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Abstract: Data envelopment analysis (DEA)is a method that evaluates the efficiency of decision making units by the 
linear programming problems. The decision making units have multiple input and outputs. Some of the decision making 

units can have a two-stage structure that use the first stage inputs to create the outputs that are considered the inputs in 

the second stage. Then the second stage uses the outputs of the first stage to produce its outputs. The out puts of the first 

stage are called the mean value.  The relationship between the data envelopment analysis and the multi objective linear 

fractional programming provides a strong tool for the decision maker to provide an appropriate model for the inefficient 

units based on the existing limitations. In this thesis we present a new model based on the two-objective linear fractional 
programming that besides being linear it would be possible to use the obtained results in recognizing the efficiency or 

inefficiency of the two stage decision making units. 

Keywords: data envelopment analysis, two-stage decision making units, multi-objective linear fractional programming, 

efficiency test. 

INTRODUCTION  
The data envelopment analysis is an approach to measure the relative efficiency of the homogenous decision 

making units that have several inputs and outputs. The decision making units do not have a simple structure. There are 

decision making units in the real world the production process of which can be regarded as a two-stage process. The 

DMUs can have a two-stage structure in some cases, such as banks, production units, universities, businesses, etc... . A 

DMU in such situations expresses a two stage process and the mean values are between the two stages. The first stage 

inputs produce the outputs used as the inputs in the second stage. Hence the outputs of the first stage are called the mean 

values. Then the second stage used these values to produce the outputs for the second stage [1]. 

 

Chen et al. [2] based on CCR and constant returns to scale presented models to calculate the efficiency of the 
first and second stage. By considering the objective function as a convex combination of the objective functions of the 

first and second stages and using the offered constraints they provided the final structure of the collective model that 

leads to the calculation of the efficiency. Kao and Hwang [3] offered models to calculate the efficiency of the first and 

second stages and efficiency of the whole system according to the CCR model and constant returns to scale. They 

expressed the multiplicative model by expressing the objective function as the multiplication of the objective functions of 

the first and second stage efficiency models and using the defined constraints on the first and second stage models and 

the model performance. Chiou et al. [4] presented the aggregated model of data envelopment analysis to measure the 

decision making units with a two stage internal network structure with several inputs and outputs and dosage and claimed 

that any optimal solution is determined by a global optimum solution not a local optimum. Lim and Zhu [5] showed that 

the DEA model introduced Chiou et al. [4] is a non-convex optimum solution and rejected their claim that any optimal 

solution is determined by a global optimum solution not a local optimum.  
 

The concept of multi objective functions was first introduced by Kahn and tucker using the vector optimization 

concept and then performed in many studies concerned with the expansion of decision making models with multiple 

objectives. Kornbluth [6] was the first one who argued that the DEA model can be considered as a multiple objective 

linear fractional problem. This has been studied by many researchers such as Ebrahimnejad and Hosseinzadeh Lotfi [7], 

Joro et al. [8] and Wong et al. [9] and they presented strategies for the expansion and application of this relation [10]. 

Given that the majority of models for evaluating the efficiency of two component decision making units have a non-

linear nature, so this paper is after finding linear models to test and calculate the efficiency of the two stage DMUs 

considering the evaluation of the two-stage units model as a multi objective linear fractional programming model.  
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This article includes the following sections: in the following section the linear fractional programming is 

discussed. In continuation, multi-objective linear fractional model is represented. Choo and Atkins [11]is then used to 

solve the two-objective linear fractional programming problem. Efficiency evaluation of the DMUs is analyzed by two-

objective linear fractional programming. Finally the presented method is discussed using a numerical example.  

  

Linear fractional programming 

 Working on fractional programming started since the beginning of 1960s and widely extended in early 1970s. 

The fractional programming optimizes the ratio of the two functions. Linear fractional programming is a special form of 
fractional programming in which the numerator and denominator of the target are two linear functions. The problems are 

applied in financial, economical and healthcare programming. The general form of a linear fractional programming 

problem is as follows: 

Max    ,
cx

dx








 

   .     { | , 0},ns t x S x R Ax b x    
           

(1) 

 
Where c and d are the row vectors with n components and b is a column vector with m components and an 

m n  matrix and  and  are scalars and 0,dx x  S . 

