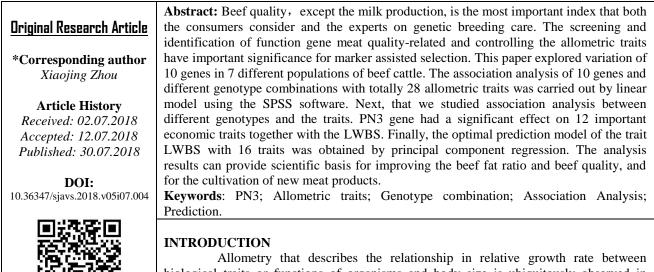
Scholars Journal of Agriculture and Veterinary Sciences (SJAVS)e-ISSN 2348–1854Abbreviated Key Title: Sch. J. Agric. Vet. Sci.p-ISSN 2348–8883©Scholars Academic and Scientific Publishers (SAS Publishers)p-ISSN 2348–8883


A Unit of Scholars Academic and Scientific Society, India www.saspublishers.com

Association of Several Genes and Genotype Combinations with Allometric Traits in Beef Cattle

Jinhua Ye¹, Xiaojing Zhou^{1*}, Chunbo Wei², Ying Zhang², Qiaosheng Zhang¹, Li Yan³, Xiaojuan Yu¹, Yan Xu¹

¹College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China ²College of Animal and Veterinary Medicine, Heilongjiang Bayi Agricultural University Daqing, 163319, People's Republic of China

³College of Information Technology, Heilongjiang Bayi Agricultural University Daqing, 163319, People's Republic of China

Allometry that describes the relationship in relative growth rate between biological traits or functions of organisms and body size is ubiquitously observed in nature. Allometry scaling, generally expressed as a power function, describes how morphological traits of organisms change with body size.

Since the introduction of allometry scaling equation by Huxley[1], a number of attempts have been made by biologists to justify the broad dependence of physiological, morphological, developmental, anatomic, life-historical, ecological as well as evolutional factors on body size[2-8]. Among diverse allometry scaling relationships, the most important and fundamental one is that metabolic rate scales to the three-quarters power of the mass of animals or plants, also known as Kleiber's law[2].

The quarter-power allometric scaling has been regarded as a universal phenomenon in biology, explained from fundamental principles of biology and biophysics. However, even with over a century of interest in the evolution of allometry, essentially nothing is known about the genetic and developmental mechanisms of differentiation in allometric scaling relationships, although developmental processes must have played a central role in maintaining the functional scaling relationships among traits as well as in their evolution.

The following three kinds of allometries are ordinarily used to describe scaling relationships between different organ parts, which are static allometry, ontogenetic allometry and evolutionary allometry[9-11]. The detail explanations for the three terms of allometries are displayed in the following. The relative growth between two different traits, or different organism or different functions can be described by static allometry, which also can describe relative growth between two different organs at a particular growth and developmental stage. The growth trajectory of one trait relative to the other trait in ontogeny can be expressed with ontogenetic allometry. By the stepwise regression analysis of the multiple regression analysis, relative growth of multiple partial body sizes to entire body size is measured by phenotypic joint allometry scaling model.

The genetic analysis of size change with increasing age, i.e., growth, has received considerable attention in quantitative developmental genetic studies, but the genetic architecture of ontogenetic changes in body shape and its associated allometry have been poorly understood partly due to the lack of analytical tools. The past three decades have witnessed a surge of interest in applying geometric morphometric approaches to understand how body shape changes and how such a change is associated with allometry during ontogeny[12-15].

Many studies have been carried out for exploring the association of traits of cattle and the genes[16-21]. The correlation analysis was carried out between each marker genotype and the economic traits of beef cattle by using the least square fitting linear model, and the main effect candidate genes of new beef cattle lines were found^[22, 23]. Multiple comparison showed that AA and AB were significantly higher than bb in 305 day corrected milk yield and milk fat percentage[24]. Through the correlation analysis of different genotypes and allometric traits of cattle, the differences of individual genotypes were obtained[25, 26]. The correlation between AGP at 6 gene and fatty acid composition of Simmental in China was studied in order to provide experimental basis for molecular breeding and further improvement of meat performance of Simmental in China[27]. The effect of gene locus on growth traits of beef cattle was examined by association analysis method, and the candidate genes of beef were found[28-31]. The research progress of GWAS in complex economic traits of important livestock species was reviewed, and the results obtained by GWAS in animal economic traits research in recent years were reviewed, and the research strategies and methods of GWAS were summarized[32]. The latest research achievements of molecular markers and molecular breeding related to beef cattle were summarized, and the research progress of beef cattle growth and related production traits were mainly introduced[33].

It is necessary to explore the internal mechanism and regularity of animal growth and developing, also it can help realize human intervention (including forecasting and control) and regulating the development of target traits.

