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Abstract  Review Article 
 

In a model with bifurcated spacetime a microstructure layer with meV voltages and quantized conductivity of is capable 

to emit a cosmic ray spectrum by neutral quadrupolar waves with low count rate. Enhanced air ionization, air 

composition change, layer damage and nuclear disintegration stars as well a second sound with independent waves of 

temperature and entropy is predicted. The cosmological constant problem is quantitatively explained that quantum 
statistical vacuum energy density in the layer already contains on average a broadband emission up to cosmic rays. For 

bifurcated ripped spacetime quantum statistics treats k-components of the tree as particles. Particles as monopole-like 

fractal strings arise near zeros of zeta functions. 
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INTRODUCTION 
Experimental values of the vacuum energy 

density ρexp are 50 to 200 orders of magnitude smaller 

than the theoretical value ρQS of zero-point energy 
suggested by quantum statistics (QS). This disagreement 

constitutes the substantial problem of the cosmological 

constant (CCP) [1, 2]. However, high-precision 

nanostructure measurements are in good agreement with 
QS. Theoretically charge quantization requires B-field 

lines in the complex electromagnetic field E+iB drawing 

a pole which is realizable e.g. by large ball of strings as 

a large monopole mass [3]. The aim of the present note 
is to describe meV semiconductor experiments to clarify 

both fundamental problems. Charge quanta are 

experimentally detected for a mass ratio 1020 between oil 

drop and electron [4]. Within a fractal zeta universe 
(FZU) [5], of ripped bifurcating spacetime the Millikan 

experiment (ME), the quantum Hall (QH) effect, 

atmospheric clouds and universe clouds are shown to be 

self-similar tight-binding models each of mass ratio 

≃1020 extending Dirac’s large number hypothesis [6]. 

Orbits of period-doubling k-components of a quadratic 
map alternate with a lap number lω of equivalent periods 

ω. Simplest cycles νq of iterated quadruples 

k+3∊{k,k+1,k+2} yield a bicubic bispinor norm solving 

CCP. Nanostructure experiments allow even conclusions 

to cosmological and global parameter [5]. 

Experimental Predictions 

The QH current is a neutral oscillating complex 

quadrupole (inertial) moment Ixy. Experimental support 
for FZU is global temperature gradient oscillation over 

106 years and microwave emission at QH [7, 8]. Despite 

a large scaling factor of 1020 detector dimensions for ME, 

QH and cosmic ray (CR) detector (Wulf's bifilar 
electrometer, Wilson chamber) are comparable. FZU has 

invariant dimensionless vacuum energy densities 𝜌𝐹𝑍𝑈 ≃
𝜆𝑘𝑔𝑘

2 ≃ 𝜌𝑒𝑥𝑝 with modular units gk and predicts very low 

CR count rates as a bifurcating spacetime tree of k-

components for a conductivity plateau σH. CR emission 

should depend on σH measurement accuracy κ which is 

the Born-Oppenheimer parameter in a tight-binding 
model. A first prediction of high-energy emission at QH 

not yet observed is extended to a model of a universal 

CR-atmospheric charge cloud superfluid [9, 10]. [5]. 

Iterated Weber invariants f(ω) by map (4) is regarded as 
a complex curvature. Doubly-periodic cycles shape 

Feigenbaum constants αF, δF and periods νSh due to 

Sharkovsky’s theorem. Whereas laps l are particle orbits 

k-components is ripped or bifurcating spacetime. 
Particles at first periods νSh at k≤3 are not observable. 

Periods νSh near k=3 is spacetime oscillation felt as 

cosmic microwave background (CMB). k-components 

changes into a fluid of elastic spacetime at step k≃G5
-1 

with dark exchange scattering coupling constant G5≃10-

167. Then a general Riemann surface (𝑤+1
2 )<3w+3 for 

w≤5 is self-similar congruent 𝑘 ≃ 229
→ 1 At 
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conductivity plateau magnetic field B ≃ δkht(gk) is 

topological entropy ht(gk) whereas electric field E≃∇T is 

temperature. Charges as Coulomb singularities or self-

dual E+iB require dominant laps. Large fields B or large 

convection δkht in thin layers induces chaotic k trees. 
FZU-emission rates of CMB at QH behave as κ-2. 