 

Multi-objective linear fractional programming 
Work on multi-objective linear fractional programming started since the early 1980s with discussing the strong 

and weak effective points of the problems of multi-objective linear fractional programming. Consider the following 

multi-objective linear fractional programming program: 

 
 

 
Max         ,               1, , ,

k

k

k

N x
z x k k

D x
    

. .         s t x S                                             (2) 

where  k k kN x c x   ,  k k kD x d x    ,
 

n

k kc ،dR  and  k k،  are Scalar and S is a non-empty and 

bounded polyhedron and   , 0kx D x  S  is a multi-objective programming and a special form of multi-

objective linear fractional programming that 0 ,   1, ,kd k K   .  

In the next section the two-objective linear fractional programming method of Choo and Atkins [11] is analyzed.  

 

A Method to solve two-objective linear fractional programming 

Definition1: Two-objective linear fractional programming method can be expressed as follows:

      1 2Max         ,  , F x f x f x  

. .         s t x S
            

(3) 

Where A is an m n  matrix and b is a column vector with m components and 1f and 2f are linear fractional functions 

defined as follows: 

 x ,          1,2,
T

i i
i T

i i

c x r
f i

d x t


 


 

where
n

i ic ،dR  and ,i ir t  are scalar and S is a non-empty and bounded polyhedron and , 0T

i ix d x t   S  

Definition 2: Suppose 
2 1    ,  x x are two possible points in S. we call 

1 x  dominant 
2    x  whenever: 

       1 2 1 2

1 1 2 2       ,          f x f x f x f x   

or 

       1 2 1 2

1 1 2 2   ,          f x f x f x f x   

A point which is not dominant over any other possible point is called Pareto efficient. We signify the set of Pareto 

efficient points of the problem (3) with E.  

Lemma1: For any two possible points 
2 1    ,  x x  in S:  

         1 2 2 1 1  ,                0,i i ii f x f x iff x x f x     
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         1 2 2 1 1  ,              0.i i iii f x f x iff x x f x     

Note1: From Lemma 1 we have 
if is monotonic along any segment connecting 

2 1    ,  x x  in S, if 

   1 2 ,       i if x f x  

Then 

     1 1 2 2( 1 ) ,i i if x f x x f x      

For any λ (0,1) . Also 
if  on S is both quasi-convex and quasi-concave. 

 

The characteristics of Pareto efficient points 

Suppose 
1, , mp p  are the row vectors of the matrix A thus an S procedure is defined as follows.  

Definition3: The subset T of S is called an S procedure when there is {1,  , }J m  , so that T includes points that are 

true in the following conditions: 

,       ,T

i ip x b i J              (4) 

,       .T

i ip x b i J              (5) 

T is called the J corresponding procedure. 

The following theorem characterizes the Pareto efficient points in T. 

Theorem1:An
*x  point is Pareto efficient points in the T procedure corresponding {1,  , }k  if and only if 

*x T  and 

there are real numbers 

1 20,    1, , ,     1, 1,ia i k w w      

So that  

   * *

1 1 1 1 2 2 .k ka p a p w f x w f x             (6) 

Note2: For a multi-objective linear fractional programming with l objectives the equation (6) of the Theorem 1is replaced 

by 

   * *

1 1 1 1 .k k l la p a p w f x w f x            (7) 

In the next section we show that for 2l   equation (6) is equivalent to a system of linear equations and inequalities 

constraints. 

