
 

 

Dubey AK et al.; Sch. J. Phys. Math. Stat., 2014; Vol-1; Issue-2(Sep-Nov); pp-99-103 

Available Online:  http://saspjournals.com/sjpms   99 

 

Scholars Journal of Physics, Mathematics and Statistics    ISSN 2393-8056 (Print) 

Sch. J. Phys. Math. Stat. 2014; 1(2):99-103      ISSN 2393-8064 (Online) 

©Scholars Academic and Scientific Publishers (SAS Publishers)       
(An International Publisher for Academic and Scientific Resources) 

 

On Some Common Fixed Point Theorems for Certain Contractive Mappings in 

Cone Metric Spaces 
  A.K. Dubey*

1
, Rohit Verma

2
 

1Department of Mathematics, Bhilai Institute of Technology, Bhilai House,  Durg, Chhattisgarh 491001, India 
2Department of Mathematics, Shri Shankracharya Institute of Engineering and Tech. Durg, Chhattisgarh 491001, India 

 

*Corresponding Author:  
A.K. Dubey 

 Email:                  
   

Abstract: The aim of this paper is to establish the generalization of T-Reich and T-Rhoades type mappings on complete 
cone metric spaces. Huang and Zhang introduce the notion of cone metric spaces. He replaced real number system by 

ordered Banach space and gave the condition in the setting of cone metric spaces. These authors also described the  

convergence of sequences in the cone metric spaces and introduce the corresponding notion of completeness. The study 

of fixed point theorems in such spaces is followed by many researchers. In the present paper this study has been extended 

to analyse the existence and uniqueness of common fixed points of T-Reich contractive mappings defined on a complete 

cone metric space (𝑋, 𝑑) as well as T-Rhoades contractive mappings. These results generalize and extend the existing 

fixed point theorems available in the literature. 
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1. INTRODUCTION AND PRELIMINARIES 

 First, we recall some standard notations and definitions in cone metric spaces with some of their properties (see [2].  

 

Definition 1.1. Let 𝐸 be a real Banach space and 𝑃 a subset of 𝐸. 𝑃 is called a cone  if: 

(i) 𝑃  is closed, non-empty and 𝑃 ≠ {0}, 

(ii) 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 for all 𝑥, 𝑦 ∈ 𝑃 and non-negative real numbers 𝑎, 𝑏, 
(iii) 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 ⇒ 𝑥 = 0 ⇔ 𝑃 ∩  −𝑃 = {0}. 

 

Given a cone 𝑃 ⊂ 𝐸, we define a partial ordering ≤ on 𝐸 with respect to 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃.  We 

shall write 𝑥 ≪ 𝑦 if 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡 𝑃, 𝑖𝑛𝑡 𝑃  denotes the interior of  𝑃.  The cone 𝑃 is called normal if there is a number 

𝐾 > 0 such that for all 𝑥, 𝑦 ∈ 𝐸,  

0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾‖𝑦‖. 

 

The least positive number 𝐾 satisfying the above is called the normal constant of 𝑃. 

 

In the following suppose that E is a Banach space, P is a cone in E with 𝑖𝑛𝑡 𝑃 ≠ ∅ and ≤ is partial ordering with 

respect to P. 

 

Definition 1.2. E. a mapping such that  𝑑: 𝑋 × 𝑋 → 𝐸 a mapping such that   

(i) 0 ≤ 𝑑 𝑥, 𝑦  for all 𝑥, 𝑦 ∈ 𝑋, and 𝑑 𝑥, 𝑦 = 0 if and only if  𝑥 = 𝑦; 

(ii) 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥   for all 𝑥, 𝑦 ∈ 𝑋; 
(iii) 𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

Then 𝑑 is called cone metric on 𝑋 and (𝑋, 𝑑) is called cone metric space [2]. 

 

Example 1.1. Let 𝐸 = 𝑅2 , 𝑃 =   𝑥, 𝑦 ∈ 𝐸: 𝑥, 𝑦 ≥ 0 ⊂ 𝑅2 , 𝑋 = 𝑅 and 𝑑: 𝑋 × 𝑋 → 𝐸  such that  

𝑑 𝑥, 𝑦 =   𝑥 − 𝑦 , 𝑥 − 𝑦   where ≥ 0 is a constant. Then (𝑋, 𝑑) is a cone metric space . 

