
Omer Akguller et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-1 (Dec-Feb); pp-57-60 
 

Scholars Journal of Physics, Mathematics and Statistics ISSN 2393-8056 (Print) 
Sch. J. Phys. Math. Stat. 2015; 2(1):57-60 ISSN 2393-8064 (Online) 
©Scholars Academic and Scientific Publishers (SAS Publishers) 
(An International Publisher for Academic and Scientific Resources) 

 

 

Diamond Osculating Planes of Curves on Time Scales 
Omer Akguller*, Sibel Paşali Atmaca 

MuğlaSıtkı Koçman University, Faculty of Science, Department of Mathematics, 48000, Mentese, Mugla, Turkey 
 

*Corresponding Author: 
Omer Akguller 
Email: oakguller@mu.edu.tr 

 
 

Abstract: In this paper, we present normal, binormal, and osculating plane of diamond regular curves on time scales. We 
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INTRODUCTION 
A time scale can be defined as non-empty closed subsets of reals [2]. It’s the theory that has the benefits of 

unification of continuous and discrete calculus. The concept of dynamic equations has motivated a huge size of research 
work in recent years [3,5,9]. Geometric interpretation of the theory of timescales is extensively studied afterwards the 
introduction of partial derivatives on time scales [4,7,10]. 

 
In [6], authors presented the symmetric derivative on time scales and its relation to forward and  backward 

derivatives. This study aims the differentiability of the functions where their derivatives vanish. This kind of calculus 
also come up with more precisely and well defined tangent line definition [10]. 

 
In this study, we purpose the idea of osculating planes of a regular curve on time scales. For this purpose, we first 

introduce the concept of vector valued functions on time scales in Section 2. We also analyze this kind of functions by 
symmetric, or as known as diamond, derivatives of their real valued coordinate functions. We also present an equation 
for a diamond tangent line, by using partial symmetric derivatives on time scales. More on partial derivatives can be 
found in [10]. In Section 3, we use diamond derivatives to analytically define osculating planes besides the normal and 
binormal planes. 

 
VECTOR VALUED FUNCTIONS 

Let T i   denote an arbitrary time scale, for 1, 2, ,i n=  . The natural tensor product of this time scales lead us an 

n -dimensional time scale 

( ) { }{ }, , , : , 1, 2, , .
1 2 1 2

n t t t t i n
n n i i

L = T ´T ´ ´T = ÎT " Î    

To analyze vector valued functions via the symmetric derivative on time scales, we may first define vector valued 
function as a mapping from a time scale to n -dimensional real space, i.e.,  

{ }1 2: , ( ) ( ), ( ), ( ) ,n
nR t t t t tf f f f fT =   

where  1 2( ), ( ), ( )nt t tf f f  are real-valued coordinate functions. Limit of this vector valued function can be defined 

as in [4, Definition 2.1]. The symmetric derivative of such function can also be defined as same fashion. 
 

Definition 2.1: à -derivative of a vector valued function can be defined by the à -derivative of each coordinate 

functions, i.e., 

{ }( ) ( ), ( ), , ( ) .
1 2

t t t t
n

f f f f
à à à à

=   

More precisely, if the limit value 
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k 

0 

 

exists as a finite number, we may call f as symmetric differentiable vector valued function at t k
kÎ T

Proposition 2.1: Let ( )tf  ( )tj  and be two vector valued functions for t k
kÎT , ⋅  and ´ denote Euclidean inner and 

cross product, respectively. Then, 

i. ( )( ) ( ) ( ) ( ( )) ( ( )) ( )t t t t t tf j f j s f r jà à à⋅ = ⋅ + ⋅  

ii. ( )( ) ( ) ( ) ( ( )) ( ( )) ( )t t t t t tf j f j s f r jà à à´ = ´ + ´  

The à -differentiation of the inner products and vector products of vector-valued functions can be computed by the 

consecutive à -differentiation of the cofactors. 
 

Definition  2.2:  Assume  that  k  times à -derivative  of  the  vector-valued  function ( )tf  exists and  are  time  scale- 

continuous, then we can write Taylor’s expansions for the components { }1 2( ), ( ), , ( )nt t tf f f  as 

 

( )2 1

1 0 0 1 0 1 0 1 0 2 0 1 0 0 1 0 1 1( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )
k k

kt h t t t h t t t h t t t h t t t of f f f f f
+à à à à= + + + + +  

                         
   ( )2 1

0 0 0 1 0 0 2 0 0 0 0( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ,
k k

n n n n k n n nt h t t t h t t t h t t t h t t t of f f f f f
+à à à à= + + + + +

where, 0,t t k
kÎT , 0 ( , ) 1h t s º , 

0

1 0 0( , ) ( , )
t

k k

t

h t t h tt t+ = àò . 

For more diamond integration on time scales see [10]. 
This system of n equations can be written as 
 

( )2 1

0 0 0 1 0 0 2 0 0 0 0 0( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( ) ,
k k

kt h t t t h t t t h t t t h t t t o tf f f f f f
+à à à à= + + + + +  

where ( )1

0( )
k

o tf
+à  denotes a vector whose length is infinitesimal. 

Definition 2.3: Let T be a time scale. A diamond regular curve g   is defined as a mapping 

( )3
1 2 3: , ( ) ( ), ( ), ( )R t t t t tg g g g gT =  

for [ ],t a b k
kÎ ÍT  with 

2 2 2

1 2 3 0.g g gà à à+ + ¹  

Definition 2.4: Let 3: Rg T  be a real valued diamond regular curve and 0t
k
kÎT .  The line with the slope 0( )tgà  

passing at the point 0( )tg  is called Diamond tangent line ofg . See [10]. 