In this paper, we first explored the variation of 10 genes in 7 different populations of beef cattle. The association analysis of 10 genes and different genotype combinations with 28 traits of cattle was carried out by linear model using the SPSS software. PN3 gene had a significant effect on eight growth traits. PI3_SSCP, PI6_TaqI and PE8 gene had a significant effect on five growth traits. Traits of CW, NMW, HQW and BT were significantly affected by PN3, PI3_SSCP, and PI6_TaqI. Next, we studied association analysis between different genotype and growth traits. Finally, the prediction model of the trait LWBS with 13 traits was obtained by stepwise regression and principal component regression, and the prediction results of principal component regression were better than stepwise regression. The results showed that PN3 gene had a significant effect on the pre-allometric weight, among which individuals of BB genotype had significantly higher pre-allometric weight than those of AA and AB genotypes (P<0.01). The analysis results can provide scientific basis for improving the beef fat ratio and beef quality, and for the cultivation of new meat products.

Data resources-population and phenotype of cattle

The total number of cattle is 189, which is from 7 breeds (Angus, Charolias, Jinnan, Limsion, Luxi, Qinchuan, Simmental). After weaning, the cows were transported to Beijing's JinWeifuRen dairy farm and fed under the same feeding and management system. Growth and development characteristics of all beef cattle were observed until allometric after 16 - 18 months.

There are totally 25 allometric traits are analyzed. According to Institutional Meat Purchase Specifications (IMPS) for, Fresh Beef guidelines, the live weight (y) is measured before, allometric after fasting 24 h; Carcass weight (CCW) is done after allometric and bloodletting by eliminating the hide(HW), head, feet, tail, entrails and gut fill; Net meat weight of beef (NMW) is that of carcass after removing the bones, ligaments and breast; The high quality beef (HQW) includes tenderloin, striploin, ribeye and high rib. The intramuscular fat (IMF) is obtained from the sample of ribeye muscle.

The weight of bones (BW) is that of whole bones besides head (HW), tail (TW) and feet (FW). The red offal (ROW), pizzle (PW), oxtail (OW), white offal (WOW), mesentery and omentum (MOW), leaf fat (LF), kidney (KW) and diaphragm (DW) are collected by removing the surrounding fat and contents. The cowhide (CW) does not include the parts of head and tail. Among that, the red offal (ROW) includes heart, liver and lung; the white offal (WOW) consists of and intestinal. Body stomach length, bust circumference, abdominal circumference, carcass length, carcass chest depth, hind leg width, hind leg length, hind leg circumference, thigh thickness are denoted by BL, BC, AC, CL, CCD, HLW, HLL, HLC, TT, respectively.

After collecting the original data, the fixed effect of phenotypic values was corrected, including allometric year, feeding season, fattening days, admission weight and random effect.

Jinhua Ye et al., Sch. J. Agric. Vet. Sci., Jul 2018; 5(7): 394-404

The correction formula is as follows: $y = \mu + Year_i + Season_i + Fattendays_i + Enterweight_i + e$

Where y is the phynotype value, μ is the population value, *Year_i* is the Allometric year, *Season_j* β breeding season (including three stage, December to April, May to August, September to November), *Fattendays_k* is fattening days, *Enterweigt_m* is enter the farm, *e* is the random effect.

Association analysis between genes and allometric traits of beef cattle.

Significance analysis of each gene and allometric traits of beef cattle

By the significant tests of each gene and important economic traits of beef cattle (See Table 1), we can conclude that 13 traits are significantly affected by the 10 genes. Gene CAST had significant effect on trait PW only. PN3 gene had significant effects on traits CCW, NMW, HQW, IMF, BW, HW, FW, OW, CW, MOW, LF and KW. PI6_TaqI gene had significant effects on traits CCW, NMW, HQW and LF. PI3_SSCP gene had significant effects on traits CCW, NMW, HQW and IMF. PE8 gene had significant effects on traits CCW, NMW, HQW, IMF and LF. MyOD had significant effects on traits CCW, NMW, HQW and LF. MYFi2 gene had significant effects on traits LF only and DGAT1 gene had significant effects on traits CCW only.

	Table-1: Significance test of each ger	ne with allometric traits	(allometric traits) of beef cattle
--	--	---------------------------	------------------------------------

Trait	Significance												
Gene	CCW	NMW	HQW	IMF	BW	HW	FW	PW	OW	CW	MOW	LF	KW
CAST	0.810	0.947	0.956	0.724	0.121	0.282	0.236	0.043	0.545	0.748	0.691	0.501	0.330
Hfabp_2	0.430	0.514	0.580	0.821	0.403	0.378	0.320	0.572	0.121	0.405	0.762	0.366	0.474
PN3	0.034	0.000	0.001	0.016	0.001	0.000	0.000	0.315	0.002	0.001	0.018	0.000	0.025
PI6_TaqI	0.003	0.004	0.042	0.796	0.419	0.719	0.350	0.406	0.762	0.488	0.286	0.014	0.634
PI6_MspI	0.086	0.935	0.935	0.353	0.237	0.419	0.355	0.638	0.453	0.323	0.832	0.202	0.840
PI3_SSCP	0.001	0.003	0.003	0.019	0.900	0.930	0.813	0.845	0.797	0.927	0.492	0.677	0.329
PE8	0.043	0.045	0.045	0.017	0.943	0.964	0.900	0.961	0.993	0.972	0.775	0.000	0.408
MyOD	0.001	0.009	0.009	0.149	0.122	0.076	0.174	0.495	0.803	0.324	0.920	0.000	0.409
MYFi2	0.439	0.521	0.521	0.966	0.981	0.976	0.902	0.186	0.752	0.400	0.811	0.000	0.977
DGAT1	0.022	0.908	0.908	0.493	0.374	0.403	0.373	0.955	0.606	0.860	0.267	0.891	0.202

