned}
$$

Properties

$\& \quad x_{n+4}-14 x_{n+2}+x_{n}=-32$
$\& \quad y_{n+4}-14 y_{n+2}+y_{n}=-64$

CONCLUSION

As the binary quadratic equations representing hyperbolas are rich in variety, one may consider other forms of hyperbolas and search for their non-trivial distinct integral solutions along with the corresponding properties.

REFERENCES

1. Dickson LE; History of Theory of Numbers. Volume 2, Chelsea Publishing company, New York, 1952.
2. Mordell LJ; Diophantine Equations. Academic Press, London, 1969.
3. Smart NP; the algorithmic Resolutions of Diophantine equations, Cambridge University Press, 1999.
4. Smith DE; History of mathematics. Volume I and II, Dover Publications, New York, 1953.
5. Gopalan MA, Vidhyalakshmi S, Devibala S; On the Diophantine equation $3 x^{2}+x y=14$. Acta Ciencia Indica, 2007; XXXIIIM(2): 645-646.
6. Gopalan MA, Janaki G; Observations on $Y^{2}=3 X^{2}+1$. Acta Ciencia Indica, 2008; XXXIVM(2): 693.
7. Gopalan MA, Vijayalakshmi R; Special Pythagorean triangles generated through the integral solutions of the equation $y^{2}=\left(K^{2}+\mathbf{1}\right) x^{2}+\mathbf{1}$. Antarctica J.Math., 2010; 7(5): 503-507.
8. Gopalan MA, Sivagami B; Observations on the integral solutions of $y^{2}=7 x^{2}+1$. Antartica J Math., 2010; 7(3): 291-296.
9. Gopalan MA, Vijayalakshmi R; Observation on the integral solutions of $y^{2}=5 x^{2}+1$. Impact J Sci Tech., 4(4): 125-129.
10. Gopalan MA, Sangeetha G; A remarkable observation on $y^{2}=10 x^{2}+1$. Impact J Sci Tech., 2010; 4(1): 103106.
11. Gopalan MA, Parvathy G; Integral points on the Hyperbola $x^{2}+4 x y+y^{2}-2 x-10 y+24=0$. Antarctica J.Math., 2010; 7(2): 149-155.
12. Gopalan MA, Palanikumar R; Observations on $y^{2}=12 x^{2}+1$. Antarctica J Math., 2011; 8(2): 149-152.
13. Gopalan MA, Devibala S, Vijayalakshmi R; Integral points on the hyperbola $2 x^{2}-3 y^{2}=5$. American Journal of Applied Mathematics and Mathematical Sciences, 2012; I(1): 1-4.
14. Gopalan MA, Vidhyalakshmi S, Usha Rani TR, Mallika S; Observations on $y^{2}=12 x^{2}-3$. Bessel J Math., 2012; 2(3): 153-158.
15. Gopalan MA, Vidhyalakshmi S, Sumathi G, Lakshmi K; Integral points on the Hyperbola $x^{2}+6 x y+y^{2}+40 x+8 y+40=0$. Bessel J Math., 2012; 2(3): 159-164.
16. Gopalan MA, Geetha K; Observations on the Hyperbola $y^{2}=18 x^{2}+1$. Retell., 2012; 13(1): 81-83.
17. Gopalan MA, Sangeetha G, Somanath M; Integral points on the Hyperbola $(a+2) x^{2}-a y^{2}=4 a(k-1)+2 k^{2}$. Indian Journal of Science, 2012; I(2): 125-126.
18. Gopalan MA, Vidhyalakshmi S, Kavitha A; Observations on the Hyperbola $a x^{2}-(a+1) y^{2}=3 a-1$. Discovery, 2013; 4(10): 22-24.
19. Gopalan MA, MeenaK, Vidhyalakshmi S, Thangam SA, Premalatha E; Integer points on the hyperbola $x^{2}-6 x y+y^{2}+4 x=0$. Sch J Eng Tech., 2014; 2(1): 14-18.
