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Abstract  Original Research Article 
 

This paper investigates the application of Support Vector Machines (SVM), Random forest and Logistic Regression as 

AI algorithms to predict the likelihood of sickle cell crises. The study focused on the various considerations involved 
in utilizing SVMs, Random forest and Logistic Regression for this predictive task, encompassing feature selection, 

data quality assessment, handling class imbalance, model training, hyper parameter optimization, evaluation metrics, 

and interpretability. Special attention is given to addressing the complexities of Sickle Cell Disease data and ensuring 

the reliability of predictions. Through a comprehensive analysis, we accentuate the relevance of SVMs, Random forest 
and Logistic Regression in capturing intricate relationships within high-dimensional SCD datasets. It emphasizes the 

importance of feature selection, particularly in integrating genetic markers, clinical parameters, and environmental 

factors, to enhance prediction accuracy. Also, we highlight the significance of model interpretability in healthcare 

applications, enabling clinicians to understand the rationale behind predictions and facilitating informed decision-
making. Validation and testing procedures are highlighted as crucial steps to ensure the generalizability and robustness 

of the SVM, Random Forest and Logistic Regression-based predictive model in real-world clinical settings. Finally, 

leveraging Support Vector Machines and other machine learning algorithms for predicting sickle cell crises likelihood 

offers promising avenues for proactive management and personalized care strategies. By harnessing AI algorithms 
effectively, healthcare practitioners can enhance patient outcomes through timely interventions tailored to individual 

risk profiles. However, further research and validation efforts are warranted to maximize the clinical utility and 

reliability of SVM, Random forest and Logistic Regression -based predictive models in SCD management. 

Keywords: AI, Machine Learning, Sickle Cell Disease, Support Vector Machine, Random Forest, Logistic 
Regression. 
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1. INTRODUCTION 
Artificial intelligence is revolutionizing the 

field of healthcare, offering enormous potential to 

improve patient care, improve clinical decision-making, 

simplify administrative tasks and transform healthcare 
delivery. Here are some key areas where AI is used in 

healthcare. The potential of AI is intrinsically linked to 

the availability of pertinent data. In the realm of 

healthcare, there exists a wealth of data, yet the quality 
and accessibility of these resources pose significant 

challenges in numerous countries. On one side, privacy 

concerns surround health data, making its collection and 

sharing more complex compared to other data types. 
Moreover, the expense associated with gathering health 

data, such as in longitudinal studies and clinical trials, 

results in stringent control once collected. Additionally, 
the lack of interoperability among electronic health 

record systems hinders basic computational methods, 

while the failure to capture essential social and 
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environmental data within existing systems excludes 
crucial variables from individual health data streams. 

 

Recent advances in digital technologies, 

computing and data analysis methods have triggered the 
advent of a new data-rich world. In addition, recent 

years have seen an unprecedented growth in the 

quantity and complexity of quantitative data. In 

biomedicine and healthcare this includes, for example, 
blood biomarkers, DNA and RNA sequencing, digital 

medical images, electronic health records, or digital 

recordings from a variety of new medical devices. One 

of the critical advancements that have dramatically 
changed the landscape of data driven technologies has 

been the development of a new generation of machine 

learning algorithms which exhibit cognitive behavior, 

broadly called Artificial Intelligence (AI). AI has the 
potential to bring a paradigm shift to healthcare, 

powered by increasing availability of healthcare data 

and rapid progress of analytic techniques. There is a 

growing interest towards the possibility of using AI for 
patient diagnosis, treatment selection and disease 

tracking in the near future. New-generation algorithms 

are becoming increasingly competent at extracting 

complex patterns from large amounts of data, and using 
them to make decisions. This, coupled with their ability 

to improve the quality of their prediction over several 

iterations, makes AI algorithms an attractive tool for 

optimizing medical decisions in healthcare settings 
based on patient data [1]. 

 

2. Preliminaries and Definitions 

2.1. Artificial Intelligence 

Artificial Intelligence (AI) encompasses a 

range of techniques that grant artificial entities the 

capacity to perceive their surroundings and make 

decisions aimed at optimizing specific objectives. 
While this definition encompasses all perceptual and 

effectual tasks, in common parlance, AI is often used 

interchangeably with the concept of machine learning 

algorithms [2]. 
 