From Table2, we can see that MyOD, PN3, PI6_MspI and MYFi2 gene had a significant effect on 7 important allometric traits, among which individuals of AA genotype had significantly higher mean than those of BB and AB genotypes (P<0.01). MyOD, PI3_SSCP and MYFi2 gene had a significant effect on 7 important body measurements, also among which individuals of AB genotype had significantly higher mean than those of AA, BB, CD and EE genotypes (P<0.01).

From the analysis, it can be derived that, for PI3_SSCP, PI6_TaqI, dgat1 gene, the population mean value of individuals for intramuscular fat (IMF) trait with AB genotype was significantly lower than that with AA or BB or CD genotype, while for the other 6

traits, the population mean value with AB genotype was significantly higher than that with other genotypes.

For MyOD, PI6_MspI, MYFi2, PN3 gene, the mean value of population for intramuscular fat (IMF) trait with AA genotype was significantly lower than that with BB or AB genotype, while for the other 6 traits the population mean value with AA genotype was significantly higher than that with BB and AB genotype.

For PE8 gene, the mean value of population for IMF trait with BB genotype was significantly lower than that with EE genotype, while for the other 6 traits the mean value of the population with BB genotype individuals was significantly higher than that with EE genotype.

	Table-2: Associ	ation of SNI	Ps with allor	netric traits (7 important	allometri	c traits)	
Gene	Genotype	CCW	NW	HQW	IMF	ROW	HW	WOW
	$\Lambda \Lambda (n-164)$	305.738	238.613	29.593	6.906	12.988	39.846	16.755
PI6_TaqI	AA(n=164)	(57.027)	(44.920)	(5.103)	(3.735)	(2.129)	(8.811)	(3.906)
FI0_1 aq1	$\Delta D(n-12)$	322.002	251.662	31.613	5.004	13.686	42.238	17.177
	AB(n=13)	(54.201)	(40.462)	(4.550)	(3.254)	(2.304)	(8.859)	(3.025)
	$\Lambda \Lambda (n-144)$	321.847	250.897	31.527	5.029	13.666	42.076	17.114
MyOD	AA(n=144)	(54.633)	(39.871)	(4.497)	(2.915)	(2.347)	(8.776)	(3.061)
MyOD	AB(n=17)	309.965	243.075	30.579	6.417	12.924	40.647	16.634
	AD(II-17)	(55.064)	(43.907)	(5.180)	(3.559)	(1.913)	(8.902)	(3.542)
	AA(n=30)	323.140	254.483	31.966	5.126	13.795	42.933	17.448
	AA(II=50)	(55.319)	(46.695)	(5.089)	(2.398)	(2.193)	(9.584)	(2.944)
PN3	AB(n=55)	316.815	249.208	31.370	5.593	13.744	41.400	17.269
FINS	AD(II=33)	(53.440)	(41.691)	(4.733)	(3.405)	(2.129)	(8.604)	(3.452)
BB(DD(02)	322.435	250.366	31.358	4.979	13.469	42.174	16.974
	BB(92)	(55.154)	(38.583)	(4.405)	(2.830)	(2.427)	(8.824)	(2.919)
	$\Lambda \Lambda (23)$	324.174	247.719	30.957	6.503	13.263	39.478	16.425
	AA(23)	(67.644)	(35.223)	(4.138)	(3.343)	(1.714)	(8.107)	(2.417)
PI6_MspI AB(88)	AD(99)	321.477	251.410	31.484	5.260	13.755	42.761	17.264
	AD(00)	(56.857)	(44.093)	(4.913)	(3.665)	(2.264)	(9.509)	(3.424)
	BB(58)	324.579	252.296	31.771	4.684	13.227	42.810	17.270
	DD(38)	(48.130)	(40.294)	(4.681)	(2.445)	(2.579)	(8.317)	(2.690)
	AA(n=118)	304.835	239.121	30.814	5.098	13.091	37.348	16.446
PI3_SSCP	AA(II=118)	(35.291)	(28.934)	(3.319)	(2.609)	(3.346)	(7.088)	(2.894)
F15_55CF	AB(n=23)	324.459	252.727	31.611	5.084	13.758	42.907	17.241
	AD(II=23)	(55.978)	(40.051)	(4.593)	(2.973)	(2.089)	(8.759)	(3.086)
	AA(n=137)	325.234	253.874	31.725	4.654	13.729	43.036	17.359
	AA(II=157)	(56.621)	(41.976)	(4.764)	(1.552)	(2.093)	(8.879)	(3.035)
	AE(n=14)	300.357	234.796	30.185	5.045	13.607	37.714	15.932
PE8	AE(II-14)	(31.767)	(26.634)	(3.000)	(3.268)	(2.072)	(6.281)	(2.682)
FLO	BB(n=14)	328.000	257.757	32.999	4.419	13.768	43.643	17.966
	DD(II-14)	(56.368)	(44.968)	(4.508)	(2.235)	(4.155)	(11.119)	(3.791)
	EE(n=7)	283.857	223.544	28.290	7.707	11.800	36.000	15.020
	EE(II-7)	(31.687)	(25.944)	(3.420)	(3.603)	(1.052)	(4.359)	(2.951)
	AA(n=144)	321.096	250.445	31.497	5.086	13.611	41.986	17.134
MYFi2	AA(II=144)	(53.464)	(38.717)	(4.401)	(2.900)	(2.317)	(8.751)	(3.051)
	AB(17)	303.067	236.855	29.302	7.099	12.854	39.833	16.417
		(58.707)	(46.448)	(5.216)	(3.833)	(2.166)	(9.203)	(3.875)
	AB(n=100)	328.560	256.116	32.018	4.886	13.809	43.640	17.362
	AD(II-100)	(56.206)	(39.667)	(4.515)	(2.927)	(2.109)	(8.708)	(3.077)
dgat1	BB(n=29)	302.931	235.887	29.834	5.492	13.369	38.966	16.319
ugati	DD (II-29)	(42.270)	(32.795)	(3.796)	(3.072)	(1.846)	(7.562)	(2.753)
	CD(n=18)	314.122	246.464	30.989	6.360	13.086	40.500	16.682
	CD(II=18)	(56.257)	(44.956)	(5.317)	(3.462)	(1.980)	(8.659)	(3.442)