 

The Linear feature of the Pareto efficient points set 

 For each x S  the gradient vector  if x has a direction like the vector   ( )T T

i i i i i id x t c c x r d    because 

0T

i id x t  Thus, equation(4) in Theorem 1 can be replaced by 

       * * * *

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2.
T T T T

k ka p a p w d x t c w c x r d w d x t c w c x r d        
  

(8) 

Equation (8) is equivalent to  

1 1 1 1 1 1 2 2 2 2 ,k ka p a p q c h d q c h d    
                   

(9-1) 

 *x ,   1,2,       0. i
i i

i

h
f i q

q
                       (9-2) 

Since the equation (9-1) can be multiplied by any positive real number, then  

 * 1
1

1

x ,
h

f
q

  

Can be replaced by  
* *

1 1 1 1 1 1,                   ,T Tc x r h d x t q     

 With inner multiplication of
*x on both sides of the equation (9-1), we have:  

T * * * *

1 1 1 1 1 1 2 2 2 2 .T T T

k kb a b a q c x h d x q c x h d x      

 Now 

 * * *2
2 2 2 2 2 2 2 2 2

2

x           ,T Th
f iff h d x h t q c x q r

q
     
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* *

2 2 2 2 2 2 2 2     ,T Tiff h t q r q c x h d x    

   * * * *

2 2 2 2 1 1 1 2 2 2 2 1 1 1         ,T T T Tiff h t q r q c x r q c x h d x h d x t        

* * * *

2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2     ,T T T Tiff h t q r q r h t q c x h d x q c x h d x        

1 1 2 2 1 1 2 2 1 1   .k kiff h t h t q r q r b a b a      

 Thus, equation (6) in Theorem 1 is equivalent to the system  

1 1 1 1 1 1 2 2 2 2  ,k ka p a p q c h d q c h d      

*

1 1 1,
Tc x r h   

*

1 1 1,
Td x t q   

1 1 2 2 1 1 2 2 1 1 ,k kt h t h rq r q b a b a      

0,  1,2.iq i   

 Lemma2: Point
*x Tò is Pareto efficient if and only if there are real numbers 

1 1 2 1 2, , , , , ,ka a h h q q , so that 

1 1 1 1 1 1 2 2 2 2 ,k ka p a p q c h d q c h d      

*

1 1 1,
Td x t q   

1 1 2 2 1 1 2 2 1 1 ,k kt h t h rq r q b a b a      

* ,        1, , ,T

i ip x b i k    

* ,        1, , ,T

i ip x b i k m     

0 ,    1, , ,       0,  1,2.   i ia i k q i             (10) 

From Lemma 2 it can be seen that the Pareto efficient points in T are determined by the linear and non-linear equations 

system. Therefore, we conclude the following theorem. 

 

 Result 1: The set of all Pareto efficient points is a convex set. 

Theorem 2: The intersection of S and T is a set of linear constraints and E is the finite number of sets of linear 

constraints. 

 

Two-stage data envelopment analysis 

Suppose that there are n decision-making units that ( 1,  , )ijx i m   and ( 1,  , )rjy r s   respectively represent the 

ith input and the jth output in (  1,  , )jDMU j n  . The DEA standard model assuming constant returns to scale for 

calculating the efficiency of the whole kth decision making unit is as follows: 

1

1

            ,

s

r rkr
k m

i iki

u y
E Max

v x









 

1

1

. .          1,          1,  , ,

s

r rjr

m

i iji

u y
S t j n

v x





  



 

ε,                         1,  , ,ru r s    

ε,                           1,   , .iv i m  
         

(11) 

where ε is a small non-Archimedean value and x and y are the inputs and outputs of decision making unit. kE represents 

the total efficiency of kDMU  by the DEA standard models. If 1kE   then kDMU is efficient and if 1kE   then 

kDMU is inefficient. Now suppose that the manufacturing process consists of a series of two-stage sub processes. 

Unlike standard manufacturing processes it consists of two processes with mean value (middle data) ( 1,  ,  ) pkp q z  . 

In addition, the 
pkz middle data are the outputs of the first stage that are the input of the second stage without any 

changes. This is shown in Figure 1. 
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Figure 1: A two-staged process with the x input and y output and the middle input z 

 

Previous studies in the context of a two-stage units of model (11) to measure the overall efficiency of  
kDMU and the 

models (12) and (13) are used to calculate the efficiency of the first and second stages.  