2.2. Machine Learning (ML) 

Machine learning is a subset of AI, referring to 

programs capable of autonomously generating rules and 
identifying patterns from data and experience to achieve 

desired goals. The ultimate test for machine learning 

models lies in their ability to generalize these rules to 

new, unseen data, a critical process known as "testing" 
or "validation," which determines the model's usability 

and potential biases [3].  

 

Supervised and unsupervised learning are two 
primary categories of machine learning algorithms, 

distinguished by their training methodologies and the 

tasks they undertake: 

 
Supervised learning involves training 

algorithms with labeled examples, providing ground 

truth for the model to learn from. This approach has 

found success in various domains, from image 
recognition to text analysis, with tasks ranging from 

classification to regression. The effectiveness of 

supervised learning hinges on the availability of 

sufficient training data. Insufficient data or excessive 
input features can lead to over fitting, where the model 

learns spurious patterns specific to the training data, 

hindering its ability to generalize, a significant concern 

in healthcare applications [3]. In contrast, unsupervised 
learning operates without labeled training examples, 

seeking to identify inherent structures or clusters within 

the data based on natural patterns across multiple 

dimensions. Unsupervised clustering is particularly 
useful in discerning disease response patterns from 

clinically relevant features [14, 15]. 

 

Sickle Cell and its crisis 

Sickle cell disease (SCD) is a genetic blood 

disorder characterized by abnormal hemoglobin 

molecules, specifically hemoglobin S (HbS), which 

causes red blood cells to assume a rigid, sickle-like 
shape under certain conditions. This abnormal shape 

makes the red blood cells less flexible and more prone 

to getting stuck in small blood vessels, leading to vaso-

occlusive crises, also known as sickle cell crises. 
 

During a sickle cell crisis, individuals typically 

experience severe pain due to blocked blood flow to 

organs and tissues. These crises can occur unpredictably 
and may be triggered by various factors such as 

dehydration, infection, stress, or changes in 

temperature. The pain can range from mild to 

excruciating and may last for hours to days, requiring 
hospitalization and potent pain management 

medications [3, 4]. In addition to pain, sickle cell crises 

can lead to complications such as organ damage, acute 

chest syndrome (a life-threatening condition 
characterized by chest pain, fever, and difficulty 

breathing), stroke, and even death in severe cases. 

Management of sickle cell disease involves a 

combination of strategies aimed at preventing 
complications, managing symptoms, and improving 

quality of life. This may include medications to reduce 

pain and inflammation, blood transfusions to increase 

oxygen delivery to tissues, hydroxyl urea to stimulate 
fetal hemoglobin production, and, in some cases, bone 

marrow transplantation [6]. Despite advances in 

treatment, SCD remains a chronic condition with 

significant morbidity and mortality. Therefore, ongoing 
research efforts focus on improving our understanding 

of the disease mechanisms, developing new therapies, 

and enhancing the predictive capabilities of AI 

algorithms to better anticipate and manage sickle cell 
crises, ultimately aiming to improve outcomes and 

quality of life for individuals living with this 

challenging condition [7]. 
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Leveraging on Machine Learning Algorithm for 

Predicting Sickle Cell Crises Likelihood 

Sickle cell disease (SCD) represents a 

significant burden in healthcare, particularly due to its 

unpredictable nature and the occurrence of vaso-
occlusive crises known as sickle cell crises. These 

crises, characterized by severe pain and tissue damage, 

not only diminish the quality of life for affected 

individuals but also pose substantial challenges for 
healthcare providers in terms of timely intervention and 

effective management. In recent years, the emergence 

of artificial intelligence (AI) has provided novel 

avenues for addressing such complex healthcare 
challenges. Among the various AI algorithms, Support 

Vector Machines (SVMs), Random forest and Logistic 

Regression have shown promise in predicting the 

likelihood of sickle cell crises, offering a data-driven 
approach to risk assessment and proactive care 

strategies. This paper attempts the application of SVMs, 

Random forest and Logistic Regression in predicting 

sickle cell crises, exploring the intricacies of utilizing 
this algorithm to leverage clinical and genetic data for 

personalized risk prediction and timely intervention. 