Jinhua Ye et al., Sch. J. Agric. Vet. Sci., Jul 2018; 5(7): 394-404

Significance analysis of each gene and body measurements traits of beef cattle

Table 3 shows the significant tests of each gene and body measurements of allometric traits of beef cattle, it can be concluded that 10 traits are significantly affect by the 8 genes. PN3 gene had significant effects

on traits AC, TC, CL, HLC and HLW. PI6_TaqI, PI6_SSCP, PE8, MYFi2 and DGAT1 only affect one trait, which are CD, CC, HLL, HLW and CC, respectively. MyOD had significant effects on traits HLW and TMT.

Jinhua Ye et al.	, Sch. J. Agı	ic. Vet. Sci.	, Jul 2018;	5(7): 394-404
------------------	---------------	---------------	-------------	---------------

Table-3: Significance test of each gene with allometric traits (body measurements) of beef cattle										
Tr		Signific	cance							-
ait	~	~	~	-	~~~	-				
G	С	C	C	L	CD	D	LC	LW	LL	Т
ene P										
N3 P	.572	.021	.028	.034	.363	.649	.007	.000	.068	.172
PI										
6_TaqI	.258	.412	.146	.345	.211	.031	.702	.359	.201	.720
PI										
6_MspI	.260	.513	.093	.637	.014	.066	.483	.180	.685	.887
PI										
3_SSCP	.037	.257	.176	.569	.407	.246	.272	.107	.723	.919
Р										
E8	.954	.881	.920	.763	.582	.388	.719	.630	.015	.916
М										
yOD	.784	.462	.796	.416	.886	.160	.250	.042	.212	.004
M										
YFi2	.936	.907	.831	.619	.586	.832	.865	.040	.638	.739
D		2.5	250		200		250		0.51	- 10
GAT1	.021	.365	.379	.699	.398	.218	.359	.675	.051	.619

Table-4: Association of SNPs with allometric traits (8 important body measurements)