 

Definition 1.3 [2]. Let  𝑋, 𝑑  be a cone metric space. Let {𝑥𝑛 } be a sequence in  𝑋 and 𝑥 ∈ 𝑋. Then 
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(i) {𝑥𝑛 } converges to 𝑥 if  for every 𝑐 ∈ 𝐸 with 0 ≪ 𝑐 there is an  𝑛0 such that for all 𝑛 ≥ 𝑛0 , 𝑑(𝑥𝑛 , 𝑥) ≪ 𝑐. 

We denote this by 𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑥 or 𝑥𝑛 = 𝑥, (𝑛 → ∞). 

(ii) If for any 𝑐 ∈ 𝐸 with 0 ≪ 𝑐, there is an  𝑛0 such that for all 𝑛 ≥ 𝑛0 , 𝑑 𝑥𝑛 , 𝑥 ≪ 𝑐. Then {𝑥𝑛}  is a Cauchy 

sequence in 𝑋. (𝑋, 𝑑) is called a complete cone metric space, if  Cauchy sequence in 𝑋 is convergent in 𝑋. 

 

Lemma 1.1[2].  Let  𝑋, 𝑑  be a cone metric space, 𝑃 ⊂ 𝐸 a normal cone with normal constant 𝐾 Let {𝑥𝑛 },{𝑦𝑛 } be a 

sequence in  𝑋 and 𝑥, 𝑦 ∈ 𝑋. 
(i)  𝑥𝑛   converges to 𝑥 if  and only if 𝑙𝑖𝑚𝑛→∞𝑑 𝑥𝑛 , 𝑥 = 0; 
(ii) If  𝑥𝑛   converges to 𝑥 and  𝑥𝑛  converges to 𝑦 then 𝑥 = 𝑦.  That is the limit of  𝑥𝑛   is unique. 

(iii) If  𝑥𝑛   converges to 𝑥, then  𝑥𝑛   is Cauchy sequence. 

(iv)  𝑥𝑛   is a Cauchy sequence if for 𝑙𝑖𝑚𝑛→∞𝑑 𝑥𝑛 , 𝑥𝑚  = 0;  
 

if 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 𝑛 → ∞  then 𝑑(𝑥𝑛 , 𝑦𝑛 ) → 𝑑(𝑥, 𝑦). 
 

Definition 1.4 [5]. Let  𝑋, 𝑑  be a cone metric space, 𝑃 a normal cone with normal constant 𝐾 and 𝑇: 𝑋 → 𝑋.  Then  

(i) 𝑇 is said to be continuous if  𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑥  implies that 𝑙𝑖𝑚𝑛→∞𝑇(𝑥𝑛 ) = 𝑇(𝑥), for all {𝑥𝑛 } in 𝑋.   

(ii) 𝑇 is said to be sub-sequentially convergent, if we have for every sequence {𝑦𝑛 } that 𝑇{𝑦𝑛 } is convergent, 

implies {𝑦𝑛 } has a convergent subsequence.  

(iii) 𝑇 is said to be sequentially convergent, if for every sequence {𝑦𝑛 } , 𝑇{𝑦𝑛 } is convergent, and then {𝑦𝑛} also 

is convergent.  

 

Definition 1.5 [4,5]. Let  𝑋, 𝑑  be a cone metric space and 𝑇, 𝑆: 𝑋 → 𝑋 two functions,   

(i) A mapping 𝑆 is said to be T-Reich contraction if there is  𝑎 + 𝑏 + 𝑐 < 1 such that 
 

𝑑 𝑇𝑆𝑥, 𝑇𝑆𝑦 ≤ 𝑎𝑑 𝑇𝑥, 𝑇𝑆𝑥 + 𝑏𝑑 𝑇𝑦, 𝑇𝑆𝑦 + 𝑐𝑑(𝑇𝑥, 𝑇𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎, 𝑏, 𝑐 ≥ 0. 
 

(ii) A mapping 𝑆 is said to be T-Rhoades contraction if there is  𝑎 + 𝑏 + 𝑐 < 1 such that 

 

             𝑑 𝑇𝑆𝑥, 𝑇𝑆𝑦 ≤ 𝑎𝑑 𝑇𝑥, 𝑇𝑆𝑦 + 𝑏𝑑 𝑇𝑦, 𝑇𝑆𝑥 + 𝑐𝑑 𝑇𝑥, 𝑇𝑦  for all 𝑥, 𝑦 ∈ 𝑋 and   𝑎, 𝑏, 𝑐 ≥0. 

