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Abstract: In this paper, using the method of undetermined coefficients, by constructing auxiliary series, fractional linear 

recursive sequence is derived for the general term formula of under various circumstances．. 
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INTRODUCTION 

The general form of fractional linear recursive sequence has the following form: 
1

n
n

n
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a

Ca D

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


,where 

0, 0AD BC C   .It is one of the most primary study objects in mathematical analysis. The main ways to solve 

general term formula of fractional linear recursive sequence are the eigenvalue method , the matrix method and the fixed 

point method [1-4] and so on for the present. But there is no related articles about the method of undetermined 

coefficients to solve general term formula of fractional linear recursive sequence.  

 

Its advantages are less  mathematical theory required which are difficult to be understood and simpler and easier 

to calculate. 

 

GENERAL TERM FORMULA OF FRACTIONAL LINEAR RECURSIVE SEQUENCE 

For general fractional linear recursive sequence 
1

n
n

n

Aa B
a

Ca D



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
, Where 0, 0AD BC C   . 

The method of calculating general term formula is divided into the following two cases. 

when 0B  ，we have 
1

n
n

n

Aa
a

Ca D
 


 . 

Taking the reciprocal of 1na  , we obtain  

1

1 1

n n

C D

a A A a

  . 

(1) If A D ，we get 
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1 1 1

n n n

C D C

a A A a A a

    by simplifying the above-mentioned formula. 

So 
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na

 
 
 

 is an arithmetic progression and its  general term formula is  
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That is, the general term formula of  the sequence  na  is  
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example 1  

 Let 
1

2

3 2

n
n

n

a
a

a
 


,

1 1a  ,find the general term formula for { }na . 

Solution  

We take the reciprocal of 
1na 
and get  
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and then 
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  . 

So the sequence 
1

na

 
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 is an arithmetic sequence. 

That is 

1 3
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Therefore 
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
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（2）If A D ，let 
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n

n

b
a

 ，we get 1n n

C D
b b

A A
   . 

We construct auxiliary sequence as follows 

1 ( )n n

D
b k b k

A
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Thus, 

( 1)
D C

k
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and hence 

C
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
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The above-mentioned formula turns to be 
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So the sequence { }n

C
b
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
 is a geometric  sequence and its general term formula is 
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By simplifying the above-mentioned formula, we get 

1

1

1
( )( )n

n

C D C
b

a D A A D A

  
 

 

We take the reciprocal of the above-mentioned formula, we get 
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example 2  

Let 
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3 4

n
n

n

a
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a
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
,

1 1a  ,find the general term formula for { }na . 

Solution  

We take the reciprocal of 
1na 
 and get  
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Let 
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  and then we have 
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We use the undetermined coefficient method for the following formula 

1 2( )n nb k b k     

Thus, we obtain 
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So the sequence 
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nb   is a geometric  sequence. 

and hence 
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Therefore                    
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When 0B  ，suppose that 
1

( )n
n

n

a k
a k

Ca D





 


，then we have 
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comparing with the old one,we obtain 
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We can determine the value of  ， k .Thus,the case 2.2 can be turned into this case.  

 

example 3  

Let 1

4 2

7
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





, 1 2a  ,find the general term formula for { }na . 

Solution  
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Through the collation, we have 
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So we obtain 
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Through solving the equation, we get  
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CONCLUSIONS 
In this paper, we solve general term formula of fractional linear recursive sequence by transforming them into 

arithmetic progression or geometric sequence and using the method of undetermined coefficients 

and constructing auxiliary sequence ingeniously. Furthermore, we derive the general term formula under various 

circumstances  
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