Regarding k-components as identical charges quantum 

statistics overestimates ρexp by factor 229
≃ 𝐺5

−1 as a F9-

congruences with Fermat number Ft in ρQS≫ρexp [11]. 

Rare CR predicted with probability 2−2𝑘
 cause enhanced 

anomalous atmospheric ionization in the laboratory 
measurable by air composition or air ionization as well 

as by nuclear disintegration stars in surrounded layers 

[12]. Large scale CR detector arrays indicate CR 

emissions at QH correlated over macroscopic 
dimensions with a very low count rate up to 10-2 year. 

The real counterpart to Ixy are gravitational waves. A 

second sound for the incompressible QH superfluid state 

is predicted as an independent heat transfer by wave-like 
motion. Coupled to αF,δF,νSh a second sound describes 

independent wave motion of entropy and temperature 

like propagation of pressure waves in air (sound) in 

addition to predicted CMB emission at QH. The velocity 

of the second sound is proportional to the entropy δkht≃B 

and depends e.g. on magnetic field. 
 

Quantum theory as k-incongruent laps 

QS normalizes each lap state ψ to 1 in a 

22𝑘
component CR bifurcation tree as an air shower 

giving in total an 22𝑘
 fold of energy as CCP. FZU 

consists of cryptographic-like pseudo-random integer 

addition steps k on elliptic curves. But Legendre modular 

function λk→0 and large gk →∞ for k→∞ stand for QS. 

FZU implies cubic f(ω) and finite λk and gk. The cubic 
behavior of λ transmits to the coupling constant Gw for 

w≤5 independent general complex Riemann surfaces for 

w-interactions w=(strong,weak,em,grav,dark). 

Topological entropy λk≃ht(gk) depends on λ causing a 

convection process. An invariant energy density  

ρ≃ ½ ∑(w,k)Gw(E)E(k)≃ρFZU≃ρexp≃100…10-1eVcm-

3≃ρCR≃ρCMB (1) 

 

results from a bicubic bispinor norm 

Nm(ψ)=Eiψ´ψ´´=1 of conjugated units. Energy E(k) is 
defined as a change of units Ei or a change of λk giving 

directly the Dirac equation [5], where k is explained by 

periods νSh capturing Bloch states by γ(ϕ3)- fixed points. 

CCP implies E(k→∞)→∞. QS implies νSh congruent and 
k-incongruent laps. FZU implies finite E(k→∞)→E∞ 

and congruent steps 22𝑘
→ 1. The coupling constant 

 𝑙𝑛𝐺𝑤(0) = −w! 2𝑤ln3
𝑤2   (2) 

 

optimizes the circulant regulator index 
RΔij={logE}ij in eq. (6) with ωi-congruences as number 

fields. This circulant behavior is missing in QS. For 

simplest cycles νq the Euclidean norm N(E)=Eq
-2 in eq. 

(6) recovers the until now accepted bispinor norm. The 
cutoff in eq. (1) is due to eq. (2) and Gw(E), The unified 

bispinor norm depends on E(GW) as a tidal-like four 

curvature state. CCP is a time averaging problem for rare 

but ultra-large mass Mk ≃gk on bifurcating clouds. 

ρQS≃ΔtMkc
2Rnet+ρexp (3) 

 

with Mk →∞ and Rnet→0 depending on dσ5 and time 
interval Δt→∞. Number theoretic congruences 