 

 2. MAIN RESULTS 

Theorem 2.1. Let  𝑋, 𝑑  be a complete cone metric space, 𝑃 be a normal cone with normal constant 𝐾, in addition let 

𝑇: 𝑋 → 𝑋 be a one to one continuous function and 𝑅, 𝑆: 𝑋 → 𝑋 be a pair of T-Reich contraction. Then  

(1) For every 𝑥0 ∈ 𝑋, 
 

𝑙𝑖𝑚𝑛→∞𝑑 𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑛+2𝑥0 = 0 and 

𝑙𝑖𝑚𝑛→∞𝑑 𝑇𝑆2𝑛+2𝑥0 , 𝑇𝑆2𝑛+3𝑥0 = 0; 
         (2) There is ϑ∈ 𝑋 such that      

𝑙𝑖𝑚𝑛→∞𝑇𝑅2𝑛+1𝑥0 = 𝜗 = 𝑙𝑖𝑚𝑛→∞𝑇𝑆2𝑛+2𝑥0  ;  
 

(3)  If 𝑇 is subsequentially convergent, then {𝑅2𝑛+1𝑥0} and {𝑆2𝑛+2𝑥0} have a convergent subsequences; 

(4) There is unique common fixed point 𝑢 ∈ 𝑋 such that 𝑅𝑢 = 𝑢 = 𝑆𝑢; 
(5) If 𝑇 is a sequentially convergent, then for each 𝑥0 ∈ 𝑋 the iterate sequences {𝑅2𝑛+1𝑥0} and {𝑆2𝑛+2𝑥0} converge 

to 𝑢. 
 

Proof: Let 𝑥0 be any arbitrary point in 𝑋.  We define the iterate sequences {𝑥2𝑛+1} and  𝑥2𝑛+2  by 

𝑥2𝑛+2 = 𝑅𝑥2𝑛+1 = 𝑅2𝑛+1𝑥0 and 

𝑥2𝑛+3 = 𝑆𝑥2𝑛+2 = 𝑆2𝑛+2𝑥0; 
Since 𝑅 and 𝑆 are pair of T-Reich contraction, we have 

𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) = 𝑑(𝑇𝑅𝑥2𝑛 , 𝑇𝑅𝑥2𝑛+1) 

≤ 𝑎𝑑(𝑇𝑥2𝑛 , 𝑇𝑅𝑥2𝑛) + 𝑏𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑅𝑥2𝑛+1) 

+𝑐𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

≤ 𝑎𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) + 𝑏𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) 

+𝑐𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) ≤  
𝑎 + 𝑐

1 − 𝑏
 𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

𝑑(𝑇𝑥2𝑛+2 , 𝑇𝑥2𝑛+3) ≤  
𝑎′ + 𝑐′

1 − 𝑏′
 𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) 

We can conclude, by repeating the same argument, that  
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𝑑(𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑛+2𝑥0) ≤  
𝑎+𝑐

1−𝑏
 

2𝑛+1

𝑑(𝑇𝑥0 , 𝑇𝑅𝑥0)                        (2.1) 

And 𝑑(𝑇𝑆2𝑛+2𝑥0 , 𝑇𝑆2𝑛+3𝑥0) ≤  
𝑎′+𝑐′

1−𝑏
′
 

2𝑛+2

𝑑(𝑇𝑥0 , 𝑇𝑆𝑥0)                 (2.2) 

From (2.1) we have 

‖𝑑(𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑛+2𝑥0)‖ ≤  
𝑎+𝑐

1−𝑏
 

2𝑛+1

𝐾‖𝑑(𝑇𝑥0 , 𝑇𝑅𝑥0)‖    

 

Where 𝐾 is the normal constant of 𝐸. By above inequality we get 

𝑙𝑖𝑚𝑛→∞‖𝑑(𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑛+2𝑥0)‖  = 0                                                 (2.3) 
 

By inequality (2.1), for every 𝑚, 𝑛, ∈ 𝑁 with 𝑚 > 𝑛,  we have  

𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑚+1) ≤ 𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) + − − − + 𝑑(𝑇𝑥2𝑚 , 𝑇𝑥2𝑚+1) 

≤   
𝑎 + 𝑐

1 − 𝑏
 

2𝑛+1

+  − − − − +  
𝑎 + 𝑐

1 − 𝑏
 

2𝑚

 𝑑(𝑇𝑥𝑜 , 𝑇𝑅𝑥0) 

