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Abstract: This paper aimed to analyze seasonal time series data on monthly water production in the Gaza Strip during 
the period between 2006 and 2012 using the Box-Jenkins methodology. A model was proposed that could forecast future 

monthly water production in the Gaza Strip, one of the mostly densely populated areas with one of the highest natural 

growth rates in the world and very limited water resources. The increasing demand for domestic water consumption 
requires Palestinian officials and international donors to take suitable measures to conserve or allocate water supplies. A 

model was found that best represented the time series data according to different criteria; the Box-Ljung test identified a 

seasonal model of lag 12 (SARIMA (1 , 1 , 1) × (1, 1 , 1)12). Monthly water production in Gaza Strip was forecast for the 

period from January 2013 to December 2013 using this model. A comparison of these forecasts with observed values 

over this time period indicated that the model was highly accurate.  

Keywords: Box-Jenkins methodology, Seasonal models, Forecasting, Box-Ljung test, Augmented Dickey-Fuller test, 

Kwiatkowski-Phillips-Schmidt-Shin test. 

INTRODUCTION 

Gaza City is one the most densely populated cities in the world. One of the biggest concerns for planners in 

terms of social and economic policies in Gaza city is to provide water to the population for the coming year. Water 

scarcity in the Gaza Strip means that planners need to decide how best to fill the gap between supply and demand. This 

requires building a good seasonal model that is able to forecast future monthly water production. The most prominent of 

these models is the Seasonal Autoregressive Integrated Moving Average (SARIMA), as proposed by Box and Jenkins 
[1]. The effect of seasonal fluctuations and changing trends in domestic use mean that establishing a seasonal model 

based on monthly time series data can be rather complex. In this study, we aimed to use the Box-Jenkins approach to 

establish a reliable seasonal time series model that can be used for forecasting future monthly water production for 

domestic use in Gaza city.  

 

A time series is as an ordered sequence of observations taken at equally spaced intervals. It is said to be 

stationary if the joint distribution of 𝑋𝑡1, 𝑋𝑡2, … , 𝑋𝑡𝑛 is the same as the joint distribution of 𝑋𝑡1+𝑇, 𝑋𝑡2+𝑇, …, 𝑋𝑡𝑛+𝑇 for all 

values of  . In other words, shifting the time origin by an amount   has no effect on the joint distribution, which must 

therefore depend only on the intervals between 𝑡1, 𝑡2, …, 𝑡𝑛  [2]. Stationarity can be assessed using a run sequence plot. 

The run sequence plot should have a constant location and scale. This can often be detected from an autocorrelation plot 

as it indicates very slow decay. The first step in developing a Box-Jenkins model is to determine whether the time series 

is stationary and whether there is any significant seasonality that needs to be modeled. 

 

Important stages in the Box-Jenkins methodology include a diagnostic check of the residuals and tests of the 

model’s adequacy. This is commonly done in ARIMA modeling by tentatively fitting more than one model to the data, 

estimating the parameters for each model, and performing a diagnostic check to test the validity of each model. The 
model which best fits the data, according to various statistical tests, is then selected for forecasting. In particular, a study 

of the residual series obtained after fitting the model to the data is needed to see if any pattern remains unaccounted for. 

The autocorrelation function (ACF) and the partial autocorrelation function (PACF) plots of the residual series help in 

detecting any unaccounted patterns[3,4]. The residuals should ideally be just random noise (white noise) with zero mean 

and constant variance. Some statistical tests for lack of fit may be used to test for the randomness of the residuals. 

 

In this study, past data on monthly water production for domestic use in Gaza city was obtained from the 

Coastal Municipality Water Utility (CMWU) for the period from January 2006 to December 2012. An optimal model 
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that best fitted monthly water production values for this period was identified. We compared the accuracy of different 

models using different criteria, such as AIC, BIC, MSE, RMSE, MAPE and MAE, as well as the Box-Ljung test. The 

final goal was to accurately forecast future monthly water production in Gaza city using a seasonal time series model to 

help planners to meet the future needs of the population. 

