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Abstract: By the applications of Halanay type inequality and the theory of nonsingular M-matrix, the global 
asymptotical stability of the disease free equilibrium of a delayed malaria transmission model is obtained when the basic 

reproduction number of the model is less than 1. 
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INTRODUCTION 

Stability properties, either local or global, of the equilibrium of infectious disease models are key important in the 

quantitative analysis for the disease transmission [5, 8, 9, 11, 12, 15]. Those mathematical models are now usually 

involved with two or more delays [8, 9, 11], which greatly increase the difficulty to analyze the stability, especially the 

global asymptotical stability, of the equilibrium of the models. The local asymptotical stability of the equilibrium can be 
obtained by analysis of the roots of the characteristic equation of the linearized model at the corresponding equilibrium 

[3, 6], and the global stability can be obtained by constructing suitable Liapunov functions together with Razumikhin 

type theorems [4, 6]. In the literature for stability analysis for the equilibrium of infectious disease models with two or 

more delays, the local asymptotical stability is often achieved while the global asymptotical stability remained unsolved 

due to the fact that it is not easy to construct a suitable Liapunov function for the models with several delays [8, 9, 11].  

 

It is well known that the Halanay type inequalities can be used to obtain the global exponential stability of the 

equilibrium of a delayed mathematical model [1, 2, 10, 14], and it is widely used in the stability analysis of the 

equilibrium of models established in neural networks [1, 2, 14]. Also, it is common knowledge that the equilibrium is 

globally asymptotically stable if it is globally exponentially stable [4]. Motivated by the above, in this paper we shall 

obtain the global asymptotical stability of the disease free equilibrium of a malaria transmission model with two delays 

by the application of Halanay type inequality.  
 

For compartmental infectious disease models, it is a common theory that the disease free equilibrium is globally 

asymptotically stable when the basic reproduction number is less than 1 and the positive equilibrium exists, which is 

globally asymptotically stable when the basic reproduction number is larger than 1 [5]. By the application of Halanay 

type inequality we can obtain that the disease free equilibrium of the delayed malaria transmission model in this paper is 

globally asymptotically stable when the basic reproduction number is less than 1, which is well consistent with the 

common theory of compartmental infectious disease models. 

 

PRELIMINARIES 

The following model was established in [9] to reflect the transmission of malaria between human and mosquito 

population  

1 1 1

2 2 2

exp( )[1 ( )] ( ),

exp( )[1 ( )] ( ).

dx
x abm x t y t

dt

dy
y ac y t x t

dt

   

   


      


       


                       (1) 

We introduce the notations in (1) briefly, one can refer to [9] for more details about (1). In (1), ( ) ( ( ))x t y t is the ratio of 

the number of the infected human (mosquito) to the total number of human (mosquito) population at time t (unit: days), 
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respectively and it is supposed that the total number of human (mosquito) population is constant ( )H M , /m M H ,  

a  is the average bites of a mosquito per human per day, b  is the rate of a susceptible human becoming infectious after 

the bite by an infected mosquito, c  is the rate of a susceptible mosquito becoming infectious after its bite of an infected 

human,   is the recovery rate of human from  the infection,   is the natural death rate of the mosquito, and 
1 2,   is 

the incubation time of the parasites in the human, mosquito body, respectively. The parameters 
1 2, , , , , , ,a b c m      

are all positive. 

 

The basic reproduction number 
0R  of (1) is defined as 

2

1 2
0

exp( )exp( )a bcm
R

 



 
 .                              (2) 

By direct computation, one has  

 

Lemma 2.1. (i) There exists only disease free equilibrium 
0E = (0, 0) of (1) when 

0 1R  ; (ii) when 
0 1R  , there 

exists the disease free equilibrium 
0E  and a unique positive equilibrium 

* * *( , )E x y , where 

* *0 0

0 2 0 1

1 1
,

exp( ) / exp( ) /

R R
x y

R ac R abm   

 
 

   
.                  (3) 

The initial conditions of (1) are given as follows 

1 2( ) ( ), ( ) ( ), [ , 0], max{ , }x s s y s s s          ,                     (4) 

where ( ), ( )s s  is continuous in [ , 0]  and 

0 ( ) 1, 0 ( ) 1s s     .                                 (5) 

It is proved in [9] that 
0E  is locally asymptotically stable if

0 1R  , but the global asymptotical stability of 
0E  is not 

analyzed there. 

 

Lemma 2.2. If 

1 2exp( ) / 1, exp( ) / 1abm ac       ,                        (6) 

then the solutions of (1) with (5) satisfy 

0 ( ) 1, 0 ( ) 1, 0x t y t t     .                             (7) 

 

Proof. We first prove that 0 ( ) 1x t   for 
1[0, ]t  . Suppose the contrary, there exists a

1[0, ]t   such that 

( ) 0x t  and ( ) 0x t  for t t . Thus, we have ( ) / 0dx t dt  . But 

1 1 1

1 1 1

( )
( ) exp( )(1 ( )) ( )

0 exp( )(1 ( )) ( )

0

dx t
x t abm x t y t

dt

abm t t

   

     

      

       



 

since (5). This is a contradiction. Hence, ( ) 0x t   for 1[0, ]t  . 

Next, suppose that there exists a 1[0, ]t %  such that ( )x t% = 1 and ( )x t < 1 for t t %. Thus, we have 

( ) / 0dx t dt % . But 

1 1 1

1 1 1

1

ˆ( )
( ) exp( )(1 ( )) ( )

exp( )(1 ( )) ( )

exp( )

0

dx t
x t abm x t y t

dt

abm t t

abm

   

     

 

      

      

   



% % %

% %  

since (5) and (6). This is a contradiction. Hence, ( )x t < 1 for 1[0, ]t  . 
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Similarly we can prove 0 ( ) 1y t   for 
2[0, ]t  . Thus, by assuming that 0 ( ) 1x t   for 

1 1[( 1) , ]t k k    

and 0 ( ) 1y t   for 
2 2[( 1) , ]t k k    where k > 1 is a positive integer, (7) is obtained by induction. 