                                       =  
𝑎+𝑐

1−𝑏
 

2𝑛+1

×  
1

1−
𝑎 +𝑐

1−𝑏

𝑑(𝑇𝑥0 , 𝑇𝑅𝑥0)                   

  𝑑(𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑛+2𝑥0) ≤  
𝑎+𝑐

1−𝑏
 

2𝑛+1 1

1−
𝑎+𝑐

1−𝑏

𝑑(𝑇𝑥0 , 𝑇𝑅𝑥0)            (2.4) 

 

From (2.4) we have, 

‖𝑑(𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑚+1𝑥0)‖ ≤  
𝑎 + 𝑐

1 − 𝑏
 

2𝑛+1

×
𝐾

1 −
𝑎 + 𝑐
1 − 𝑏

𝑑(𝑇𝑥0 , 𝑇𝑅𝑥0) 

Where 𝐾  is the normal constant of 𝐸.  Taking limit and by 
𝑎+𝑐

1−𝑏
< 1, we obtain 

𝑙𝑖𝑚𝑛→∞‖𝑑(𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑚+1𝑥0)‖ = 0. 
    

  In this way, we have 

 

𝑙𝑖𝑚𝑛→∞𝑑(𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑚+1𝑥0) = 0, which implies that {𝑇𝑅2𝑛+1𝑥0} is a Cauchy sequence in 𝑋.  Since 𝑋 is a complete 

cone metric space, than there is 𝜗 ∈ 𝑋 such that  

𝑙𝑖𝑚𝑛→∞𝑇𝑅2𝑛+1𝑥0 = 𝜗                                                                             (2.5) 
 

Now, if 𝑇 is subsequentially convergent,  {𝑅2𝑛+1𝑥0} has a convergent subsequence.  So there are 𝑢 ∈ 𝑋 and {𝑥(2𝑛+1)𝑖
} 

such that  

𝑙𝑖𝑚𝑛→∞𝑅
(2𝑛+1)𝑖𝑥0 = 𝑢                                                                            (2.6) 

 

Since T is continuous and by (2.6) we obtain 

𝑙𝑖𝑚𝑛→∞𝑇𝑅(2𝑛+1)𝑖𝑥0 = 𝑇𝑢                                                                      (2.7) 
 

By (2.5) and (2.7) we conclude that  

𝑇𝑢 = 𝜗                                                                                                      (2.8) 
 

On the other hand, 

 𝑑 𝑇𝑅𝑢, 𝑇𝑢 ≤ 𝑑  𝑇𝑅𝑢, 𝑇𝑅 2𝑛+1 𝑖+1 𝑥0  + 𝑑(𝑇𝑅 2𝑛+1 𝑖𝑥0 , 𝑇𝑅 2𝑛+1 𝑖+1𝑥0) 

                                 +𝑑(𝑇𝑅 2𝑛+1 𝑖+1  𝑥0, Tu) 

                    ≤ 𝑎𝑑 𝑇𝑢, 𝑇𝑅𝑢 + 𝑏𝑑(𝑇𝑅 2𝑛+1 𝑖−1𝑥0 , 𝑇𝑅 2𝑛+1 𝑖−1𝑥0) 

+𝑐𝑑 𝑇𝑢, 𝑇𝑅 2𝑛+1 𝑖−1𝑥0 +  
𝑎 + 𝑐

1 − 𝑏
 
 2𝑛+1 𝑖

𝑑 𝑇𝑥0 , 𝑇𝑅𝑥0  

                               +𝑑(𝑇𝑅 2𝑛+1 𝑖+1𝑥0 , 𝑇𝑢) 

Therefore, 

(1 − 𝑎)𝑑 𝑇𝑅𝑢, 𝑇𝑢 ≤ 𝑏𝑑(𝑇𝑅 2𝑛+1 𝑖−1𝑥0 , 𝑇𝑅 2𝑛+1 𝑖−1𝑥0) 

                     +𝑐𝑑(𝑇𝑢, 𝑇𝑅 2𝑛+1 𝑖+1𝑥0) 

                                                                      +  
𝑎+𝑐

1−𝑏
 
 2𝑛+1 𝑖

𝑑 𝑇𝑥0 , 𝑇𝑅𝑥0  

                                                                       +𝑑(𝑇𝑅 2𝑛+1 𝑖+1𝑥0 , 𝑇𝑢) 