Through a comprehensive analysis of SVMs, Random 

forest and Logistic Regression, we aim to shed light on 
the potential of AI-driven predictive modeling to 

improve outcomes for individuals living with SCD, 

while also highlighting the challenges and 

considerations inherent in implementing such 
approaches in real-world clinical settings [8]. There 

exists a significant global deficiency in the effective 

diagnosis of numerous diseases. The intricacy of 

various disease mechanisms and the underlying 
symptoms within the patient population poses 

significant hurdles in the development of early 

diagnostic tools and successful treatments. Machine 

learning (ML), a domain of artificial intelligence (AI), 
empowers researchers, physicians, and patients to 

address certain challenges. This review elucidates how 

machine learning (ML) is employed for the early 

detection of various diseases, grounded in pertinent 
research. A bibliometric study of the paper is conducted 

utilizing data from the Scopus and Web of Science 

(WOS) databases. A bibliometric analysis of 1216 

publications was conducted to identify the most prolific 
authors, countries, institutions, and the most referenced 

articles. The review thereafter encapsulates the latest 

developments and methodologies in machine-learning-

based disease diagnosis (MLBDD), taking into account 
the following factors: algorithm, illness kinds, data 

type, application, and assessment metrics. Ultimately, 

we emphasize significant findings and offer 

perspectives on forthcoming trends and prospects in the 
MLBDD domain [16, 17]. Machine learning (ML) is 

utilized extensively across various domains, including 

advanced technology (such as smart phones, computers, 

and robotics) and healthcare (e.g., disease diagnosis and 
safety). Machine learning is increasingly prevalent 

across diverse domains, particularly in disease 

identification within healthcare. Numerous academics 

and practitioners demonstrate the potential of machine-
learning-based disease diagnostics (MLBDD), which is 

cost-effective and time-efficient. Conventional 

diagnostic procedures are expensive, protracted, and 

frequently necessitate human involvement. The 
individual's capabilities limit conventional diagnostic 

methods, whereas machine learning-based solutions are 

unencumbered by such constraints, and robots do not 

experience fatigue like humans do. Consequently, a 
method for diagnosing disease may be devised in 

response to the unforeseen presence of patients in 

healthcare settings. Healthcare data, including pictures 

(e.g., X-ray, MRI) and tabular data (e.g., patients' 
ailments, age, and gender), are utilised to develop 

MLBDD systems [9]. 

 

Machine learning (ML) is a branch of artificial 
intelligence (AI) that utilises data as an input resource. 

The use of predefined mathematical functions produces 

outcomes (classification or regression) that are often 

challenging for people to achieve. For instance, 
employing machine learning to identify cancerous cells 

in a microscopic image is often more straightforward 

than attempting to do so just through visual inspection 

of the images. Moreover, due to advancements in deep 
learning, a subset of machine learning, recent research 

indicates that MLBDD accuracy exceeds 90%. 

Alzheimer’s disease, heart failure, breast cancer, and 

pneumonia are among the disorders that can be detected 
using machine learning. The advent of machine learning 

(ML) algorithms in illness diagnostics exemplifies the 

technology's applicability in medical sectors [10]. 

Recent advancements in machine learning challenges, 
including unbalanced data, interpretability, and ethical 

considerations in medical contexts, represent but a 

fraction of the numerous complex areas to address 

succinctly. This paper presents a review that emphasises 
the innovative applications of machine learning (ML) 

and deep learning (DL) in disease diagnosis, while also 

offering an overview of advancements in this domain to 

elucidate the prevailing trends, methodologies, and 
challenges associated with ML in disease diagnosis [11-

13]. We commence by delineating numerous ways of 

machine learning and deep learning approaches, 

together with specific architectures for the detection and 
classification of diverse disease diagnoses. This paper 

aims to offer insights to current and future researchers 

and practitioners concerning machine-learning-based 

disease diagnosis (MLBDD), facilitating their selection 
of the most suitable and effective machine 

learning/deep learning methodologies. This will 

enhance the probability of swift and dependable disease 

detection and classification in diagnostics, ultimately 
contributing to the development and assessment of AI 

algorithms for the precise and early prediction of sickle 

cell disease and crises, thereby improving diagnostic 

capabilities and patient outcomes [14, 15]. 
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3. METHODOLOGY 
3.1. Data Collection and Preprocessing 

