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INTRODUCTION
In the paper, we consider the Gardner equation[1,2],
2

u, :(,BW—’%UZ+5U)UX+Wy +&%u,, (1)

where W, = v, . We will give the classification of single traveling wave solutions to the Gardner equation by complete
discrimination system for polynomial method[3,4].

EXACT SOLUTIONS

In order to obtain the exact traveling wave solutions, we take a wave transformation U =u(§) and
E=kx+k,y+ct. Asw, =V
reduced to the following ODE,

y o we have W:';—zu +Gl,(G1 is an integral constant). The Gardner equation is
1

2 k2
cu’ = pgk,uu’ + SGku’ —% k,u’u’+k,suu’ + k—zu’ +&7ku", @
1
Multiplying the both sides of the Eq.(3) by U’ and integrating it once, we can have:
)’ =au*+au’ +a,u’ +a,, @3)
R _2(Pky+SKk) _ 2(kc—BGkE-k2) _ . . .
where @, = vl a=-— 3;21(13 =,a, = o .8, =G,, G, is an integral constant. The solutions of U can
be given from
du
s(-£)=] @

\/a4u4 +au’+au’+a,

In order to solve the Eq.(4), we take the transformation as Yy = (a4)% (u +4a734 when @, >0, then the Eq.(4)

yields
1 dy
+a,) (e~ &) = —DL ©
JY' Py +ay+r
3 _ (3 383 % _ 3% 83 R
where =7 q—(g— 7)), = zoat Tt 00+ 1T A <0, then we take the transformation as

y= (—a4)% (u+ %) , the Eq.(4) becomes
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() (E-&) = a , ©
J-(y* + py2+qy+r)

a,a, 3al a,a’

) — a3 -4 — i
where p=-=-, q= (o +E)(a,) F r=s — 1 — 8. To get the solutions to the Eq.(5) and (), we

denote F(y) = y4 + py2 +qy +r . Its complete discrimination system [5,6] is computed as follows:

D, =4,D,=—p,D, =-2p°+8pr-9q°, )
D, =—p°q* +4p’r +36pq2r—32p2r2—27f7q4+64r3, (8)
E, =9p*-32pr. (9)

According to the complete discrimination system for polynomial F(w), the classification of the traveling wave
solutions of the Gardner equation can be discussed:

Casel. D, =0,D,=0 and D, =0. Then we have F(y) = y*, here a, > 0. By Eq.(5), we can give the solutions
y= _(a4)‘z (5 - 50)_1- (10)

Case 2. D, <0, D,=0, and D, =0. F(y)=((y—1)>+s%), where |, s are real numbers, and s >0 . For

a, >0, we have

y =stan((a,) *(£-&)s) +1. (11)

Case 3. D, >0, D,=0, D, =0 and E, >0. Then we have F(y)=(y—a)*(y— /), where a, 3 are real

numbers, and & # . For @, >0, we have

1 1 Y-«
+(a,) (E-&) = I . 2
@) (=& =~ =% (12
For Y >« or Y < 3, by the Eq.(10)we have
=B+ _pe , 13)
exp[(a,) *(a—pB)E—E)]-1
when [ <Y < a, by the Eq.(10)we have
p—a
y= (14)

expl(a,) F(a—B)E—EN+1

Case 4. D, >0, D,=0, D,=0 and E, =0. Then we have F(y)=(y—a)*(y— /). where «, /3 are real
numbers, and & # 3. When a, >0, we have

i<a4>*<cf—éo>=ﬂ—fa zj—a (15)

When Y>a, Y>f or Y<a, Yy <[, the solution is
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PP ) (16)
(@) (@=p)(c—&) -4
For a, <0, we have
; 2 [B-y
Ha ) (E—E) = _ 17
@) =8 = =2 = a7)
When Y>a, y<f or Yy<a, Y> [, wecan get a solitary solution as
VPP () E— (18)
(@) (@=p) (s —&) +4
Case5. D,D; <0,and D, =0. F(y)=(y—a)((y -1)* +5°). By Eq.(5), we have
i(a4)%m(§—§0) _a=2l _
y:[e ~21+[2m a+2l]’ 19)

1
[ei(34)4m(§—§o) _ ozr—nZI]2 -1

where m=./(a—1)*+5° .

Case 6. For D, >0, D, >0, D, >0 and other cases, the corresponding solutions can be expressed by hyper-elliptic
functions or hyper-elliptic integral. We omit them for simplicity.
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