𝑑 𝑇𝑅𝑢, 𝑇𝑢 ≤ (
𝑏

1 − 𝑎
)𝑑(𝑇𝑅 2𝑛+1 𝑖−1𝑥0 , 𝑇𝑅 2𝑛+1 𝑖−1𝑥0) 
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        +(
𝑐

1−𝑎
)𝑑(𝑇𝑢, 𝑇𝑅 2𝑛+1 𝑖+1𝑥0) 

                                                                  +(
1

1−𝑎
)  

𝑎+𝑐

1−𝑏
 
 2𝑛+1 𝑖

 𝑑(𝑇𝑥0 , 𝑇𝑅𝑥0) 

 +(
1

1−𝑎
)𝑑(𝑇𝑅 2𝑛+1 𝑖+1 , 𝑇𝑢) 

‖𝑑 𝑇𝑅𝑢, 𝑇𝑢 ‖ ≤
𝑏𝑘

1 − 𝑎
‖𝑑(𝑇𝑅 2𝑛+1 𝑖−1𝑥0 , 𝑇𝑅 2𝑛+1 𝑖−1𝑥0)‖ 

                                                                   +
𝑐

1−𝑎
𝐾‖𝑑(𝑇𝑢, 𝑇𝑅 2𝑛+1 𝑖−1𝑥0)‖ 

                                                                   +(
1

1−𝑎
)  

𝑎+𝑐

1−𝑏
 
 2𝑛+1 𝑖

 𝐾‖𝑑(𝑇𝑥0 , 𝑇𝑅𝑥0)‖ 

                                   +(
1

1−𝑎
)𝐾‖𝑑(𝑇𝑅 2𝑛+1 𝑖+1 , 𝑇𝑢)‖ → 0 as 𝑖 → ∞. 

Where 𝐾 is the normal constant of 𝑋.Hence 𝑑 𝑇𝑅𝑢, 𝑇𝑢 = 0,  which implies that 𝑑 𝑇𝑅𝑢, 𝑇𝑢 = 0, 𝑇𝑅𝑢 = 𝑇𝑢 .  Since 

𝑇 is one to one, we have 𝑅𝑢 = 𝑢.  Hence 𝑅 has a fixed point.  Because 𝑅 is T-Reich contraction, we have 

 

 

If ϑ is another fixed point of R, then from the injectivity of 𝑇, we get 𝑅𝑢 = 𝑅𝜗.  

 

Hence fixed point is unique. Finally, if 𝑇 is sequentially convergent, by replacing (2n+1) for ((2𝑛 + 1)𝑖), we conclude 

that 

  

𝑙𝑖𝑚𝑛→∞𝑅
2𝑛+1𝑥0 = 𝑢.                                        

 

This shows that (𝑅2𝑛+1𝑥0) converges to the fixed point of 𝑅. 
 

Similarly, it can be established that (𝑆2𝑛+2𝑥0) converges to the fixed point of 𝑆.  
  

That is 𝑙𝑖𝑚𝑛→∞𝑅
2𝑛+1𝑥0 = 𝑢 = 𝑙𝑖𝑚𝑛→∞𝑆

2𝑛+2𝑥0. 
                                    

Theorem 2.2. Let (𝑋, 𝑑) be a complete cone metric space, 𝑃 be a normal cone with normal constant 𝐾, in addition 

𝑇: 𝑋 → 𝑋 be a one to one continuous function and 𝑅, 𝑆: 𝑋 → 𝑋 be a pair of T-Rhoades contraction then (1), (2), (3), (4) 

and (5) of Theorem 2.1 hold. 

 

Proof. Let 𝑥0  be an arbitrary point in 𝑋. We define the iterate sequences {𝑥2𝑛+1} and {𝑥2𝑛+2} by 

                                           𝑥2𝑛+2 = 𝑅𝑥2𝑛+1 = 𝑅2𝑛+1𝑥0 and 

                                      𝑥2𝑛+3 = 𝑆𝑥2𝑛+2 = 𝑆2𝑛+2𝑥0; 
 

Since 𝑅 and 𝑆 are pair of T-Rhoades contraction, we have 

𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) = 𝑑(𝑇𝑅𝑥2𝑛 , 𝑇𝑅𝑥2𝑛+1) 

≤ 𝑎𝑑(𝑇𝑥2𝑛 , 𝑇𝑅𝑥2𝑛+1) + 𝑏𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑅𝑥2𝑛 ) 

+𝑐𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

                         ≤ 𝑎𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+2) + 𝑏𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+1)+𝑐𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