The Data Collection is done through accessing 

by permission the indigenous local records of patients 
in Immanuel Infirmary and University of Calabar 

Teaching Hospital, Calabar, CRS, Nigeria. We also 

issued out surveys by questionnaires to patients online 

and physically in Calabar, Cross River State. This 
involves Clinical Elaboration on "Predictive Analytics 

for Sickle Cell Disease (PASS)"(Data Collection and 

Integration). The Comprehensive Patient Data include: 

 
Genetic Information, Medical History, 

Laboratory Results, Clinical Observations, Data 

Integration, Real-Time Monitoring Devices, Identifying 

Relevant Features, Genetic Variants, Hemoglobin 
Levels Treatment History, hydroxyurea, blood 

transfusions, and novel therapies, including side effects 

and efficacy. Collect data from the hospital, including 

patient demographics, medical history, genetic 
information, laboratory test results, treatment records, 

and details of Sickle Cell Disease (SCD) crises (e.g., 

frequency, severity, triggers). 

 
3.2. Model Selection 

The machine learning algorithms used are: 

Random Forest: the ensemble method builds 

multiple decision trees and merges them to get a more 
accurate and stable prediction. Support Vector Machine 

(SVM) is used as a classifier that finds the optimal 

hyperplane which maximizes the margin between the 

different classes in our data. Logistic Regression is the 
statistical model that uses a logistic function to model 

our binary dependent variable.  

 

3.3. Model Training 

We train the models using the training dataset 

in excel sheet 2 obtained from excel sheet 1. For 

Random Forest, tune hyperparameters such as the 

number of trees, maximum depth, and minimum 
samples per leaf. For SVM, tune hyperparameters such 

as the kernel type and gamma for Logistic Regression, 

tune hyperparameters. 

 
3.4. Model Evaluation 

Evaluation of the performances of each model 

using the testing dataset: Metrics to consider include 

accuracy, precision, recall, F1-score, ROC-AUC, and 
confusion matrix. Comparison of the performance of 

Random Forest, SVM, and Logistic Regression to 

determine the best-performing model.  

 
The k-fold cross-validation (k=8) was used to 

validate the model performance and ensure it 

generalizes well to unseen data. We average the results 

across all folds to get a more reliable estimate of model 
performance. For Random Forest, we examine feature 

importance scores to understand the contribution of 

each feature. For Logistic Regression, we analyze the 

coefficients to understand the relationship between 

features and the target variable. For SVM, we visualize 
the support vectors and decision boundary (if using a 

linear kernel). 

 

To address data imbalance in sickle cell crises, 
techniques such as oversampling, under sampling, or 

using algorithms like weighted SVM can be employed 

to prevent model bias. Model training involves selecting 

the appropriate SVM variant and optimizing 
hyperparameters (e.g., kernel function, regularization 

parameter, and kernel parameters), using cross-

validation to tune and assess performance. Evaluation 

metrics such as accuracy, precision, recall, F1-score, 
and AUC should be chosen to assess the performance of 

SVM, Random Forest, and Logistic Regression models. 

Interpretability is crucial, particularly in healthcare 

applications, with linear SVM models being more 
straightforward compared to complex kernel SVM 

models. The models should be validated using an 

independent dataset and tested prospectively in clinical 

settings to ensure their utility and reliability. By 
considering these factors, predictive models for sickle 

cell crises can be developed to provide clinically 

relevant insights. 

 
3.5. SCD Factors and SVM, Random Forest and 

Logistic Regression Algorithm.  

In applying the Support Vector Machines 

(SVMs), Random forest and Logistic Regression for 
predicting sickle cell crises, several factors need to be 

considered to build an effective predictive model. Here 

are some key considerations: 

 

3.6. Random Forests 

Predicting disease complications and severity, this is 

how it is used: 

3.6.1. Data Collection: we gather a comprehensive 
dataset including patient demographics, genetic 

markers, clinical history, lab results, and treatment 

regimens. 