 

SEASONAL TIME SERIES MODELS 

The term “seasonal time series” is used to refer to the similar patterns that appear in a time series in 

corresponding months over successive years. These trends are usually due to recurring events which may take place 
annually or quarterly. By plotting the series against time checks for seasonal changes it is possible to reveal non-

stationarity in the data. Seasonal models have pronounced regular ACF and PACF patterns with a periodicity equal to the 

order of seasonality. It is also important to note the number of times per year that seasonal variations occur. If the 

seasonality is annual, seasonal variation in ACF spikes denotes heightened patterns of seasonal lags over and above the 

regular non-seasonal variation once per year. If the seasonality is quarterly, there will be prominent ACF spikes four 

times per year. 

 

Seasonal autoregressive models are built using seasonal autoregressive (SAR) parameters that represent 

autoregressive relationships between time series data separated by multiples of the number of periods per season. For 

example, a model with one SAR parameter is written as 

                    
X X

t s t s t
  


                                                                     (1)   

                                                

This model may be expressed as ARIMA(1, 0, 0)s  where s  is  the number  of  periods  per season. The 

parameter is called the SAR parameter with order s. A general seasonal autoregressive model with p SAR parameters is 

written as follows: 

1

p
X X

t is t is t
i

  

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                                                                                (2)       

where X
t s

 is of order s, 
2

X
t s

is of order 2s, and X
t ps

 is of order ps  [5].  

 

The time sequence plot of an ACF or PACF can be used as a primary instrument for identifying seasonal 

autoregressive models. A multiplicative seasonal autoregressive model contains both non-seasonal autoregressive factors. 

A simple example of a seasonal autoregressive model would be one with a regular first order autoregressive term and a 
seasonal term of order 12. Seasonal autoregressive models can also be defined. Consider  

12
x xt tt

  


                                                                                   (3) 

where 1 and t  is independent of , ,....
1 2

x x
t t 

. It is obvious that 1  ensures stationarity. Thus, it is easy to 

argue that E(Xt) = 0. Multiplying equation (3) by Xt-k, taking expectations and dividing by 0 , where k  is the 

autocorrelation function at lag k, yields: 

                                    1
12

for k
k k

  


                                                               (4)  

It is clear that 

 

 

so more generally,    
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Furthermore, setting k = 1 

and then k = 11 in Equation (4) and using 
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 This implies that ρ
1 = ρ

11 = 0. Similarly, it can be shown that ρ
k = 0, except at the seasonal lags 12, 24, 36, 

etc. At these lags, the autocorrelation function decays exponentially like an AR(1) model. 

Generally, a seasonal AR(p) model with s seasonal periods is given as: 

...
1 2 2

x x x xpt t s t ps tt s
        

                                                    (5) 

 
With a seasonal characteristic polynomial 

 

2
( ) 1 ...

1 2
pss s

x x x xp                                                                               (6) 

t  is required to be independent of Xt-1, Xt-2,… and, for stationarity, the roots of Φ(x) = 0 should be greater than 1 in 

absolute value [6].  

 

The Seasonal Moving  Average  (SMA) model with Q parameters is given  by 

1

Q
X e eis t is tt

i
  


                                                                            (7) 

 

For  0,  0, 1
4

 ARIMA , the model is a quarterly seasonal moving average of order one, which means that it 

has one seasonal moving average parameter. An MA model with one seasonal moving average parameter is written as 

[7]: 

 
X e est t s t                                                                                             (8) 

 

MODEL ACCURACY  

Two methods commonly used to assess the accuracy of predictive models are the mean absolute deviation 

(MAD) and the mean squared error (MSE)[8]. Other methods include the mean absolute percentage error (MAPE), mean 

absolute error (MAE), and the root mean square error (RMSE). 

 

Mean Absolute Deviation (MAD) 

The median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of 

quantitative data. This term can also refer to the population parameter that is estimated by the MAD calculated from a 

sample. For a univariate data set X1, X2, ..., Xn, the MAD is defined as the median of the absolute deviations from the 

median [9-11].  