Gene	Genotype	BL	BC	AC	CL	CCD	HLW	HLL	TT
	A A (m. 1(4))	147.583	197.417	216.000	131.385	73.231	42.000	78.769	14.308
DIC Teel	AA(n=164)	(5.125)	(8.163)	(7.699)	(4.501)	(2.587)	(7.649)	(2.555)	(1.548)
PI6_TaqI	AD(n-12)	155.435	206.400	228.832	138.640	75.098	43.104	80.354	14.159
	AB(n=13)	(7.822)	(10.340)	(18.116)	(6.389)	(3.311)	(4.096)	(3.457)	(1.701)
	A A (- 144)	155.606	206.303	229.718	138.549	75.014	43.417	80.458	14.340
MHOD	AA(n=144)	(7.905)	(10.381)	(16.879)	(6.574)	(3.337)	(4.424)	(3.284)	(1.673)
MyOD	AD(n-17)	151.353	200.938	220.176	134.941	74.941	40.235	78.412	12.647
	AB(n=17)	(6.717)	(10.181)	(11.137)	(4.930)	(3.307)	(3.649)	(4.388)	(1.057)
	A A (m. 20)	150.556	201.593	216.481	133.867	74.967	40.567	78.467	13.667
	AA(n=30)	(7.062)	(9.569)	(26.180)	(5.387)	(3.557)	(3.739)	(3.137)	(1.768)
	AD(r, 55)	153.855	203.296	224.382	137.182	74.509	42.291	79.855	14.200
PN3	AB(n=55)	(7.768)	(10.477)	(14.534)	(6.736)	(3.447)	(4.630)	(3.285)	(1.715)
	DD(02)	157.033	208.418	233.791	140.109	75.315	44.043	81.043	14.283
	BB(92)	(7.676)	(10.047)	(14.466)	(5.966)	(3.169)	(4.049)	(3.406)	(1.633)
	AA(n=118)	155.547	206.658	230.564	139.254	75.468	43.610	80.908	14.212
		(8.318)	(11.067)	(17.770)	(6.909)	(3.363)	(4.542)	(3.250)	(1.714)
PI3_SSCP	AB(n=23)	153.091	201.818	217.500	135.870	75.435	41.304	80.739	14.130
		(6.202)	(7.842)	(20.581)	(4.475)	(3.300)	(2.619)	(3.911)	(1.687)
	$\Lambda \Lambda (n-127)$	155.537	206.654	229.985	138.898	74.949	43.401	80.161	14.175
	AA(n=137)	(7.868)	(10.541)	(17.163)	(6.548)	(3.320)	(4.247)	(3.339)	(1.658)
PE8	AE(n=14)	152.538	201.000	215.308	135.214	74.071	40.857	81.214	14.071
FE0	AE(II=14)	(6.790)	(9.899)	(26.199)	(5.767)	(3.222)	(2.598)	(3.620)	(1.817)
	BB(n=14)	157.571	207.071	231.214	139.286	75.571	43.286	81.500	14.286
	DD(II=14)	(8.662)	(10.859)	(15.278)	(7.119)	(2.875)	(3.561)	(3.590)	(2.301)
	AA(n=144)	155.437	206.057	228.937	138.264	74.979	42.965	80.194	14.146
MYFi2	AA(II=144)	(7.976)	(10.203)	(16.805)	(6.465)	(3.354)	(4.111)	(3.493)	(1.681)
IVI I F12	AD(17)	153.167	204.000	228.917	136.667	74.500	45.667	80.667	14.167
	AB(17)	(6.132)	(10.930)	(15.664)	(7.177)	(2.844)	(7.253)	(3.676)	(1.337)
	AB(n=100)	155.180	205.660	228.560	138.510	74.860	43.370	80.480	14.130
	AD(II=100)	(7.728)	(10.348)	(17.654)	(6.499)	(3.207)	(4.651)	(3.374)	(1.745)
dget1	PP(n-20)	158.655	208.621	233.448	140.931	75.483	43.517	81.345	14.276
dgat1	BB(n=29)	(6.789)	(9.548)	(13.876)	(5.688)	(3.491)	(2.959)	(3.548)	(1.579)
	CD(n=10)	152.000	203.938	226.938	135.556	74.833	41.778	79.611	13.833
	CD(n=18)	(8.066)	(11.579)	(14.050)	(5.575)	(3.451)	(4.747)	(3.274)	(1.505)

 $Available \ Online: \ \underline{https://saspublishers.com/journal/sjavs/home}$

Jinhua Ye et al., Sch. J. Agric. Vet. Sci., Jul 2018; 5(7): 394-404

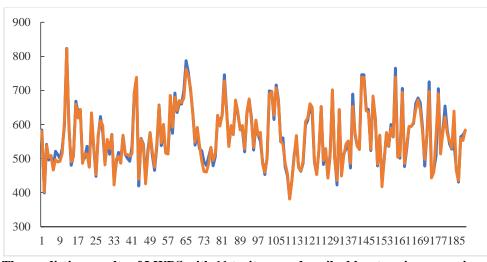
From Table 4, it can be derived that, for PN3, PE8 and dgat1 gene, the population mean value of individuals for 8 important body measurements trait with BB genotype was significantly higher than that with AA or AB or CD genotype.

For MyOD, PI3_SSCP, MYFi2 gene, the mean value of population for 8 important body measurements trait with AA genotype was significantly higher than that with AB genotype.

For PI6_TaqI gene, the mean value of population for 8 important body measurements trait with AB genotype was significantly higher than that with AA genotype.

Association analysis between LWBS and important economic traits

Prediction of stepwise regression analysis


The stepwise regression analysis for LWBS with the important economic traits was carried out as listed in the following.

	Traits	CC	NM		0	HQ			WO	MO		
	TTaits	W	W	HQ	BW	W	TW	OW	W	W	KW	DW
	Variable		<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁
	S	<i>x</i> ₁										
coefficien	-19.026	0.24	0.596	1.19	1.16	1.846	12.17	0.96	3.901	1.477	38.4	5.34
t		9	0.390	5	5 6 1.040	1.040	9	2	5.901	1.4//	6	1
Sig.	0.067	0	0	0.04 9	0	0.006	0.008	0	0	0	0	0.00 1
R square	0.97						F	518.614(p=0.001)				
							value					

Table-5: Results of stepwise regression analysis for LWBS with other traits

The prediction model with the original data was constructed in the following.

 $y = -19.026 + 0.249x_1 + 3.901x_2 + 0.596x_{3+} \\ 1.846x_4 + 5.341x_5 + 1.166x_6 + 1.477x_7 + 0.962x_8 + 38.46x_9 + 12.179x_{10} + 1.195x_{11} + 1.195x_{1$

LWBS was significantly affected by the eleven traits.