11

1

            ,

q

p pkp

k m

i iki

w z
E Max

v x









 

1

1

. .          1,         1,  , ,

q

p pjp

m

i iji

w z
S t j n

v x





  



 

ε,                         1,  , ,pw p q    

ε,                           1,  , . iv i m  
         

(12) 

2 1

1

           ,

s

r rkr
k q

p pkp

u y
E Max

w z









 

1

1

. .          1,          1,  , ,

s

r rjr

q

p pjp

u y
S t j n

w z





  



 

ε,                           1,  , ,ru r s    

ε,                          1,  , .pw p q  
     

(13)

   

Models (12) and (13) are taken from the model (11). In these models, the efficiency of the system and two sub stages are 

considered independent of each other. Therefore we need a model that could establish logical relation between the whole 

system and the processes.  

 

The efficiency evaluation of two-stage units  

Consider the vector two-stage DEA model as follows: 

Max        ,
T T

k k
k T T

k k

w z u y
E

v x w z
   

  . .        ,                    1,  , ,T T

j js t u y w z j n    

,                    1,  , ,T T

j jw z v x j n    

0, 0,  0.v w u                                                                                                                   (14)

  

In fact the two-stage DEA model of a two-objective linear fractional programming problem is as follows: 

Max        ,
T

k

T

k

w z

v x
 

Max        ,
T

k

T

k

u y

w z
 

Stage 1 Stage 2 
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. .            1,                 1,  , , 

T

j

T

j

u y
S t j n

w z
    

1,                1,  , ,

T

j

T

j

w z
j n

v x
    

0, 0,  0.v w u  
           

(15) 

By the summing up the targets by a weighted factor 0.5 we can reach the model (14). Now considering  

1 2 1 2,             ,   0,          0,  k kq vx q wz r r     

1 2 1 2,          ,            0,         0,k kh wz h uy t t     

1 1 2 2,              ,              ,       ,k k k kc z d x c y d z     

   '      0  ,         0 ,k k k k k kp z x p z x     

And placement in Lemma 2 we have the following situation:  

               '      0       0        0    0  0       0 0     0        0    0 ,k k k k k k k k k k k k k ka z x a z y vx z wz x wz y uy z        

   

* *

* * '

* *

      0       0      0,k k k k k k

w w

z x v a z y v a

u u

   
   

      
   
   

 

 

*

*

*

      0 0,k k

w

z x v

u

 
 

  
 
 

 

 

*

*

*

    0      0,k k

w

z y v

u

 
 

  
 
 

 

*

*

*

0
0,       1, , ,    ,

0

j j

j j

w
z x

v j n j k
z y

u

 
  

       
 

 

0,  ka   

' 0,ka   

* 0,kv x   

* 0,kw z   

Which is a system of linear equations and inequalities. The objective is to maximize the sum of the deviations in the 

inactive constraints. Thus we have the following model: 

'

1

Max            ( ) ,
n

j j
j

j k

s s p q




    

               '  .                0       0          0     0    0          0 0      0          0      0 ,k k k k k k k k k k k k k ks t a z x a z y vx z wz x wz y uy z        

   

* *

* * '

* *

      0       0      0,k k k k k k

w w

z x v a z y v a

u u

   
   

      
   
   
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 

*

*

*

      0 0,k k

w

z x v

u

 
 

  
 
 

 

 

*

*

*

    0      0,k k

w

z y v

u

 
 

  
 
 

 

*

*

'

*

0
0,       1, , ,    ,

0

j j j

j j j

w
z x s

v j n j k
z y s

u

 
    

            
 

 

0,  ka   

' 0,ka   

* 0,kv x p   

* 0,kw z q   

* * *0, 0, 0.v u w                                                                            (16)

      

If we could find positive 
*w ,

*v and 
*u that apply in terms of the model then the DMU under evaluation is efficient, 

otherwise if 
*w ,

*v and 
*u  are zero and the model is not applicable or if the 

*w ,
*v and 

*u are positive and the function 

is zero then the DMU under evaluation is inefficient.  