 
Remark 2.3. Lemma 2.2 gives a sufficient condition to guarantee the positivity and boundedness of the solutions of 

(1) with (5). Noting (2), the condition (6) implies that 
0R < 1. But in fact, numerical simulations show that the solutions 

of (1) with (5) can be also positive and bounded even if 
0R > 1. Hence, with the biological background of (1) concerned, 

we denote 

Ω = { (
1 2, , , , , , ,a b c m     ) | such that  solutions of (1) with (5) are positive and bounded}.      (8) 

 

MAIN RESULTS 

We first give a theorem in [14] of Halanay type inequality that will be used in the sequel to derive the global 

asymptotical stability of the disease free equilibrium of (1) with (5). 

 

Lemma 3.1. (Theorem 3.1 in [14]) Let A= ( )ij n na  and 0ija   for i j , B= ( )ij n nb   and 0ijb  , i, j = 1, 2, ..., n, 

−(A + B) be a nonsingular M-matrix. For 
0( , )t t  , let ( )u t = (

1 2( ), ( ), , ( )nu t u t u tL )
T

be a solution of the 

following delay differential equation  

( ) ( ) [ ( )]D u t Au t B u t 

   ,                                 (9) 

with initial condition 
0 0( ) ( ),u t u s t s t    and ( )u s is continuous, 

where D
 is the right hand derivative, 1 2[ ( )] ([ ( )] , [ ( )] , ,[ ( )] )T

nu t u t u t u t    L and [ ( )]iu t   ( )i
t s t

Sup u s
  

, i = 

1, 2, ..., n. Then, 

0 0( ) exp( ( )),u t z t t t t    ,                              (10) 

provided that 

0 0 0( ) exp( ( )),u s z s t t s t       ,                         (11) 

where 1 2( , , , ) 0T

nz z z z L and the positive number λ are determined by 

[ exp( )] 0E A B z    .                              (12) 

 

Remark 3.2. In view of (10), the zero solution of (9) is globally exponentially stable and consequently globally 

asymptotically stable if the conditions of Lemma 3.1 are satisfied. 

Next we prove that the disease free equilibrium 
0E  of (1) is globally asymptotically stable by Lemma 3.1. 

 

Theorem 3.3. The disease free equilibrium 0E  is globally asymptotically stable in Ω if 0R < 1. 

Proof. Rewriting (1) as 

 

1 1 1 1 1

2 2 2 2 2

exp( ) ( ) exp( ) ( ) ( ),

exp( ) ( ) exp( ) ( ) ( ).

dx
x abm y t abm x t y t

dt

dy
y ac x t ac x t y t

dt

     

     


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
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          (13) 

From (8) we have 

1

2

exp( )[ ( )] ,

exp( )[ ( )] ,

dx
x abm y t

dt

dy
y ac x t

dt





 

 


   


    


                          (14) 

where 

[ ( )]y t   ( )
t s t

Sup y s
  

, [ ( )]x t   ( )
t s t

Sup x s
  

. 

Comparing with (9), 
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1

2

0 exp( )0
,

exp( ) 00

abm
A B

ac





   
    

   
, 

And 
0 0t  . Hence, 

1

2

exp( )
( )

exp( )

abm
A B

ac

 

 

  
    

  
. 

We first show that −(A+B) is a nonsingular M-matrix if 
0R < 1. It is sufficient to prove that the successive principle 

minors of −(A + B) are all positive [7].   is positive, and  

det(−(A + B)) =
2

1 2exp( )exp( )a bcm     . 

Noting (2), the definition of 
0R , det(−(A+B)) > 0 if 

0R < 1. That is, −(A+B) is a nonsingular M-matrix if 
0R < 1. Other 

conditions of A, B in Lemma 3.1 are also satisfied. Therefore, we can choose positive λ and z = (
1 2,z z )

T
 > 0 such that 

(12) is satisfied. 

Next we show that for λ, z chosen as above, (11) can be satisfied with 
0t = 0 by (5). Set 

1 2
[ ,0] [ ,0]

( ), ( )
s s

k Sup s k Sup s
 

 
   

   

and 
3 1 2k k k . Denote 

1 2
4

1 2

max{ , }

min{ , }

z z
k

z z
 . 

Thus, we have 

3 4 1 3 4 2( ) ( ) exp( ), ( ) ( ) exp( )x s s k k z s y s s k k z s          

for s[−τ, 0]. Noting that 3 4 1 2( , )Tz k k z z z @  and λ are also solution of (12), therefore, (11) holds for z  and λ. 

Finally, from Lemma 3.1 we have 

1 2( ) exp( ), ( ) exp( )x t z t y t z t      

for t  0. That is, by comparison arguments, the zero solution of (13), which is the disease free equilibrium of (1), is 

globally asymptotically stable in Ω when 0R < 1. 

 

Remark 3.4. The exponential convergence rate of solutions of (1) with (5) convergent to the disease free equilibrium is 

at least λ if 0R < 1 from the proof of Theorem 3.3. It can be used to estimate the time before the disease ceases its 

prevalence in human population if 0R < 1. 

Remark 3.5. The global asymptotical stability of the disease free equilibrium of (1) has been analyzed in [13] by 

constructing Liapunov functions. The proof of this paper is more simple and direct. 
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