 
3.6.2. Feature Engineering: we identify and extract 

relevant features such as hemoglobin levels, frequency 

of vaso-occlusive crises, organ damage indicators, and 

other biomarkers. 
 

3.6.3. Model Training: we used a random forest 

classifier to train the model on historical data, with the 

target variable being the occurrence of specific 
complications or the severity of the disease. 

 

3.6.4. Prediction and Insights: The trained model 

will then predict the likelihood of complications such as 
acute chest syndrome, stroke, or kidney damage. 

Additionally, feature importance scores provided by 

Random Forests can help identify the most significant 

predictors of disease severity, aiding in clinical 
decision-making and personalized treatment plans. 
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3.7. Support Vector Machines (SVM) 

For classifying patient subtypes and identifying 

biomarkers, this is how it is used: 

3.7.1. Data Collection: We obtain high-dimensional 

data such as genomic sequences, proteomic profiles, or 
metabolomic data from patients with SCD. 

 

3.7.2. Preprocessing: Perform dimensionality 

reduction techniques like PCA (Principal Component 
Analysis) to handle the curse of dimensionality and 

enhance the signal-to-noise ratio. 

 

3.7.3. Model Training: we train an SVM classifier to 
distinguish between different patient subtypes, such as 

those with varying responses to hydroxyl urea treatment 

or different pain crisis frequencies. 

 
3.7.4. Biomarker Discovery: The SVM model will 

help identify key biomarkers that differentiate these 

subtypes. These biomarkers can then be further 

validated through biological experiments and used for 
more targeted therapeutic approaches. 

 

3.8. Logistic Regression 

For Predicting disease progression and personalized 
treatment response, this is how it is used: 

Data Collection: we compiled longitudinal 

datasets that include continuous monitoring data (e.g., 

wearable device data), imaging data (e.g., MRI scans), 

and electronic health records. We ensure that the data 
includes relevant features such as patient demographics, 

medical history, and treatment details. 

 

We pre-process and integrate the collected data 
to create a comprehensive dataset. This involves 

cleaning the data, handling missing values, and 

normalizing features. Use feature engineering 

techniques to extract important characteristics and 
create meaningful variables that capture key aspects of 

disease progression. 

 

We use the logistic regression to model the 
probability of disease progression and treatment 

outcomes. Logistic regression is particularly useful for 

binary classification tasks. Then we train the model on 

the integrated dataset, using features such as patient 
demographics, clinical measurements, and treatment 

details to predict the likelihood of disease progression 

or response to specific treatments. 

 
The logistic regression model provides 

personalized predictions on disease trajectory and likely 

responses to various treatments. By analyzing the 

coefficients of the model, clinicians can identify the 
most significant factors influencing disease progression 

and treatment outcomes. This enables them to tailor 

interventions to individual patient needs, improving 

overall care and treatment effectiveness. 
 

 
 

3.9. Mathematical Outline and Application of 

Predictive Models in PASS 

3.9.1. Random Forest 

A Random Forest is an ensemble learning 

method that consists of a collection of decision trees. It 
operates by constructing multiple decision trees during 

training and outputting the mode of the classes 

(classification) or mean prediction (regression) of the 

individual trees. 
 

3.9.2. Decision Tree: A tree where each internal node 
represents a feature (variable), each branch represents a 

decision rule, and each leaf node represents an outcome. 

 

3.9.3. Variables and Parameters 

3.9.4. Mathematical Description: 

},...,,{ 21 nxxxX = , X: feature matrix where xi 

represents individual feature features like genetic 

variants, hemoglobin levels, etc. 
 



 
 

 
 

 

 
 

Essang Samuel Okon et al, Sch J Eng Tech, Dec, 2024; 12(12): 394-403 

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          399 

 

 
 

 

y: the target variable (e.g occurrence of a vaso-
occlusive crisis) 

Ntrees: the number of trees in the forest. 

m: number of features to be considered when 

looking for the best split (a subset of all 
features) 

 : Parameters of each decision tree, including 

splits and decisions thresholds 
 

Algorithm: 

i. Bootstrap Sampling: Create multiple bootstrap 

samples from the original dataset. 
 