                       ≤ 𝑎 𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1 + 𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2)]   +𝑐𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) ≤  
𝑎 + 𝑐

1 − 𝑏
 𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

𝑑(𝑇𝑥2𝑛+2 , 𝑇𝑥2𝑛+3) ≤  
𝑎′ + 𝑐′

1 − 𝑎′
 𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) 

𝑑(𝑇𝑥2𝑛+1 , 𝑇𝑥2𝑛+2) ≤  
𝑎 + 𝑐

1 − 𝑎
 𝑑(𝑇𝑥2𝑛 , 𝑇𝑥2𝑛+1) 

                                                                         ≤ ℎ𝑑(𝑇𝑅𝑥2𝑛 , 𝑇𝑅𝑥2𝑛+1). 

Where ℎ =
𝑎+𝑐

1−𝑎
 . Recursively, we obtain 

 𝑑(𝑇𝑅𝑥2𝑛+1 , 𝑇𝑅𝑥2𝑛+2) ≤ ℎ2𝑛+1  𝑑(𝑇𝑅𝑥0 , 𝑇𝑅𝑥1)         (2.9) 
Therefore, 

‖𝑑(𝑇𝑅𝑥2𝑛+1 , 𝑇𝑅𝑥2𝑛+2)‖≤ ℎ2𝑛+1𝐾‖𝑑(𝑇𝑅𝑥0, 𝑇𝑅𝑥1)‖ 
 

Where 𝐾 is the normal constant of 𝑋.   

Hence 𝑙𝑖𝑚𝑛→∞‖𝑑(𝑇𝑅𝑥2𝑛+1 , 𝑇𝑅𝑥2𝑛+2)‖ = 0,  

𝑑 𝑇𝑅𝑢, 𝑇𝑅𝜗 𝑎[𝑑 𝑇𝑢, 𝑇𝑅𝑢 ] + 𝑏 𝑑 𝑇𝜗, 𝑇𝑅𝜗  + 𝑐 𝑑 𝑇𝑢, 𝑇𝜗  . 
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This implies that 

𝑙𝑖𝑚𝑛→∞𝑑 𝑇𝑅2𝑛+1𝑥0 , 𝑇𝑅2𝑛+2𝑥0 = 0 
 

Similarly, we have 

𝑙𝑖𝑚𝑛→∞𝑑 𝑇𝑆2𝑛+2𝑥0 , 𝑇𝑆2𝑛+3𝑥0 = 0 
       By (2.9), for every 𝑚, 𝑛 ∈ 𝑁  with 𝑛 > 𝑚,  we have 𝑑(𝑇𝑅𝑥2𝑚+1 , 𝑇𝑅𝑥2𝑛+1) ≤ 𝑑(𝑇𝑅𝑥2𝑛+1 , 𝑇𝑅𝑥2𝑛+2) +  − − − −
 +𝑑(𝑇𝑅𝑥2𝑚 , 𝑇𝑅𝑥2𝑚+1) 

≤  ℎ2𝑛 + ℎ2𝑛−1 ± − ∓ ℎ2𝑚+1 𝑑 𝑇𝑅𝑥0 , 𝑇𝑅𝑥1  

≤
ℎ2𝑚+1

1 − ℎ
𝑑(𝑇𝑅𝑥0 , 𝑇𝑅𝑥1) 

Taking norm we get 

 ‖𝑑(𝑇𝑅𝑥2𝑚+1 , 𝑇𝑅𝑥2𝑛+1)‖ ≤
ℎ2𝑚 +1

1−ℎ
𝐾‖𝑑(𝑇𝑅𝑥0 , 𝑇𝑅𝑥1)‖. 

 

Consequently, we have 

𝑙𝑖𝑚𝑛,𝑚→∞𝑑(𝑇𝑅𝑥2𝑛+1 , 𝑇𝑅𝑥2𝑚+1) = 0. 
 

Hence {𝑇𝑅2𝑛+1𝑥0} is a Cauchy sequence in 𝑋 is complete cone metric space, there is ϑ∈ 𝑋 such that 

𝑙𝑖𝑚𝑛→∞𝑇𝑅2𝑛+1𝑥0 = 𝜗. 
Similarly we can prove that 𝑙𝑖𝑚𝑛→∞𝑇𝑆2𝑛+2𝑥0 = 𝜗 The rest of the proof is similar to the proof of Theorem 2.1. 
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