1

1

|
1

 

n

t tn
i

t

t

Z Z

MAD e
n n









 


                                                               (9) 

 

Mean Square Error (MSE)  

Mathematically, the mean square error (MSE) is defined by: 

2

1

1 n

t

t

MSE e
n 

                                                                                      (10) 

where Xt is the actual observation for time t, Ft is the forecast value for the same  period, t t te X F   is the 

error term, and n is the number of forecasting values  [5,12].  

 

Mean Absolute Percentage Error (MAPE) 

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a 

measure of accuracy of a method for constructing fitted time series values. It usually expresses accuracy as a percentage 

and is defined by the formula:  

1

1

X Fn t t
M

tn X
t





                                                                                 (11) 

The difference between At and Ft is divided by the actual value At. The absolute value in this calculation is 

summed for every fitted or forecasted point in time and divided by the number of fitted points n. Multiplying by 100 

makes it a percentage error[13].   
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Mean Absolute Error (MAE)  

The mean absolute error (MAE) is defined mathematically by: 

1

1
 

n

t

t

MAE e
n 

                                                                                      (12) 

where t t te X F   is the error term [5].   

  

 

Root Mean Square Error (RMSE) 

 
The formula for computing RMSE is: 

^
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1
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where 
i

X


 is the predicted value. 

 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

The final model can be selected using a penalty function statistic, such as the Akaike Information Criterion 

(AIC) or the Bayesian Information Criterion (BIC). The AIC and BIC are measures of the goodness of fit of an estimated 
statistical model. Given a data set, several competing models may be ranked according to their AIC or BIC, the best 

being the one having the lowest information criterion value. These information criteria judge a model by how close its 

fitted values tend to be to the true values, in terms of a certain expected value. The criterion value of a model is only 

meant to rank competing models and to tell which is the best model among the given alternatives. The criteria attempt to 

find the model that best explains the data with minimum free  parameters but also includes a penalty that is an increasing 

function of the number of estimated parameters. In general, the AIC and BIC are calculated as:  

2 2 log( ) 2 log

2
2 log( ) log( ) log( ) log( )
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AIC k L OR k n

n
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BIC L k n OR ne

n


  
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 
 
 

                         (14) 

where  

k is the number of parameters in the statistical model, 

L is the maximized value of the likelihood function for the estimated model, 

RSS is the residual sum of squares of the estimated model, 

n is the number of observations or, equivalently, the sample size,  
2

e  is the error variance. 

 

Overall, the model that achieves the lowest values of AIC, BIC, MSE, RMSE, MAPE, and MAE criteria would be the 

most efficient model in terms of these accuracy measures. 

 

 MODEL FORECASTS 

The main goal of building a time series model is to make predictions for  future observations of a given 
phenomenon with minimum errors. Seven features of a good ARIMA model should be considered[14]. First, a good 

model is parsimonious. That is, it should have the smallest possible number of coefficients. Second, a good 

autoregressive (AR) model must be stationary. Third, the moving average (MA) of the model should be invertible. 

Fourth, a good model should have statistically significant estimates of its coefficients (AR and MA). Fifth, the residuals 

should be independent. Sixth, the residuals should be normally distributed. Lastly, the model should give acceptable 

forecasts [15]. 

 

CASE STUDY  

Preliminary Investigation of the Data 

The data on monthly water production used in this study was obtained from the Coastal Municipality Water 

Utility (CMWU) in Gaza city. Water production in wells was regularly measured by cup (cubic meters) over the period 
from 2006 up to 2012. Gaza city contains 71 water wells for domestic consumption. The amount of water that can be 

extracted from wells is constrained by the power of the pumps available and the CMWU's regulations. The monthly data 
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on water production meets all the requirements of a seasonal time series, a plot of which is shown in Fig 1. The figure 

illustrates that the time series is not stationary; it exhibits a general trend and a consistent pattern of short-term 

fluctuations, which suggests that there are seasonal variations in water production. 