Tree Construction: For each bootstrap sample, grow a 

decision tree by: 

Randomly selecting m features at each node. 
ii. Splitting the node using the feature that 

provides the best split according to a criterion  

iii. Aggregation: Aggregate the predictions of all 

trees to make the final prediction. 
 

Application in PASS: 

iv. Predicting Complications: Random Forest will 

be used to predict the likelihood of 
complications (e.g. pains) by analyzing 

features such as genetic data, hemoglobin 

levels, and past medical history. 

v. Treatment Response: By considering multiple 
patient features, Random Forest will help 

predict individual responses to treatments like 

hydroxyl urea. 

 
3.10. Logistic Regression 

3.10.1. Mathematical Description: 

Logistic Regression is a linear model for 

binary classification that estimates the probability that a 
given input belongs to a particular class. 

 

Logistic Function: 

)...( 1101

1
)|1(

nn xx
e

XyP
 +++−

+
==  

Variables and Parameters: 
x: feature matrix as above. 

y: Binary target variable (0 or 1, e.g 

occurrence of a pain episode). 

:...110 nn xx  +++ Coefficients 

representing the weight of each feature. 

:y predicted probability of the target variable 

1 
 

Algorithm: 

i. Model Representation: Define the logistic 

function with the feature set X. 
ii. Parameter Estimation: Estimate the 

coefficients β using methods such as maximum 

likelihood estimation (MLE) 

iii. Prediction: Use the logistic function to predict 
the probability of the target variable. 

Application in PASS:  
iv. Risk Stratification: Logistic Regression will 

help in identifying patients at high risk for 

acute events such as strokes by analyzing 

clinical and genetic features 
v. Treatment Decisions: By understanding the 

relationship between various patient features 

and treatment outcomes, Logistic Regression 

can guide decisions on medication 
adjustments. 

 

3.11. Support Vector Machine (SVM) 

Mathematical Description: 

SVM is a classification algorithm that finds the 

hyperplane that best separates the data into different 

classes with maximum margin.  

Hyperplane: 0=−• bxw  

Objective: Minimize 

1)(,
2

1 2
−• bxwytosubjectw ii  

 

Variables and Parameters: 
x: feature matrix as above. 

y is the target variable 

w is the weight vector orthogonal to the hyperplane 

b is the bias term 
C is the regularization parameter balancing margin 

maximization and classification error. 

 

Algorithm: 
i. Optimization Problem: Solve the quadratic 

optimization problem to find w and b. 

ii. Kernel Trick (if non-linear): Map the data 

into a higher-dimensional space using a 

kernel function ),( ji xxK  

iii. Decision Function: Classify new data 

points based on the sign of bxw −•  

 

4. ANALYSIS AND RESULTS 
Here, we move into the application of machine 

learning algorithms for the prediction and analysis of 

sickle cell disease (SCD) crises. Given the complex and 

multifactorial nature of SCD, leveraging advanced 
computational techniques can provide significant 

insights into patient management and care. We employ 

three prominent machine learning algorithms—Random 

Forest, Support Vector Machine (SVM), and Logistic 
Regression—to analyze hospital-acquired data 

pertaining to SCD and its associated crises. We outline 

the methodology, data preprocessing steps, model 

training and evaluation procedures, and the 
interpretability of the results. By employing these 

algorithms, we aim to improve diagnostic accuracy, 

optimize treatment strategies, and predict crisis events 

with higher reliability, ultimately enhancing patient 
outcomes. 
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Three (3) classification algorithms are used, which are 
listed below: 

• Logistic Regression Classification Algorithm 

• Random Forest Classification Algorithm 

• SVM 

 

Four (4) evaluation metrics are used, which are listed 
below 

Precision: Precision measures the proportion of 

predicted positives that are actually positive. 

Interpretation: A high precision score indicates that the 
classifier is good at avoiding false positives. In other 

words, the classifier is good at predicting only those 

samples that are truly positive. 

 
Recall: 

Recallmeasurestheproportionofactualpositivesthatarecor

rectlypredictedas positive.  

Interpretation: A high recall score indicates that the 
classifier is good at avoiding false negatives. In other 

words, the classifier is good at predicting all of the 

samples that are truly positive. 

 
F1-score: The F1-score is a weighted average of 

precision and recall. 