1 = 22𝑘
≃ 𝐺5

−1 leading to ρexp resolve CCP 

reducing ρQS to ρexp. As a result, CR and CMP is inherent 
in any spacetime also at low altitudes. Map (4) iterates 

near quadrupolar nontrivial zeros of the Riemann zeta 

function ζ(z) as universal clock frequency j(z). For k→∞ 

ζ(zn≃λ)=0 imply quanta of charge [13, 5]. The 22𝑘
- pole 

cloud of iterated complex f(ω)- strings gets a mass like a 

magnetic monopole. In FZU the order parameter 

ψ≃K+iK’ is linear expanded into f(ω) which is viewed 

as complex curvature Ru of a self-similar universe where 

quarter periods K, K’ are exact theta constants [5]. 
Complex Ru describe large tensile forces as CR in 

balanced ionized clouds with CMB. FZU regards the 

complex coordinate z itself as iterated theta constants 

equivalent to a correlated path-ordered complex 
temperature potential VT+iT. Friedmann equations of 

open, closed or flat spacetime confirm FZU by elliptic 

integrals for complex time t+iβ ≃ VT+iT ≃ω [14]. In 

FZU periods νSh mutually depend on congruent half-

periods ωi containing fluctuating discriminants Δk. 

Periods νSh induce congruent integer indices ωi [5]. 
Addition on iterated elliptic curves is a cryptographic, 

regular, pseudo-random chaotic bifurcation process of 

period-doubled Riemann surfaces. Fixpoints of the 

period-doubling map are iterated cubic roots f(ω) of 
ϕ3(f(ω)) 

𝛾(ϕ3(𝑓)) = |

1

3
ϕ3

′(𝑓) ϕ3(𝑡) −
𝑡

3
ϕ3′(𝑓)

−1 𝑓
|    (4) 

 

The orbit subgroup detγ=1 of equivalent lattices 

is called lap. This neutral background cloud is an 
excitation on the minimum of a thermal potential VT of 

resting non-turbulent Carnot cycles νSh with large scale 

floating non-radiative bifurcations. The holomorphic 

function ξ≃E is field-like 𝜉(𝑧) = (
𝑧
2) 𝜋−

𝑧

2𝛤(
𝑧

2
)𝜁(𝑧) =

½ ∏ (1 −
𝑧

𝑧𝑛
𝑛 ) = −

𝜕𝑗(𝑧)

𝜕𝑧
 where a current-like j(z)  =

 −4 ∫
dt

log t
𝑡−¼𝜕𝑡(𝑡3/2𝜕𝑡(𝜗3(0, 𝑒−𝜋𝑡) −

∞

1

1)) sinh(½(z − ½)) log t depends on the Jacobi theta 

function ϑ3. From γz, γξ - invariances Coulomb 

singularities are expected for cycles νq or ξ’’≃ξ’ [15]. 

 

Neutral superfluid potential flow  

A relation of charge and flux to thermal 

convection has already been proven. The flux-quantized 

superconducting order parameter is calculated as a theta 

function satisfying a heat conduction equation [16], 
which is in accord with FZU. For nonequilibrium 

semiconducting electron states a Benard convection 

lattice state is predicted [17]. In FZU dynamics of 

Kirchhoff equations Xk+2=â[γ]Xk+1 and Xk+1=â[γ]Xk is 
governed by discrete steps with substitution [4], and 



 

    

Otto Ziep, Sch J Phys Math Stat, Jan, 2025; 12(1): 1-5 

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          3 

 

 

orthogonal â[γ]. The iterated Xk-flow is floating, 
homogeneous, non-turbulent. A quadratic map of eq [4], 

as a fractional substitution relates period-doubling to 

cubic roots. At step k=0 a pole f24(ω)|k=0=24/λ(λ-1) exists 

on λ-plane of ζ(z=λ). Eq [4], creates an entire, 
holomorphic polynomial fk(fk=0). Subsequent steps yield 

Feigenbaum renormalized invariants. 

 γ(ren)=γ+γ∘γ(ren)    (5) 

 

which acquire a pole in crossing points of 

periods νSh. Time-thermal cycles of braid groups encircle 

k- components γ0∘…∘γ near the pole. Eq. (5) changes 

into a Bethe-Salpeter-like equation for a Greens function 
Gss’[ψ] defined in terms of a quartic roots shifted to 

s=±∞,±i∞ where γ ≃G-1[ψ]G-1 [ψ] [11]. Eq. (5) expands 

into Feynman diagrams for Gss’[ψq] for νq where q≃s. 