 

 
Fig-1:Time series plot of  monthly water production in Gaza city. 

 

 Table 1 shows that the p-value of the augmented Dickey-Fuller (ADF) test was 0.11, which indicates that 

the time series of monthly production of water is not stationary. The table also shows that the p-value to the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was 0.01, confirming that the time series is not stationary [16].   

 

Table-1:Results of augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for 

stationarity of monthly water production in Gaza city.  

P-value t-Statistic Test 

0.11 1.3943 ADF 

0.01 
 

0.0263 
KPSS 

 

The sharp decrease in water production in winter every year shows that there is also a seasonal component that 

makes the time series non-stationary. The seasonal component was also investigated by examining the autocorrelation 

and partial autocorrelation functions as shown in Fig. 2 and Fig. 3. 

 

 
Fig- 2: The autocorrelation function for monthly water production in Gaza city. 
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Fig- 3:The partial autocorrelation function for monthly water production in Gaza city.  

 

The two plots above confirm that the time series is not stationary and the data would need to be transformed to 

make it stationary before carrying further certain analyses. The most suitable transformation for this series is to find the 

first differences, in order to detrend the original series and achieve stability. The first difference series in Fig. 2 exhibits 

seasonal patterns. By estimating the autocorrelation function (ACF) for the first difference series in Fig, 2, we note that 

the autocorrelation coefficients are high at lag 12; therefore, we may conclude that the series has a seasonal component of 
length 12. 

  
Fig-4: Time series plot of first differences for monthly water production in Gaza city.   

 

 
Fig-5: The autocorrelation function of first differences for monthly water production in Gaza city. 
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 To remove the effect of the seasonal component and achieve a stationary series, we calculated the 

differences for the first difference series at lag 12. Figure 6 displays the time series plot of the data after the 

transformation at lag 12, illustrating that the time series is now stationary. To further verify the stationarity of the time 

series, we conducted a unit roots test (augmented Dickey-Fuller, ADF) and a Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) test using the first difference series, the results of which are shown in Table 2. 

 

 
Fig-6:Time series plot for the first difference series at lag 12. 

  

 
Fig-7: Autocorrelation function for the first difference series at lag 12. 

 

 
Fig-8:Partial autocorrelation function for the first difference series at lag 12. 
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Table 2: Results of augmented Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests after taking the 

differences to get rid of the effect of the general trend and seasonal fluctuations. 

   Z   

P-value T-Statistic Test 

0.01 -5.6166 ADF 

0.1 0.6846 KPSS 

 

   

 Table 2 shows that the p-value of the ADF test was 0.01, which is less than the required value of 0.05  , 

indicating that the hypothesis that the transformed time series is stationary is rejected. This demonstrates that the 

transformation successfully changed the stationarity of the data on monthly water production. In addition, the p-value of 

the KPSS test was 0.1, which is greater than the significance level 0.05  . This indicates that the null hypothesis of 

stationarity for the transformed time series is not rejected, confirming that the transformation has caused the time series 

to become stationary. 

 

Model  Identification  

All relevant criteria that were discussed in section 3 were computed to select the best seasonal ARIMA model 

for the data in the water production time series. These criteria were the ACF and PACF, in addition to the AIC, BIC, 

MSE, RMSE, MAPE, and MAE, as well as the Box-Ljung test, In Fig. 7 and Table 2, the ACF starts from the ρ1 value; 

this means that the series is just the AR, as we see that the ACF cuts off after lag 1. We note that the correlation 

coefficient of the seasonal gaps is interrupted after the first seasonal gap, but it is not possible to make a decision about 
the optimal model before looking at all the plots of the autocorrelation function. By examining the partial autocorrelation 

function (Fig. 8 and Table 2), it is clear that the PACF of the stationary series cuts off after time lag 1. Again, we note 

that the partial autocorrelation coefficient of  seasonal gaps is interrupted after the first seasonal gap, but it is still too 

early to make a decision on the optimal model until we have looked at all the plots of the partial autocorrelation function. 