 

In order to prevent the weight from becoming zero the non-Archimedean ε is used. So that this value as a lower bound 

for the input and output weights prevents them from being zero. The zero weights mean that these unique inputs and 

outputs were not effective in the efficiency. In order to resolve this problem the 0   non-Archimedean value is used. 

Under this condition the nonnegative weights with 
* * *, ,v u w      boundaries are replaced.  

Therefore, considering the 
610   condition we rewrite the model:  
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0,  ka   

' 0,ka   

* 0,kv x p   

* 0,kw z q   

* * *, ,v u w                                                                                                                    (17)

    

Now, if we find 
*w ,

*v and 
*u that apply in the active constraints, that 

*w ,
*v and 

*u  is effective then the DMU under 

evaluation is efficient. However, if the model does not apply which means that it does not find   
*w ,

*v and 
*u in which 

the efficiency of the first and second stage is 1, then the DMU under consideration is inefficient. Models (16) and (17) 

only analyze the efficiency of the DMU under consideration.  

 

Example 
Consider the example presented in Chapter 3. We study the accuracy of the proposed model on the provided example. 

The results of the proposed models regarding ε  in Table 1 and regardless of ε  are expressed as follows. We solved 

model (16) for 24 units, the results obtained from solving the model shows that for all DMUs the objective function value 

is zero, so none of the DMUs in this method using this method are efficient.  

 

Table 1: Results of model (16) for 24 participants 

Infeasibility Results of model Unit 

06-E441.0 04-E310.0 1 

06-E825.0 04-E124.0 2 

05-E100.0 04-E497.0 3 

06-E826.0 04-E493.0 4 

06-E912.0 04-E495.0 5 

07-E617.0 04-E261.0 6 

07-E972.0 05-E658.0 7 

05-E100.0 04-E162.0 8 

06-E580.0 04-E242.0 9 

05-E179.0 05-E545.0 10 

05-E100.0 04-E318.0 11 

06-E869.0 04-E296.0 12 

06-E100.0 04-E106.0 13 

05-E399.0 05-E851.0 14 

06-E384/0 04-E151.0 15 

06-E979.0 04-E366.0 16 

05-E100.0 04-E186.0 17 

06-E982.0 05-E612.0 18 

05-E100.0 03-E125.0 19 

06-E855.0 03-E202.0 20 

06-E679.0 04-E433.0 21 

06-E822.0 03-E376.0 22 

05-E100.0 04-E568.0 23 

05-E100.0 04-E935.0 24 

 

As can be seen by considering the ε condition all DMUs are positive but since they have infeasible value thus none of the 

DMUs are efficient.  

 

CONCLUSION 
The main problem of the models presented to calculate the two-stage units efficiency is that due to using 

fractional models it is not always possible to calculate the two-stage DMU models relative efficiency and models 

calculate the absolute efficiency. Their main problems in analyzing the DMUs such as producing the function boundary 

and the lack of determination of the model units for the inefficient units are among the results of using the fractional 
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models. So a model that can recognize the efficiency of the two stage DMUs using the tow objective linear fractional 

programming solution is presented. In this thesis, a discussion about DEA, some DEA models and basic definitions was 

presented. According to the two-stage DMUs it is necessary to use the two stage DEA model to evaluate the efficiency of 

these units. So in the chapter 3 we discussed the DEA models through introducing some models and providing examples. 

In chapter four which is the most important part of this research first we introduced the multi-objective linear fractional 

programming and then we used this model in two- stage DEA by introducing the two-objective linear fractional 

programming. 

 
At the end of this thesis a model was presented to two- stage DEA using two-objective linear fractional 

programming. The model was tested on an example. This model does not offer the efficiency value but it only evaluated 

the efficiency of the units. In this model if the target function is positive, the unit under evaluation is efficient otherwise it 

is not.  The main advantage of this model over the previous two-stage models is its linearity. 

 

Since many organizations and institutions such as banks, social security institutions or … have two stage 

structures so the proposed model can be used to test their efficiency. The future studies can present a model that can 

calculate the value of efficiency. The discussion of the multiplicative model with variable returns to scale can be studied 

in future research. 
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