Optimal units E(ωk) and fk=f(ωk) with Euclidean norm 
∑ 𝑓𝑞

−2
𝑞 = ∑ 𝑓𝑞

′𝑓𝑞
′′

𝑞  reproduce a bicubic spinor norm 

Nm(f(ω))=f(ω)f’(ω)f’’(ω)=2 with complex conjugates 

invariants f’ and f’’. Optimal entropy is given by 
minimizing RΔij

2 of a circulant regulator for finite 

geometric zeta function ζ(ls,ms,z) of string length ls and 

multiplicity ms and Euclidean norm N(E) as. 

 
2 RΔij +μ1+2μ2ζ(ls,ms, RΔij)e

2RΔij +μ3N(eRΔij)ζ’(ls,ms, RΔij) 

=0  (6) 

For an entropy-based universe [18]. A 

Mandelbrot zoom sequence is first unrelated to quantum 
statistical electron clouds. However, optimal real 

algebraic E(opt) units are μ1,μ2,μ3-parametric 

superpositions of cardioids and zoomed bulbs which 

explain the Lorentz Huygens- Fresnel principle by a 
maximum information current by subsequent spheres 

within spheres [5]. The real eq [6], is easily solved by 

four-component complex rotations of units Ei or e2E
i. The 

optimal regulator RΔij has plateaus of susceptibility 

χ≃Gw as elastic Lagrangian oscillations. Then χ≃σH[δF] 

is a universal constant for k→∞. At finite k χ exhibits a 

minimum e.g. χ ≃1/128 at 109eV [19]. Similarly, a QH 

plateau describes a universal (all interaction containing) 
neutral quadrupolar current. 

 

Fractional charges are quadrupolar elliptic 

oscillations 

Laughlin- wave functions exp(|z|2)Π(zi-zj)
q≃ 

exp(|z|2)Δq are similar to qth order Vandermonde 
discriminants Δ or qth order Weierstrass sigma functions 

σ(q)(z,ω) [20, 21]. FZU relates iterated zeta functions to 

hyperelliptic sigma functions linear expanded into 

period-doubled f(√Δk) of chaotic one-dimensional 
substitutions in a cubic invariant ϕ3(f(ω))=0 [5]. Braid 

groups and periods νSh are related. Complex z-values are 

half-periods in modular units g(aω,ω)≃σ(q)(z=aω,ω). 

During iteration points X(f(√Δk)) of an incompressible 

fluid get synchronized with lattices ω[f(ωk)] as a doubly-

periodic charge-heat or time-temperature potential VT
(k). 

A 3K minimum of global temperature VT is explainable 

as period 3 of a bifurcating spacetime string. Neutral 

quadrupolar-like correlations [ζ(λk), ζ(λk)]≃[f(ωk), 

f(ωk’)] induce a two-sound massive superfluid [5]. 

Standard units of time and energy count the number of 
precessions n and the number of Carnot cycles m 

independent on fluctuating two-periods. Accordingly, a 

floating tidal-like phase-correlated bifurcating fluid 

cloud persists with balanced collision-less ionization in a 

stable universe. The minimum zk≃VT(fk) allows rare 

ultra-high energy CR and persistent CMB of the iterated  

22𝑁
- polar holomorphic fluid zk+N[…zk] that forms a ball 

of strings. Charges are poles of the Feigenbaum 

renormalized f(ω(λk)) centered at the center of the ball. 

 

Longitudinal and quadratic thermopower 

Measurements of longitudinal thermopower at 

QH yield only small corrections to σH [22, 24]. FZU 

determines σH itself as iterated quadratic thermopower 
and universal coupling constant [25]. A zero ζ(zn)=0 is a 

dissipation less superfluid with singular 2.2 

susceptibility matrix χ for charge and heat components. 

 ξ≃E(z)=χ-1(∇V,∇T)= χ-1∇VT→0   (7) 

 

of equivalent periods ω as an ordered state. 