From the autocorrelation and partial autocorrelation coefficients of the series we see that it is necessary to consider the 

seasonal changes when identifying and estimating the model. As such, the best seasonal model was chosen based on the 

lowest values of the AIC, BIC, MSE, RMSE, MAPE, and MAE criteria, as shown in Table 3. 

 

It is shown in Table 3 that the SARIMA(1,1,1)(1,1,1)12 model produced the smallest values for the AIC, BIC, 

MSE, RMSE, MAPE, and MAE criterion. This means that the SARIMA(1,1,1)(1,1,1)12 model is the best of all the 

models analyzed and is suitable for predicting monthly domestic water production in Gaza city. 
 

Table-3: SARIMA model criteria for the monthly water production in Gaza city. 

 

 MAE 

MAPE RMSE MSE BIC AIC SARIMA Models 

277404.0 10.347 366846.2 82434038292 25.879 2090.75 SARIMA(0,1,1)(1,1,1)12 

307831.7 11.562 392729.1 95818917496 26.016 2090.29 SARIMA(1,1,0)(1,1,1)12 

276135.0 10.265 364402.1 90744681401 25.866 2083.56 SARIMA(1,1,1)(0,1,1)12 

283327.9 10.541 378813.7 118366131270 25.944 2085.56 SARIMA(1,1,1)(1,1,0)12 

344618.3 12.981 445290.2 136178174767 26.203 2095.86 SARIMA(0,1,0)(1,1,1)12 

272226.5 10.160 364339.0 81078653662 25.836 2082.56 SARIMA(1,1,1)(1,1,1)12 

274446.2 10.250 365771.0 97017582377 26.000 2094.28 SARIMA(2,1,1)(1,1,1)12 

272598.5 10.161 366791.6 93653117357 26.006 2094.27 SARIMA(1,1,2)(1,1,1)12 

273619.8 10.182 367971.1 81176084961 26.012 2094.28 SARIMA(1,1,1)(2,1,1)12 

273800.7 10.179 368248.1 81595051126 26.014 2094.27 SARIMA(1,1,1)(1,1,2)12 

273887.0 10.234 367942.4 173258435018 26.075 2088.25 SARIMA(2,1,1)(2,1,1)12 

273851.0 10.231 368340.7 108617601582 26.077 2089.22 SARIMA(2,1,1)(1,1,2)12 

278826.5 10.415 375219. 2 112742109970 26.115 2089.29 SARIMA(1,1,2)(1,1,2)12 

275146.4 10.219 370210.3 128396840523 26.088 2090.28 SARIMA(2,1,2)(1,1,1)12 

274413.4 10.207 372885.8 106588142997 26.165 2093.21 SARIMA(2,1,2)(2,1,1)12 

273621. 3 10.178 374810.1 99119309493 26.239 2094.28 SARIMA(2,1,2)(2,1,2)12 

273800.7 10.179 368248. 1 95702398019 26.013 2092.20 SARIMA(1,1,1)(1,1,2)12 

272463.6 10.153 369641.7 96702609971 26.084 2094.22 SARIMA(1,1,1)(2,1,2)12 

273003.1 10.172 369805.3 176472086892 26.149 2093.25 SARIMA(2,1,1)(2,1,2)12 

277743.9 10.407 376716.4 99468092035 26.186 2094.26 SARIMA(1,1,2)(2,1,2)12 
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Parameter Estimation 

 Maximum likelihood was used to estimate the parameters of the SARIMA(1,1,1)(1,1,1)12 model; the results are 

shown in Table 4. The p-values for the coefficients of AR1, SAR12, MA1, and SMA12 are significantly different to zero. 

The Box-Ljung test for the SARIMA(1,1,1)(1,1,1)12 model produced a p-value greater than 0.05  , which supports 

the finding that this model is appropriate.  