Fig-1: The prediction results of LWBS with 11 traits were described by stepwise regression analysis Note: Blue line is the chart of LWBS trait and red one is the chart of stepwise regression prediction of LWBS trait.

Prediction of principal component analysis

Firstly, principal component analysis is carried out on each trait to obtain five principal components F1,

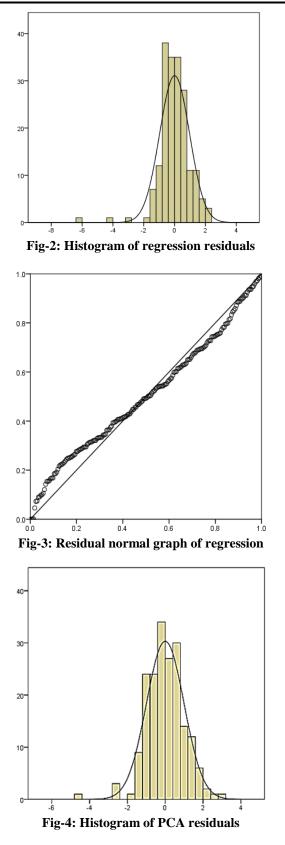
F2, F3, F4 and F5, and then stepwise regression analysis is carried out by taking the LWBS as a dependent variable to obtain a regression equation.

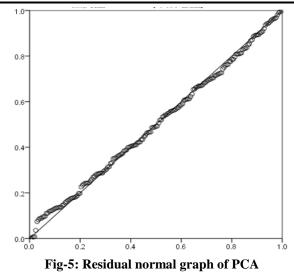
	Table-6: Variance explained by the principal component analysis										
		Original	eigenvalue	load sum of squares Extracted							
component	Total	contribution	Cumulative contribution	Total	contribution	Cumulative contribution					
		rate	rate		rate	rate					
1	8.347	52.169	52.169	8.347	52.169	52.169					
2	1.794	11.209	63.378	1.794	11.209	63.378					
3	1.041	6.508	69.886	1.041	6.508	69.886					
4	0.770	4.815	74.700								
5	0.647	4.041	78.741								
6	0.622	3.887	82.629								
7	0.583	3.644	86.273								
6	0.537	3.359	89.632								
8	0.484	3.025	92.656								
9	0.299	1.869	94.525								
10	0.255	1.595	96.120								
11	0.210	1.311	97.432								
12	0.157	0.9079	98.410								
13	0.106	0.664	99.074								
14	0.092	0.574	99.648								
15	0.056	0.352	100.000								

Jinhua Ye et al., Sch. J. Agric. Vet. Sci., Jul 2018; 5(7): 394-404

Table-7: coefficient derived by the principal component analysis

Traits								
PC	CCW	NMW	HQ	IMF	BW	HQW	FW	ROW
PC1	0.322	0.312	0.285	-0.119	0.316	0.307	0.303	0.204
PC2	0.072	0.118	0.146	0.469	-0.11	-0.066	-0.167	0.055
PC3	0.004	-0.004	0.099	-0.241	0.025	0.034	0.011	-0.183
Traits								
PC	PW	TW	OW	WOW	MOW	LF	KW	DW
PC1	0.227	0.215	0.301	0.231	0.039	-0.019	0.288	0.223
PC2	-0.251	-0.014	-0.141	0.34	0.644	0.203	0.031	0.189
PC3	0.019	0.155	0.028	-0.211	-0.001	0.88	-0.184	0.139


Table-8: Prediction of LWBS trait by principal component analysis


	constant	F1	F2
coefficient	-5.7295E-15	0.332	0.148
Sig.	0	0	0
R square	0.961		
F value	0.000		

Note: F1, F2 and F3 were the four principal components that affect the LWBS trait significantly. The prediction model with the standardized data was constructed in the following:

Comparison between stepwise regression analysis and principal component analysis

In order to compare the advantages and disadvantages of stepwise regression and principal component regression, we draw the normal p-p graph and histogram of regression residuals under the two models.

Note: For the left figure, the horizontal axis denoted the normalized residual and the vertical axis denoted the frequency. For the right figure, the horizontal axis denoted the measured cumulative probability, and the vertical axis denoted the expected cumulative probability. The durbin-Watson statistic of stepwise regression was 1.844 and that of the principal component regression was 1.941.

By the residual normal graph and durbin-Watson statistic of the two models, it can be concluded that the result of principal component regression residual test is better than that of stepwise regression residual test.

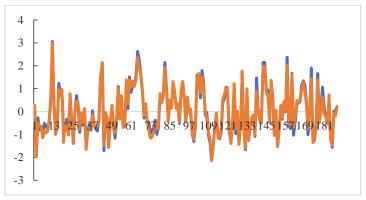


Fig-6: The prediction results of LWBS with 16 traits were described by PCA (standardized data)

Note: Blue line is the chart of LWBS trait and red one is the chart of PCA of LWBS trait.