Interpretation: The F1-scoreisagood overall measure of 

a classifier's performance. It takes into account both 
precision and recall, and it is therefore a good indicator 

of the classifier's ability to correctly classify both 

positive and negative samples. 

 
Accuracy: Accuracy measures the overall proportion of 

correct predictions. 

Interpretation: Accuracy is a simple and intuitive 

measure of a classifier's performance. However, it can 
be misleading in some cases, such as when the dataset 

is imbalanced. 

 

 Precision Recall F1-Score Support 

AA 0.00 0.00 0.00 10 

AS 0.00 0.00 0.00 28 

SS 0.75 1.00 0.85 112 

accuracy   0.75 150 

macro avg 0.25 0.33 0.28 150 

weighted avg 0.56 0.75 0.64 150 

Accuracy: 0.7466666666666667 

Precision: 0.2488888888888889 
Recall: 0.3333333333333333 

F1-score: 0.2849872773536896 

 

Interpretations: 

The accuracy of 0.7466 indicates that the model is 

correctly predicting approximately 75% of the samples. 

This is a very good accuracy. 

The precision of 0.2488 indicates that, of the samples 
that the model predicts as positive, approximately 25% 

are actually positive. 

The recall of 0.33 indicates that, of the samples that are 

actually positive, the model correctly predicts about 
33% of them. 

The F1-score of 0.2849 is a weighted average of 

precision and recall. 

 
Overall, the semetrics indicate that the model 

is somehow performing well on this data set. The model 

has 75% accuracy, 25% precision, 33% recall, and 28% 

F1-score. This suggests that the model still needs to be 
improved before it can be used to make reliable 

predictions. 

 

Here is a more detailed interpretation of the results 

in connection with the target variable: 

AA: The model is not performing well on the AA 

category. The precision is very low, which means 

that the model is predicting many false positives. 
The recall is also low, which means that the model 

is missing many true positives. 

AS: The model is not performing well on the AS 
category. The precision is very low, which means 

that the model is predicting many false positives. 

The recall is also low, which means that the model 

is missing many true positives. 
SS: The model is performing slightly better on the 

SS than on the other classes or categories. 

However, the precision is 75, which is high enough 

to predict, while recall is 100% and F1 score is 
85%. 

 

General Interpretation: 

The model has perfect recall for the SS class, 
meaning that it correctly identifies all actual SS cases. 

 

The model has very low precision and recall 

for the AA and AS classes, meaning that it incorrectly 
classifies most cases in these classes.  

 

The overall accuracy of the model is 75%, 

which means that it correctly classifies 75% of all cases. 
The macro average metrics (calculated across all 

classes) are low, indicating that the model's 

performance is not good on average. The weighted 

average metrics (calculated using the support of each 
class) are higher, indicating that the model's 

performance is better on the majority class (SS). 
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Overall, these results suggest that the model is 
not performing well on the AA and AS classes, and that 

it is heavily biased towards the SS balanced dataset. 

 

 Precision Recall F1-Score Support 

AA 0.40 0.20 0.27 10 

AS 0.79 0.39 0.52 28 

SS 0.81 0.95 0.87 112 

accuracy   0.79 150 

macro avg 0.66 0.51 0.55 150 

weighted avg 0.78 0.79 0.77 150 

Accuracy: 0.7933333333333333 

Precision: 0.6649581970192657 

Recall: 0.513095238095238 
F1-score: 0.5543013913384284 

 

 Precision Recall F1-Score Support 

AA 0.00 0.00 0.00 10 

AS 0.19 1.00 0.31 28 

SS 0.00 0.00 0.00 112 

accuracy   0.19 150 

macro avg 0.06 0.33 0.10 150 

weighted avg 0.03 0.19 0.06 150 

Accuracy: 0.18666666666666668 

Precision: 0.06222222222222223 

Recall: 0.3333333333333333 
F1-score: 0.1048689138576779 

 

Finally, it is obvious that Random Forest 

Algorithm and Logistic Regression Algorithm produced 
the same results of approximately 79% accuracy, 66% 

orecision, 51% recall, and 55% F1 score and these two 

algorithms happen to be the best. 