Inequivalent periods ω near simple zeros ζ(λn)≃χnn´(λn´-

zn´) cause off-diagonal doubly-periodic complex 
susceptibilities χnn’. In Corbino geometric σH = χ12/χ11 

singular detχ =0 are regular chaotic inflection points on 

elliptic curves [24]. A parameter-free zeta function ζ(z) 

or one parametric Mandelbrot zoom is subjected to four-
parametric substitutions (4) as a two- bit input flux in 

analogy to a complex local Ricci scalar [5]. The sum 

j(z)+j*(z) satisfies the hyperbolic Laplace eq. which 

holds also for the entire polynomial fk(fk=0) as a neutral 
one-dimensional complex holomorphic electrostatic 

problem. For zero longitudinal resistance the charge-heat 

susceptibility χ describes the Seebeck coefficient 

QS=χ12/χ11 as the entropy ht per charge carrier QS= ht/eNe. 
Cycles νSh and νq and poles of ζ(z) and f(ω)|k=0 and δF 

yield a density of residue 
𝑚

2𝜋𝑖𝛿𝐹
2(2𝑛+1)

 where n and m 

result from the exact elliptic equation 
𝑑2𝐾

𝑑𝜆2
− 𝜆

𝑑𝐾

𝑑𝜆
+

𝑛𝐾 = 0 for quarter periods K(λ),K’(λ). Accordingly, a 

quadratic transverse Seebeck coefficient QS ≃χχ-1≃σH as 

voltage gradient ∇V= QS∇T vs. temperature gradient ∇T 

measures time-thermal Carnot cycles. A tight-binding 
approach of liquid sites is proven for QH [26]. 

 

Second sound 

The atmospheric equivalent of second sound is 
e.g. flash bang and thunder as independent thermal and 

entropy cycles. Simplest cycles νq describe an 

incompressible non-dissipative superfluid. The discrete 

velocity has longitudinal, transverse and rotatory 
components kikj, δij- kikj/k

2, εijklkkkl. The cubic invariant 

couples longitudinal and rotatory components in roton-

like upper energy valleys [27, 28]. A Feigenbaum 

diagram hysteresis displays a Carnot energy gain. In the 
layer a second sound of neutral quadrupolar waves 

maintains cloud stability by independent temperature T 

and entropy B≃δkht cycles. Emission of transverse waves 
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has been already detected at microwave frequencies at 
QH where exp B/me(t+iℏ/kBT)) [8]. 

 

CONCLUSIONS 
Within FZU second sound, CR, CMB is 

predicted at quantized susceptibility which solves CCP 

ρexp ≠ρQS by relating QS to a lap number of k-
components. Iterated invariants fk(ω) and periods ω=ωk 

predict a one-dimensional complex bifurcation tree of 

bifurcating complex curvature R. Tensile forces of 

bifurcated, ripped spacetime are felt as CR and CMB [5]. 
Iteration by (4) around invariant zeros zn=ξ-1=E-1 of the 

Riemann zeta function can be visualized by strings of j(z) 

at cycles νq of a bifurcation tree of quadrupolar points 
1,2→1’,2’. tending to two-valleys of a two-body tight 

binding model with inertial tensor Iij= δf⋀δf. Like a 

Mandelbrot zoom the γ-map zk→zk+1, jk→jk+1, Ek→Ek+1 

on complex plane with its normal can be embedded into 

space where j(z) → j(z), E →E+iB. The chain of strings 

[δjk+N+1/δE-1
k+N …[δjk+1/δE-1

k] draws a doubly-periodic 

22𝑁
-polar ball as a singularity in two-dimensional 

Laplace equation [29], felt as a charge quantum. This is 

the fractal analog of the magnetic Dirac monopole 

problem for large (monopole) masses [3]. Subsequent 

quadrupolar waves yield a background permeability 
ε0(k)=1/Iijkikj of potential 1/ε(k)k2 in k-space which is 

the exchange scattering term. Then ε0(Ru)≃Ru
2 with 

cloud (universe) radius Ru explain cosmological redshift 

and CMB both caused by simplest cycles of clock 

frequency j(z). Predicted emissions relate nanostructures 

to possible future energy technology as well as to 
consequences for the model of universe and climate. 
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