CONCLUSIONS

The improvement of beef meat quality is always an important topic in beef breeding. It is important to solve the related problems and speed up the progress of beef breeding to find the relevant candidate genes and carry out marker-assisted selection.

In this paper, the single-factor variance analysis and LM model were used to study the association between target traits and genes. Totally 23 of 28 traits are significantly affected by the 10 genes concluded from the significant tests of each gene and important economic traits of beef cattle. It can be concluded that 13 are significantly affected by the 10 genes with the significant tests of each gene and important allometric traits of beef cattle. Also, it can be derived that, for PN3, PE8 and dgat1 gene, the population mean value of individuals for 8 important body measurements trait with BB genotype was significantly higher than that with AA or AB or CD genotype. For MyOD, PI3_SSCP, MYFi2 gene, the mean value of population for 8 important body measurements trait with AA genotype was significantly higher than that with AB genotype. For PI6_TaqI gene, the mean value of the population for 8 important body measurements trait with AB genotype was significantly higher than that with AB genotype was significantly higher than that with AB genotype was significantly higher than that with AB genotype.

We adopt the stepwise regression analysis for LWBS with the important economic traits and the

Available Online: https://saspublishers.com/journal/sjavs/home

results demonstrated that LWBS was significantly affected by the eleven traits. Last, comparison between stepwise regression analysis and principal component analysis was studied, and by the residual normal graph and durbin-Watson statistic of the two models, it can be concluded that the result of principal component regression residual test is better than that of stepwise regression residual test.

However, due to the high allometric cost of cattle, the data and meat quality traits analyzed in this study are relatively small, and other meat quality traits need to be analyzed in more varieties and larger populations, and more gene functions and related regulatory mechanisms need be studied in a deeper level at the cellular level.

ACKNOWLEDGEMENT

The preparation of this manuscript is supported by the instructive program of science and technology plan from Daqing City: Analysis on important economic traits for pig based on random forest(No. zd-2017-76) Bayesian mapping method for detecting QTL controlling dynamic traits and a real dataset analysis(No. zd-2016-89), University training project: Hierarchy strategy of animal genome-wide association study- based on stochastic regression model (XZR2017-13).

REFERENCES

- 1. Pantin CF. Problems of Relative Growth. Nature. 1932 May 28;129(3265):775.
- 2. Kleiber M. Body size and metabolism. ENE. 1932;1(9).
- Peters RH, Peters RH. The ecological implications of body size. Cambridge University Press; 1986 Mar 31.
- 4. Calder WA. Size, Function and Life History [M]. Cambridge: Harvard University Press. 1984.
- Enquist BJ, Niklas KJ. Global allocation rules for patterns of biomass partitioning in seed plants. Science. 2002 Feb 22;295(5559):1517-20.
- Wu R, Ma CX, Lou XY, Casella G. Molecular dissection of allometry, ontogeny, and plasticity: a genomic view of developmental biology. AIBS Bulletin. 2003 Nov;53(11):1041-7.
- 7. Wu R, Hou W. A hyperspace model to decipher the genetic architecture of developmental processes: allometry meets ontogeny. Genetics. 2005 Sep 12.
- Li H, Huang Z, Gai J, Wu S, Zeng Y, Li Q, Wu R. A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry. PLoS One. 2007 Nov 28;2(11):e1245.
- Cheverud JM. Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical Anthropology. 1982 Oct;59(2):139-49.
- 10. Klingenberg CP, Zimmermann M. Static, ontogenetic, and evolutionary allometry: a multivariate comparison in nine species of water

striders. The American Naturalist. 1992 Oct 1;140(4):601-20.

- Stern DL, Emlen DJ. The developmental basis for allometry in insects. Development. 1999 Mar 15;126(6):1091-101.
- 12. Reis RE, Zelditch ML, Fink WL. Ontogenetic allometry of body shape in the Neotropical catfish Callichthys (Teleostei: Siluriformes). Copeia. 1998 Feb 3;1998(1):177-82.
- 13. Bookstein FL. Morphometric Tools for Landmark Data: Geometry and Biology [M]. NY: Cambridge University Press, 1991.
- 14. Rohlf FJ. On applications of geometric morphometrics to studies of ontogeny and phylogeny [J]. Syst Biol, 1998, 47: 147–158.
- Zelditch ML, Fink WL. Allometry and developmental integration of body growth in a piranha, Pygocentrus nattereri (Teleostei: Ostariophysi). Journal of Morphology. 1995 Mar;223(3):341-55.
- 16. Zhao C, Zan L, Wang Y, Updike MS, Liu G, Bequette BJ, VI RL, Song J. Functional proteomic and interactome analysis of proteins associated with beef tenderness in Angus cattle. Livestock Science. 2014 Mar 1;161:201-9.
- 17. Wang LJ, Liu XL, Wang HL, He H, Li ZX, Chen L. Expression analysis, single nucleotide polymorphisms and combined genotypes in candidate genes and their associations with growth and carcass traits in Qinchuan cattle. Molecular biology reports. 2013 Mar 1;40(3):2335-46.
- 18. Venhoranta H, Bauersachs S, Taponen J, Lohi H, Taira T, Andersson M, Kind A, Schnieke A, Flisikowski K. Fetal growth restriction caused by MIMT1 deletion alters brain transcriptome in cattle. International Journal of Developmental Neuroscience. 2013 Nov 1;31(7):463-7.
- 19. Cao XK, Zhan ZY, Huang YZ, Lan XY, Lei CZ, Qi XL, Chen H. Variants and haplotypes within MEF2C gene influence stature of chinese native cattle including body dimensions and weight. Livestock Science. 2016 Mar 1;185:106-9.
- Huang YZ, Jing YJ, Sun YJ, Lan XY, Zhang CL, Song EL, Chen H. Exploring genotype–phenotype relationships of the LHX3 gene on growth traits in beef cattle. Gene. 2015 May 1;561(2):219-24.
- 21. Gandolfi G, Pomponio L, Ertbjerg P, Karlsson AH, Costa LN, Lametsch R, Russo V, Davoli R. Investigation on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem calpain activity in muscle and meat quality. Meat Science. 2011 Aug 1;88(4):694-700.
- 22. Jingxian Zhao, Xiaojie Chen, Xue Gao, Shangzhong Xu, Junya Li, Huijiang Gao, Lupei Zhang, Polymorphisms of the GH, CAPN1 and CAST Genes and their Association with Ecnomic Traits in Snow Dragon Black Cattle[J]. Chinese animal husbandry and veterinary medicine, 2014, 41(12): 190-196

