On The Non-Homegeneous Biquadratic Equation With Four Unknowns

$$
x^{3}+y^{3}+z^{3}=128(x+y) w^{3}
$$

V. Geetha ${ }^{1 *}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ AsstProfessor,Dept of Mathematics, Cauvery College for Women,Trichy-620018, Tamilnadu, India.
${ }^{2}$.Professor,Dept of mathematics, Srimathi Indira Gandhi College,Trichy-620002, Tamilnadu, India

*Corresponding Author:

V. Geetha

Email: geetharamanan26@gmail.com

Abstract

The non-homogeneous biquadratic equation with four unknowns given by $x^{3}+y^{3}+z^{3}=128(x+y) W^{3}$ is considered and analysed for its non-zero distinct integer solution, Introducing the linear transformation $x=u+v ; y=u-v ; z=2 u$ and employing the method of factorization different patterns of non-zero distinct integer solutions to the above biquadratic equation are obtained. A few interesting relations between solutions and special numbers namely Centered Polygonal numbers, Polygonal numbers, ,Mersenne number are exhibited..

Keywords: Non-Homogeneous biquadratic equation, Integral solutions, Special numbers.
2010 Mathematics Subject Classification:11D25.

NOTATIONS:

Special Numbers

Regular Polygonal number
Pyramidal Number
Centered Polygonal number
Notations
$t_{m, n}$

Centered Pyramidal number
Mersenne number
P_{n}^{m}
$c t_{m, n}$
$C P_{n}^{m}$
M_{n}

INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular biquadratic Diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity [1-3]. In this context one may refer [4-10] for various problems on the biquadratic Diophantine equations. However, often we come across non-homogeneous biquadratic equations and as such one may require its integral solution in its most general form. This paper concern with the non-homogeneous biquadratic equation with four unknowns $x^{3}+y^{3}+z^{3}=128(x+y) W^{3}$ for determining its infinitely many non-zero integral solutions. Also a few interesting properties among the solutions are presented.

METHOD OF ANALYSIS

The non-homogeneous biquadratic diophantine equation with four unknowns to be solved for getting non-zero integral solution is

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}=128(x+y) W^{3} \tag{1}
\end{equation*}
$$

On substituting the linear transformations

$$
\begin{equation*}
x=u+v ; y=u-v ; z=2 u \tag{2}
\end{equation*}
$$

(1) reduces to $5 u^{2}+3 v^{2}=128 W^{3}$

Again, introducing the linear transformation

$$
\begin{equation*}
u=X+3 T, v=X-5 T \tag{3}
\end{equation*}
$$

in (3), it is written as

$$
\begin{equation*}
X^{2}+15 T^{2}=16 W^{3} \tag{5}
\end{equation*}
$$

Assume $W(a, b)=a^{2}+15 b^{2}=(a+i \sqrt{15} b)(a-i \sqrt{15} b)$
Write 16 as, $\quad 16=(1+i \sqrt{15})(1-i \sqrt{15})$
Substituting (6) and (7) in (5) and using the method of factorization, define

$$
(1+i \sqrt{15})(a+i \sqrt{15} b)^{3}=X+i \sqrt{15} T
$$

Equating the real and imaginary parts we get,

$$
\left.\begin{array}{l}
X(a, b)=a^{3}-45 a b^{2}-45 a^{2} b+225 b^{3} \tag{8}\\
T(a, b)=a^{3}-45 a b^{2}+3 a^{2} b-15 b^{3}
\end{array}\right\}
$$

Substituting (8) in (4) the values of u and v are given by

$$
\left.\begin{array}{l}
u(a, b)=4 a^{3}-180 a b^{2}-36 a^{2} b+180 b^{3} \\
v(a, b)=-4 a^{3}+180 a b^{2}-60 a^{2} b+300 b^{3}
\end{array}\right\}
$$

