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Abstract: This paper mainly studies classification of the solutions to the third-order homogeneous linear difference 
equation with constant coefficients. First, we determine the generating function of it. Then, we use the complete 

discrimination system for polynomial to get classification of the solutions for the considered equation. 
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INTRODUCTION 

Generating function plays an important role in many fields ,such as probability theory, combinatorial mathematics, 

programming and algorithm design and digital signal processing[1,2]. Generating function method is also a powerful tool 

for studying difference equations. 

 
Complete discrimination system for polynomial can be applied to solve all kinds of the partial differential equations 

[3,4,5,6]. In this paper, we use this method to solve the difference equation. It is an initiative and there is no one else that 

does so.  

In this paper, we first determine the generating function of the unknown function in the fourth-order homogeneous linear 

difference equation with constant coefficients.  

 

Then, we use the complete discrimination system for polynomial to get classification of the solutions for the 

considered equation. 

 

GENERATING FUNCTION OF THE THIRD-ORDER HOMOGENEOUS LINEAR DIFFERENCE 

EQUATION 
In this paper, we take into account the third-order homogeneous linear difference equation, and it reads as 

1 2 3 0n n n na pa qa a       

The characteristic equation of the above formula is 
3 2 0r pr qr      

Where p ， q ，  are real numbers and 0  . 

Let { }na  and { } {1, , , , }nb p q  L ，then we do convolution calculation to them[2]. 

We get 
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CLASSIFICATION OF THE SOLUTIONS TO THE CONSIDERED EQUATION 

According to complete discrimination system for polynomial, there are nine cases as follows. Let 
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(1). If 0  ，
1 0D  ，the characteristic equation has three different real roots  

1 ,
2 ,

3 .That is 

1 2 3( ) (1 )(1 )(1 )F x x x x       

Then 

31 2

0 1 2 31 1 1

n

n

n

CC C
a x

x x x  





  
  

  

1 1 2 2 3 3

0 0 0

( ) ( ) ( )n n n

n n n

C x C x C x  
  

  

      

1 1 2 2 3 3

0

( )n n n n

n

C C C x  




    

Therefore, we get 
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(2). If 0  ，
1 0D  ，the characteristic equation has a simple real roots 

1 , and a double real root 
2 . That is 
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Therefore, we get 
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（3）If 0  ， 1 0D  ，the characteristic equation has a triple real root 1 .  

That is 
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（4）If 0  ，the characteristic equation has a simple real root 
1  and a pair of conjugate imaginary roots 

2 ，

3 . That is 
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where 2 2 0 0(cos sin )C C i   ， 2 2 (cos sin )i     , 2 3C C . 

 

CONCLUSIONS 
In this paper, we determine the generating function of the unknown function in the third-order homogeneous linear 

difference equation with constant coefficients. Then, we use the complete discrimination system for polynomial to get 

classification of the solutions and obtain the solutions (2) (3) (4) (5) for the considered equation. This paper has 

introduced a simple and useful method to solve  the homogeneous  linear difference equations with constant coefficients. 
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