 
Comprehensive Evaluation Metrics: 

In model evaluation we considered multiple 

metrics: Accuracy, precision, recall, F1-score, ROC-

AUC, and confusion matrix. In sensitivity, specificity, 
and AUC-ROC was applied to provide a more nuanced 

understanding of the models' performance in different 

scenarios. 

 
Interpretation of Models' Predictions in Clinical 

Practice: 

Examples of how model predictions were used in 

clinical practice include: 
AI-driven decision support tools for analyzing 

complex patient data in real-time, predictive analytics 

for optimizing healthcare resource allocation, AI-

powered educational platforms for empowering SCD 
patients with knowledge about their condition. 

 

Interpretability in machine learning refers to 

the degree to which a human will understand the cause 
of a decision made by a model. It is crucial in the 

healthcare domain, where decisions impact patient 

treatment and outcomes. Several techniques were used 

to improve the interpretability of machine learning 
models: 

 

Decision Trees: these are inherently interpret-

able models where decisions are made based on a series 
of if-then-else rules derived from the input features. 

They were used to visualize the decision-making 

process in a straightforward manner, making it easier 

for clinicians to follow and trust the model’s decisions. 
 

In feature Importance, many machine learning 

algorithms, like random forests and gradient boosting 

machines, provide measures of feature importance that 
indicate how much each feature contributes to the 

model’s predictions. 

 

Clinicians will use this information to 
understand which variables are most influential in 

predicting outcomes, such as which laboratory test 

results are most indicative of an impending sickle cell 

crisis. 
 

Application of SVM, Logistic Regression, and 

Random Forest in SCD 

Support Vector Machine (SVM) was used to 
classify patients based on the risk of developing 

complications such as vaso-occlusive crises or acute 

chest syndrome. We ensure a balanced dataset and 

conducted thorough hyperparameter tuning. Using 
kernel methods that will capture non-linear 

relationships relevant to SCD. 

 

Logistic Regression was applied to predict the 
likelihood of specific outcomes, such as the probability 

of hospitalization due to a sickle cell crisis. We 
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included relevant predictors considering interaction 
terms. Regularizing the model prevented overfitting and 

addressed bias. 

 

Random Forest was used for predicting 
various complications in SCD, such as anemia severity, 

based on a combination of clinical and laboratory 

feature, using balanced datasets and considering feature 

importance to ensure no important predictors are 
omitted. Employing techniques like balanced random 

forests to manage data imbalance. 

 

5. SUMMARY, CONCLUSION AND 

RECOMMENDATION 
The methodology employed provides a 

comprehensive approach to exploring the potential of 

AI and ML in healthcare, with a particular focus on 

SCD management. By systematically reviewing the 

literature, analyzing various AI algorithms, and 
evaluating their applications in clinical settings, we 

aims to contribute to the advancement of AI-driven 

healthcare solutions and inform future research and 

policy development. 
 

Our research emphasizes the importance of 

early detection and personalized treatment plans for 

Sickle Cell Disease (SCD) through the integration of 
patient data, including genetic markers, medical history, 

and clinical parameters. We developed and validated 

machine learning models using historical patient data, 

ensuring their accuracy and generalizability through 
cross-validation techniques. Implementing these models 

in simulated clinical settings demonstrated their 

practical utility in early detection and personalized 

treatment planning. Additionally, predictive analytics 
and AI-powered remote monitoring systems were 

employed to forecast acute exacerbations and 

continuously track key health indicators using wearable 

devices and mobile applications. These systems were 
evaluated for accuracy, reliability, and their impact on 

reducing hospital visits and improving patient 

outcomes. 

 
Our analysis of global AI policy and regulation 

highlighted the ongoing efforts to create frameworks 

that support the ethical integration of AI in healthcare, 

addressing legal implications such as medical 
malpractice. Continuous improvement of the AI models 

was achieved through feedback loops that learn from 

patient outcomes and treatment responses, ensuring the 

models remain accurate and clinically relevant. Iterative 
refinement based on feedback from healthcare providers 

and patients further enhanced the models' effectiveness. 

We recommend adopting these advanced AI-driven 

approaches in clinical practice to improve the 
management and outcomes of SCD patients, alongside 

ongoing monitoring and policy development to address 

ethical and legal concerns. 
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