 

Table 4: Parameter estimates for the SARIMA(1,1,1)(1,1,1)12 model. 

 

SARIMA(1,1,1)(1,1,1) 12  Model  

 

AIC BIC MSE RMSE        MAPE MAE 

2082.56 25.836 81078653662 364338.998 10.160 272226.510 

Coefficient Estimate T-value P-value 

AR   1 0.0890 -1.68   0. 040 

SAR  12 -0.3536 -2.38   0.020 

MA   1 0.9993 56.60 0.000 

SMA  12 0.8227 6.60 0.000 

 

Box-Ljung test : P-value = 0.706 

 

 

Based on these results, the final model SARIMA(1,1,1)(1,1,1)12 can be expressed as:  

12 12 12(1-0.089 )(1 0.354 )(1- )(1- ) (1-0.9993 )(1-0.823 )             (15)t tB B B B y B B  
 

 

 
The quality of the above model has been assessed, the model diagnostics have been checked, and the results show 

that the SARIMA(1,1,1)(1,1,1)12 model shown above is an adequate model for the data.  

 

Forecasting  

Using the final model, SARIMA (1,1,1) (1,1,1)12, as expressed in Eq. (15), we forecast future quantities of 

monthly water production for domestic use in Gaza city for 12 months in 2013; the last 4 actual values were not included 

in the original series so that they could be compared with the forecasted values. The forecast time series plot for monthly 

water production in Gaza city is shown in Fig. 9. The series of the forecasted values appears to follow the same behavior 

of the original series. All forecasted  values for the year 2013 lie between the upper and lower boundaries of the 95% 

confidence intervals, indicating that the forecasting was accurate. 
 

 
Fig- 9: A plot of time series data for monthly water production in Gaza city with forecast production and 95% 

confidence interval for predicted values. 
 

CONCLUSION 

From the previous discussion, the following conclusions may be drawn:  

1- Statistical tests show that the time series of monthly water production in Gaza city involves a general trend and 

seasonal patterns at a lag of 12 months. The difference transformation at a lag of 1 followed by a lag of 12 was 

used to achieve stability in the series. 

2- The most suitable model for the time series of the monthly water production in Gaza city was found to be the 

seasonal model SARIMA ( 1 , 1 , 1)×( 1 , 1 , 1)12. This model was selected as it had the smallest values for the 
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AIC, BIC, MSE, RMSE, MAPE, and MAE criteria, as well as the Box-Ljung test. The final model can be 

expressed as:  

12 12 12(1-0.089 )(1 0.354 )(1- )(1- ) (1-0.9993 )(1-0.823 )t tB B B B y B B  
 

3- Using the final model, monthly water production in Gaza city was forecast for 12 months in the year 2013. The 

forecast values for 2013 were in keeping with the original series values. Moreover, forecast values for the year 

2013 were all within the upper and lower boundaries of the 95% confidence intervals. The forecast values 

showed an increasing trend for the monthly water production in the city. Overuse of water is likely to be a real 

problem for the city as there will be increasing demand for domestic water in the face of water scarcity. 

Therefore, decision-makers should take suitable measures to tackle the problem of increasing monthly water 

production in Gaza city.   

4- The increasing demand for water production in the coming years in Gaza city is due to the increasing 

population, in addition to the shortage of ground water and pollution of ground water reservoirs. Other sources 

and alternatives for water production, such as building desalination plants for sea water, should be investigated 

in the immediate future. 
  

RECOMMENDATIONS 

1. The model identified here should be used by officials and decision makers in forecasting future water needs in 

the coming months in Gaza city. These predictions should be taken on board so that the problems of future 

water production in the city are not aggravated.  

2. We recommend the use of this forecasting approach. The model can be updated regularly using more up to date 

time series data to improve the model’s performance.  

3. By generalizing the results of this study, similar models can be used to predict water production in other cities 

and comparisons may be drawn. 

4. Other forecasting methods should be examined and so that comparisons may be drawn between the predictions 

made. 
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