Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2014; 1(2):71-73

©Scholars Academic and Scientific Publishers (SAS Publishers)

(An International Publisher for Academic and Scientific Resources)

ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

The exact single traveling wave solutions to the Gardner equation

Chun-yan Wang¹*, Liang Chen², Hai-peng Gu¹

¹Department of Mathematics, Northeast Petroleum University, Daqing 163318, China ²Daqing Oilfield Engineering Co., Ltd, China

*Corresponding Author:

Chun-yan Wang

Email: chunyanmyra@163.com

Abstract: Using the complete discrimination system for polynomial, we give the classification of single traveling wave solutions to the Gardner equation.

Keywords: Gardner equation; single traveling wave solution; complete discrimination system for polynomial PACS: 02.30.Jr; 05.45.Yv; 03.65.Ge .

INTRODUCTION

In the paper, we consider the Gardner equation[1,2],

$$u_{t} = (\beta w - \frac{\beta^{2}}{2}u^{2} + \delta u)u_{x} + w_{y} + \varepsilon^{2}u_{xxx}, \tag{1}$$

where $w_x = v_y$. We will give the classification of single traveling wave solutions to the Gardner equation by complete discrimination system for polynomial method[3,4].

EXACT SOLUTIONS

In order to obtain the exact traveling wave solutions, we take a wave transformation $u=u(\xi)$ and $\xi=k_1x+k_2y+ct$. As $w_x=v_y$, we have $w=\frac{k_2}{k_1}u+G_1$, (G_1 is an integral constant). The Gardner equation is reduced to the following ODE,

$$cu' = \beta k_2 u u' + \beta G_1 k_1 u' - \frac{\beta^2}{2} k_1 u^2 u' + k_1 \delta u u' + \frac{k_2^2}{k_1} u' + \varepsilon^2 k_1^3 u'''.$$
 (2)

Multiplying the both sides of the Eq.(3) by u' and integrating it once, we can have:

$$(u')^2 = a_1 u^4 + a_2 u^3 + a_2 u^2 + a_0, (3)$$

where $a_4 = \frac{\beta^2}{6\varepsilon^2k_1^2}$, $a_3 = -\frac{2(\beta k_2 + \delta k_1)}{3\varepsilon^2k_1^3}$, $a_2 = \frac{2(k_1c - \beta G_1k_1^2 - k_2^2)}{\varepsilon^2k_1^4}$, $a_0 = G_2$, G_2 is an integral constant. The solutions of u can be given from

$$\pm(\xi - \xi_0) = \int \frac{du}{\sqrt{a_4 u^4 + a_3 u^3 + a_2 u^2 + a_0}}.$$
 (4)

In order to solve the Eq.(4), we take the transformation as $y = (a_4)^{\frac{1}{4}}(u + \frac{a_3}{4a_4})$ when $a_4 > 0$, then the Eq.(4) yields

$$\pm (a_4)^{\frac{1}{4}} (\xi - \xi_0) = \frac{dy}{\sqrt{y^4 + py^2 + qy + r}},\tag{5}$$

where $p=\frac{a_2}{\sqrt{a_4}}$, $q=(\frac{a_3^3}{8a_4^2}-\frac{a_2a_3}{2a_4})(a_4)^{-\frac{1}{4}}$, $r=\frac{-3a_3^4}{256a_4^3}+\frac{a_2a_3^2}{16a_4^2}+a_0$. If $a_4<0$, then we take the transformation as $y=(-a_4)^{\frac{1}{4}}(u+\frac{a_3}{4a_4})$, the Eq.(4) becomes

Available Online: http://saspjournals.com/sjpms

$$\pm (a_4)^{\frac{1}{4}} (\xi - \xi_0) = \frac{dy}{\sqrt{-(y^4 + py^2 + qy + r)}},\tag{6}$$

where $p = \frac{-a_2}{\sqrt{-a_4}}$, $q = (-\frac{a_3^3}{8a_4^2} + \frac{a_2a_3}{2a_4})(-a_4)^{-\frac{1}{4}}$, $r = \frac{3a_3^4}{256a_4^3} - \frac{a_2a_3^2}{16a_4^2} - a_0$. To get the solutions to the Eq.(5) and (6), we denote $F(y) = y^4 + py^2 + qy + r$. Its complete discrimination system [5,6] is computed as follows:

 $D_1 = 4, D_2 = -p, D_3 = -2p^3 + 8pr - 9q^2,$ (7)

$$D_4 = -p^3 q^2 + 4p^4 r + 36pq^2 r - 32p^2 r^2 - \frac{27}{4}q^4 + 64r^3,$$
 (8)

$$E_2 = 9p^2 - 32pr. (9)$$

According to the complete discrimination system for polynomial F(w), the classification of the traveling wave solutions of the Gardner equation can be discussed:

Case 1. $D_2 = 0$, $D_3 = 0$ and $D_4 = 0$. Then we have $F(y) = y^4$, here $a_4 > 0$. By Eq.(5), we can give the solutions

$$y = -(a_4)^{-\frac{1}{4}} (\xi - \xi_0)^{-1}. \tag{10}$$

Case 2. $D_2 < 0$, $D_3 = 0$, and $D_4 = 0$. $F(y) = ((y-l)^2 + s^2)^2$, where l, s are real numbers, and s > 0. For $a_4 > 0$, we have

$$y = s \tan((a_4)^{-\frac{1}{4}} (\xi - \xi_0) s) + l.$$
 (11)

Case 3. $D_2 > 0$, $D_3 = 0$, $D_4 = 0$ and $E_2 > 0$. Then we have $F(y) = (y - \alpha)^2 (y - \beta)^2$, where α, β are real numbers, and $\alpha \neq \beta$. For $a_4 > 0$, we have

$$\pm (a_4)^{\frac{1}{4}} (\xi - \xi_0) = \frac{1}{\alpha - \beta} \ln \left| \frac{y - \alpha}{y - \beta} \right|. \tag{12}$$

For $y > \alpha$ or $y < \beta$, by the Eq.(10)we have

$$y = \beta + \frac{\beta - \alpha}{\exp[(a_4)^{-\frac{1}{4}}(\alpha - \beta)(\xi - \xi_0)] - 1},$$
(13)

when $\beta < y < \alpha$, by the Eq.(10)we have

$$y = \beta - \frac{\beta - \alpha}{\exp[(a_4)^{-\frac{1}{4}}(\alpha - \beta)(\xi - \xi_0)] + 1}.$$
 (14)

Case 4. $D_2 > 0$, $D_3 = 0$, $D_4 = 0$ and $E_2 = 0$. Then we have $F(y) = (y - \alpha)^3 (y - \beta)$, where α, β are real numbers, and $\alpha \neq \beta$. When $a_4 > 0$, we have

$$\pm (a_4)^{\frac{1}{4}} (\xi - \xi_0) = \frac{2}{\beta - \alpha} \sqrt{\frac{y - \beta}{y - \alpha}}.$$
 (15)

When $y > \alpha$, $y > \beta$ or $y < \alpha$, $y < \beta$, the solution is

$$y = \alpha + \frac{4(\alpha - \beta)}{(a_4)^{\frac{1}{4}}(\alpha - \beta)^2 (\xi - \xi_0)^2 - 4}.$$
 (16)

For $a_4 < 0$, we have

$$\pm (a_4)^{\frac{1}{4}} (\xi - \xi_0) = \frac{2}{\alpha - \beta} \sqrt{\frac{\beta - y}{y - \alpha}}.$$
 (17)

When $y > \alpha$, $y < \beta$ or $y < \alpha$, $y > \beta$, we can get a solitary solution as

$$y = \alpha - \frac{4(\alpha - \beta)}{(a_4)^{\frac{1}{4}}(\alpha - \beta)^2 (\xi - \xi_0)^2 + 4}.$$
 (18)

Case 5. $D_2D_3 < 0$, and $D_4 = 0$. $F(y) = (y - \alpha)((y - l)^2 + s^2)$. By Eq.(5), we have

$$y = \frac{\left[e^{\pm(a_4)^{\frac{1}{4}}m(\xi - \xi_0)} - \frac{\alpha - 2l}{m}\right] + \left[2m - \alpha + 2l\right]}{\left[e^{\pm(a_4)^{\frac{1}{4}}m(\xi - \xi_0)} - \frac{\alpha - 2l}{m}\right]^2 - 1},$$
(19)

where $m = \sqrt{(\alpha - l)^2 + s^2}$.

Case 6. For $D_2 > 0$, $D_3 > 0$, $D_4 > 0$ and other cases, the corresponding solutions can be expressed by hyper-elliptic functions or hyper-elliptic integral. We omit them for simplicity.

Acknowledgement

The project is supported by Fund of Young Scholars of Northeast petroleum University of China under Grant No. 2013NQ123.

REFERENCES

- 1. Wazwaz AM; New solitons and kink solutions for the Gardner equation, Communications in Nonlinear Science and Numerical Simulation, 2007; 12(8): 1395-1404.
- 2. Masud MM, Asaduzzaman M, Mamun AA; Dust-ion-acoustic Gardner solitons in a dusty plasma with bi-Maxwellian electrons, Physics of Plasmas, 2012; 19(10):103706.
- 3. Liu CS; The classification of travelling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion, Chin. Phys, 2007; 16: 1832-1837.
- 4. Liu CS; Traveling wave solutions of triple sine-Gordon equation, Chin. phys. Let, 2004; 21:1369.
- 5. Liu CS; Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun, 2010; 181: 317-324.
- 6. Wang CY, Guan J, Wang BY; The classification of single travelling wave solutions to the Camassa–Holm–Degasperis–Procesi equation for some values of the convective, Pramana, 2011; 77(4):759-764.