Available Online: https://saspublishers.com/journal/sjavs/home

- 23. Jianbin Gao, Linsen Zan, Ning Yang, Yaokun Li, Yifan Huangpu. Polymorphisms of DKK1 Gene and Its Association with Body Measurement and Meat Quality Traits in Qinchuan Cattle[J]. Acta Veterinaria et Zootechnica Sinica. 2013, 44(3):376-386.
- 24. Yuwei Zhan, Zhidong Tan, Shengxian Fu, Linglong Zhao, Haibing Yang, Shenglin Yang. Analisis of the Polymorphisms of DGAT1 Gene and its Association with Molk Production Traits in Guizhou Holstin Cows[J]. China Animal Husbandry & Veterinary Medicine. 2013, 40(12):56-61.
- 25. Yongqiang Yang, Rengang Jiao, Yu Gong, Haiqiang Xie,Yanting Hui. Associations of Polymorphisms of Promoter Region of STAT 3Gene With Growth Traits in Wuchuan Black Cattl[J].Acta Veterinaria et Zootechnica Sinica. 2013, 44(8):1205-1212.
- 26. Yuni1 Yao, Enliang Song, Guifen Liu, Haijian Cheng, Wei You, Xiaomu Liu. Correlation between Polymorphisms of SIRT1 Gene and Carcass Traits in Beef Cattle[J]. ChineseJournal of Animal Science. 2015, 51(1):15-19.
- 27. Xiaojuan Long, Xibi Fang, Ping Jiang, Hang Xiao, Cunyan Lu. Correlation analisis between the polymorphism of AGPAT6 gene exons and intramuscular fatty acid content in Chinese acid content in Chinese Simmental cattle[J]. Chin J Vet Sci Mar. 2016, 36(3) 527-538.
- Xiuxiang Wu, Zhangping Yang, Yongjiang Mao, Xiukui Shi, Bizhi Huang. Genetic distribution of GHR gene and its association with carcass traits in Chiness Simmental cattle[J]. Journal of Yangzhou Universiy (Agricultural and Life Scinece Edition). 2015, 36(4): 31-34.
- 29. Haibin YU, Hang Xiao, Tian Wei, Yaolu Zhao, Xianzhong Yu, Lupei Zhang, Zhihui ZZhao. Polymorphisms of GPAM gene oxonand their assocoation with economical traits and fatty acid composition in cattle[J].Chin J Vet Sci. 2015, 35(4): 649-654.
- 30. Wangqiang Tian, Chugang Mei, Changzhen Fu, Yaping Xin, Song Zhang, Guoqiang Wang, Linsen Zan.SNPs of bovine PRKAA2 gene and its association with growth and meat quality traits[J]. Joutnal of NortHQWest A&F University (Nat.Sci.Ed.). 2016, 44(7): 1-15.
- Gui LS, Zan LS, Wang HB, Wang H. Effects of sin-gle and combined genotypes of SIRT1 and SIRT2 genes on meat quality traits in Qinehuan cattle. Acta Veterinaria et Zootechnica Sinica. 2015;46(10):11741-749.
- 32. Xian Qiao, Lei Zhang, Xiaokai Li, Yixing Fan, Yuhao Ma. Progress of Genome-wide Association Analysis on Impoetant Economic Traits of Livestock and Poultry[J]. Acta Ecologiae Animalis Domstici Oct. 2017, 38(10):1-9.
- 33. Guo H, Lv Y, Chen J, Li G. Receat progress and trend of molecular breeding in beef cattle. Journal

Available Online: https://saspublishers.com/journal/sjavs/home

of Agricultural Science and Technology (Beijing). 2014;16(1):24-31.