 

Now, let three coordinate functions for a diamond regular curve 1 : Rg T  , 2 : Rg T , and 3 : Rg T  be given. 

Let us set 1 1( ) :g T =T  , 2 2( ) :g T =T , 3 3( ) :g T =T . It is natural to assume that 1 2 3, ,T T T  are time scales. With 

these assumptions, let us define two closed form functions: 

1 2 3

1 2 3 1 2 3

, :

( , , ) 0, ( , , ) 0

Rf j
f g g g j g g g

T ´T ´T 

= =
   which lead us a space curve. If we substitute the position vectors of the considered curve, then we obtain two equalities: 

 

1 2 3

1 2 3

( ( ), ( ), ( )) 0

( ( ), ( ), ( )) 0.

t t t

t t t

f g g g
j g g g

=

=
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If the functions f   and j   are diamond differentiable, then 
 

                   

1 2 3

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

0

0,

f f f
g g g

g g g

j j j
g g g

g g g

à à à

à à à

¶ ¶ ¶
+ + =

à à à

¶ ¶ ¶
+ + =

à à à

     (1)

    where 1à , 2à ,and 3à  are the partial symmetric derivative operator for 1 2 3, ,T T T , respectively [7,10]. The components          

{ }1 2 3, ,g g gà à à  of diamond tangent vector satisfy the system of consisting equations (1). 

 For a planar curve g  , given by the equations 1 2 3( , ) 0, 0g g g g= = satisfying the condition 

( ) ( )2 2

1 1 2 2 0f g f g¶ à + ¶ à ¹ ; then the components of the tangent vector { }1 2,g gà à  satisfies the given equation: 

 1 2

1 1 2 2

0.
f f

g g
g g

à à¶ ¶
+ =

à à
  

Therefore,{ } { }
1 2 2 2 1 1

, ,g g m f g f gà à = -¶ à ¶ à , and the equation of the diamond tangent is 

 1 2

2 2 1 1

,
x yg g

f g f g

- -
=

-¶ à ¶ à
 

where x  and y  are standard Euclidean coordinate functions. 

OSCULATING PLANES 

Definition 3.1: Let g  be a regular and diamond differentiable space curve. The plane passing through the point 0P gÎ    

and orthogonal to the vector tangent to g at 0P  is called the plane normal to g at 0.P The plane with the normal direction 

0( )Pgà  and orthogonal the normal plane of g at 0P  is called the binormal plane. 

 Let g  denote the position vector of normal plane. Since this plane is orthogonal to the vector gà  and contains the 

point with the position vector 0( )tg g- , the equation of the normal plane is 

 ( )0 0( ) ( ) 0.t tg g gà- ⋅ =
  

With the similar fashion one may obtain the equation of binormal plane as 

 1 0 2 0 3 0( ) ( ) ( ) 0,t x t y t zg g gà à à+ + =  

where  { }, ,x y z  are the standard Euclidean coordinate functions. 

Theorem 3.1: Let g  be a regular and represented as ( )tg g= . Assume that the vectors gà  and 
2

gà  are not collinear at 

0( )tg . Then there exists osculating plane of g  at 0( )tg and is spanned by the vectors gà and 
2

gà . 

Proof. If t0 is a dense point, then diamond derivative turns to be usual derivative and proof can be completed as in 

classical differential geometry, see [1]. 

Let 0t  be a scattered point. Then, the position vectors of 0 1P Q


 and 0 2P Q


 are 1 0 1( )a tg t= +  and 2 0 2( )a tg t= + , 

respectively. That is, if these vectors are linearly independent, then they span such a plane W  . This plane is also spanned 

by the vectors 
(1)

1a
u  and 

(2)

2a
u . One may also conclude the relation of 

 
( )(2) (1)

(1)

2 1

2
,

u u
u w

t t

-
=

-
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span the W . If we take Taylor’s expansion in the account; i.e., 

( )
2

0 0 0 1 0 0 2 0 0( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ,t h t t t h t t t h t t t o Eg g g gà à= + + +  

we obtain 

 

2

2

(1) 1

0 0 1

0

( ) ( ) o( )
2

( ) o(1).

t t

t

t
u g g t

w g

à à

à

= + +

= +

  

Consequently, if 1t  and 2t approach to zero, then (1)
0( )tu gà  and  

2

0( )tw gà .    

 
Corollary 3.1: The osculating plane of a planar curve coincides with the plane containing this curve. 
 By this idea, it is possible to obtain the equation of the osculating plane of a regular curve. Let g  denote the 

position vector of the osculating plane. Since gà and 
2

gà span the osculating plane, the vector 
2

g gà à´  is orthogonal to 

this plane. Therefore, 

 ( ) ( )2

0 0( ) ( ) 0t tg g g gà à- ⋅ ´ =
. 

By the standard Euclidean coordinate functions { }, ,x y z  , this equation yields  

 

2

2

2

0 1 1

0 2 2

0 3 3

( )

det ( ) 0.

( )

x t

y t

z t

g g g

g g g

g g g

à à

à à

à à

-

- =

-
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CONCLUSIONS 
In this study, we present a new technique to define analytic equations of regular curves on time scales. For this 

purpose, we use the symmetric derivative on time scales that is introduced in [6]. Since the diamond differentiability does 
not yield restrictions as completely differentiability [10], this kind of calculus help us to obtain equations precisely. The 
main disadvantage of restrictions can be seen in [4]. It’s possible to apply this method to obtain some other 
characteristics of regular curves on time scales. 
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