Substituting the values of u, v in (2) the corresponding non-zero integral solutions satisfying (1) are obtained as $x(a, b)=-96 a^{2} b+480 b^{3}$
$y(a, b)=8 a^{3}-360 a b^{2}+24 a^{2} b-120 b^{3}$
$z(a, b)=8 a^{3}-360 a b^{2}-72 a^{2} b+360 b^{3}$
$W(a, b)=a^{2}+15 b^{2}$

Properties:

1. $32(a+1) W(a, b)-x(a, b)=256 P_{a}^{5}$
2. $3 y(a, 1)+z(a, 1)-12 C P_{a}^{6} \equiv 0(\bmod 355)$
3. $32 W\left(2^{a}, 1\right)-x\left(2^{a}, 1\right)-128 M_{2 a}=128$
4. $3[32 W(a, 1)-x(a, 1)]$ is a nasty number.
5. $z(a, 1)+16\left(4 P_{a}^{10}+t_{33, a}\right) \equiv 0(\bmod 8)$

Also, substituting $X=4 y, T=4 t$
in (5), it is written as $y^{2}+15 t^{2}=W^{3}$
Assume $W(a, b)=a^{2}+15 b^{2}=(a+i \sqrt{15} b)(a-i \sqrt{15} b)$
Write

$$
\begin{equation*}
1=\frac{(1+i 8 \sqrt{15})(1-i 8 \sqrt{15})}{961} \tag{11}
\end{equation*}
$$

Substituting (11) and (12) in (10), following the above procedure we get the values of y, t are

$$
\left.\begin{array}{l}
y(a, b)=\frac{1}{31}\left[a^{3}-45 a b^{2}-360 a^{2} b+1800 b^{3}\right] \tag{13}\\
t(a, b)=\frac{1}{31}\left[8 a^{3}-360 a b^{2}+3 a^{2} b-15 b^{3}\right]
\end{array}\right\}
$$

As our aim is to find integer solutions of (1) it is seen that one may choose y and t so that the values of x, y, z, W are integers.
Let $a=31 A, b=31 B$ in (10) and (12), we get
$X(A, B)=3844 A^{3}-172980 A B^{2}-1383840 A^{2} B+6919200 B^{3}$
$T(A, B)=30752 A^{3}-1383840 A B^{2}+11532 A^{2} B-57660 B^{3}$
Substituting these values in (9), we get

Geetha V et al.; Sch. J. Phys. Math. Stat., 2014; Vol-1; Issue-2(Sep-Nov); pp-104-107
$u(A, B)=96100 A^{3}-4224500 A B^{2}-1349244 A^{2} B+6746220 B^{3}$
$v(A, B)=-149916 A^{3}+6746220 A B^{2}-1441500 A^{2} B+7207500 B^{3}$
Substituting these values in (2) the non-zero integral distinct points satisfying (1) is given by
$x(A, B)=-53816 A^{3}+2421720 A B^{2}-2790744 A^{2} B+13953720 B^{3}$
$y(A, B)=246016 A^{3}-11070720 A B^{2}+92256 A^{2} B-461280 B^{3}$
$z(A, B)=192200 A^{3}-8649000 A B^{2}-2698488 A^{2} B+13492440 B^{3}$
$W(A, B)=961 A^{2}+14415 B^{2}$

Properties:

1. $x(1,1)+y(1,1)+z(1,1)=4674304$
2. $W(A, A-1)-t_{30754, A} \equiv 0(\bmod 15)$
3. $x(A, B)+y(A, B)-z(A, B)=0$
4. $W(A, A)-2\left(c t_{961, A}-1\right) \equiv 0(\bmod 13454)$
5. $y(A, A)+6 C P_{A}^{11193728} \equiv 0(\bmod 11193722)$

REMARK:

It is worth to mention that instead of (7) one may have the following representation for 16 ,

$$
16=\frac{(7+i \sqrt{15})(7-i \sqrt{15})}{4}
$$

and instead of (12) one may have the following representations for 1

$$
1=\left\{\begin{array}{l}
\frac{(1+i \sqrt{15})(1-i \sqrt{15})}{4} \\
\frac{(7+i \sqrt{15})(7-i \sqrt{15})}{64} \\
\frac{(7+i 4 \sqrt{15})(7-i 4 \sqrt{15})}{289} \\
\frac{(7+i 12 \sqrt{15})(7-i 12 \sqrt{15})}{2209} \\
\frac{(11+i 3 \sqrt{15})(11-i 3 \sqrt{15})}{256} \\
\frac{(11+i 4 \sqrt{15})(11-i 4 \sqrt{15})}{361} \\
\frac{(11+i 28 \sqrt{15})(11-i 28 \sqrt{15})}{11881}
\end{array}\right.
$$

Following the procedure presented above, the other choices of solutions to (1) are obtained.

CONCLUSION

Instead of (4) one may consider the following transformation,

$$
u=X-3 T, v=X+5 T
$$

Following the procedure presented above, the other choices of solutions to (1) are obtained. In this paper, the nonhomogeneous biquadratic equation with four unknowns given by $x^{3}+y^{3}+z^{3}=128(x+y) W^{3}$ has been analysed for its patterns of distinct integer solutions. As the cubic diophantine equations(homogeneous-non-homogeneous) are rich in variety due to the definition of diophantine equation, one may consider cubic equation with multivariables(≥ 4)and search for their non-zero distinct integer solutions along with their corresponding properties.

REFERENCE

1. Carmichael RD; The Theory of numbers and Diophantine analysis, Dover publications, new York, 1959.
2. Dickson LE; History of theory of Numbers, Chelsa Publishing company, New Yors, 1952.
3. Gopalan MA, Pandichelvi V; On the solutions of the Biquadratic equation $\left(x^{2}-y^{2}\right)^{2}=\left(z^{2}-1\right)^{2}+w^{4}$, International conference on Mathematical methods and Computation, 2009; 24-25.
4. Gopalan MA, Sangeetha G; Integral solutions of Ternary Quartic equation $x^{2}-y^{2}+2 x y=z^{4}$, Antartica J. Math., 2010; 7(1):95-101.
5. Gopalan MA, Sangeetha G; Integral solutions of non-homogeneous Quartic equation $x^{4}-y^{4}=\left(2 \alpha^{2}+2 \alpha+1\right)\left(z^{2}-w^{2}\right)$. Impact J. Sci. Tech., 2010; 4(3):15-21.
6. Gopalan MA. Sangeetha G; Integral solutions of Non-homogeneous biquadratic $x^{4}+x^{2}+y^{2}-y=z^{2}+z$. Acta Ciencia Indica, 2011; 38(4):799-803.
7. Gopalan MA, Sivkami B; Integral solutions of quartic equation with four unknowns $x^{3}+y^{3}+z^{3}=3 x y z+2(x+y) w^{3}$. Antartica J. Math, 2013; 10(2): 151-159.
8. Manju Somanath, Sangeetha G, Gopalan MA; Integral solutions of non-homogeneous Quartic equation $x^{4}-y^{4}=\left(k^{2}+1\right)\left(z^{2}-w^{2}\right)$. Archimedes J. Math., 2011; 1(1):51-57.
9. Manju Somanath, Sangeetha G, Gopalan MA; Integral solutions of biquadratic equation with four unknowns given by $x y+\left(k^{2}+1\right) z^{2}=5 w^{2}$. Pacific-Asian Journal of Mathematics, 2012; 6(2):185-190.
10. Sangeetha G, Manju Somanath, Gopalan MA, Pushparani; Integral solutions of the homogeneous biquadratic equation with five unknowns $\left(x^{3}+y^{3}\right) z=\left(w^{2}-p^{2}\right) R^{2}$, International conference on Mathematical methods and Computation, 2014; 221-226.
