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Abstract: In this article,  we present an efficient algorithm for solving a multi-term fractional ordinary differential 
equations (semidifferential equations) using the Generalized Taylor matrix method. This method is based on first taking 

the truncated Generalized Taylor expansions of the solution function in the multi-term fractional ordinary differential 

equation and then substituting their matrix forms into the equation. The main characteristic behind the approach using 

this technique is that it reduces such problems to those of solving a system of algebraic equations thus greatly simplifying 

the problem. Numerical examples are used to illustrate the preciseness and effectiveness of the proposed method. 

Additionally, we successfully solve the modelling of physical phenomena such as Bagley-Torvik equation, relaxation-

oscillation equation. 
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Generalized Taylor matrix method. 

1. Introduction 

Fractional calculus has become the focus of interest for many researchers in different disciplines of science and 

technology. In earlier work the main application of the fractional calculus has been as a technique for solving integral 

equations. The theory for the derivatives of fractional order was developed in the 19th century[1,2]. The fractional 

differential equations (FDEs) have received considerable interest in recent years. In recent studies are attracted to study 
fractional differential equations in, psychology physics, chemistry, engineering, finance, and other sciences such as 

dynamics model of love[3], nonlinear oscillation of earthquake can be modeled with fractional derivatives [4], the fluid-

dynamic traffic model with fractional derivatives[5], relaxation–oscillation model[6], modeling of viscoelastic 

dampers[7], self-similar protein dynamics[8], bioengineering[9], viscoelastically damped structures[10] and others[11-

20]. This mathematical phenomenon allows to describe a real object more accurately than the classical integer methods. 

The most important advantage of using fractional differential equations in these and other applications is their non-local 

property. It is well known that the integer order differential operator is a local operator but the fractional order 

differential operator is nonlocal. This means that the next state of a system depends not only upon its current state but 

also upon all of its historical states. This makes studying fractional order systems an active area of research. 

A fractional differential equation of the form 
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is called a multi-term fractional ordinary differential equations of order n  where  2/n  denotes the integer part of 

2/n . 

The analytic results on existence and uniqueness of solutions to fractional differential equations have been investigated 

by many authors[1,2]. The multi-term fractional ordinary differential equations appear the modelling of many physical 

phenomena. An important example is the Bagley-Torvik equation which is defined by[1,21-26]  
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with the initial conditions 

0)0( y , 0)0(' y                                                     (4) 

where mA  , AA 21  , kA 0
 and where  is the viscosity,   is the fluid density. 

This equation arises in the modelling of the motion of a rigid plate immersed in a Newtonian fluid. The motion of a rigid 

plate of mass m  and area A  connected by a mass less spring of stiffness k , immersed in a Newtonian fluid.  

 
Fig. 1. Rigid plate of mass m immersed into a Newtonian fluid 

 

A rigid plate of mass m  immersed into an infinite Newtonian fluid as shown in the Fig.1. The plate is held at a fixed 

point by means of a spring of stiffness k . It is assumed that the motions of spring do not influence the motion of the 

fluid and that the area A  of the plate is very large, such that the stress-velocity relationship is valid on both sides of the 
plate. 

Another important example is fractional relaxation-oscillation model can be depicted as 

)()()( xfxAyxyD 
 

ay )0(  if 10   

or 

ay )0(   and by )0('  if 20     

where A  is a positive constant. For 20   this equation is called the fractional relaxation–oscillation equation. 

When 10  , the model describes the relaxation with the power law attenuation. When 21  2, the model 

depicts the damped oscillation with viscoelastic intrinsic damping of oscillator. This model has been applied in electrical 

model of the heart, signal processing, modeling cardiac pacemakers, predator–prey system, spruce–budworm interactions 

etc. 

In this study, we seek the approximate solution of Eq.(1) with the Generalized Taylor series as ],()( baCxyN  , 
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where 10  . We use the Generalized Taylor matrix method (power of fractional number) instead of the standart 

Taylor matrix method (power of positive integer). Because, if exact solution of Eq.(1) can be written as a fractional 

Taylor series, then we don’t obtain the fractional terms by approximate the standart Taylor matrix method.   This method 

transform each part of equation into matrix form then, we get the linear algebraic equation. Solving this equation, we 

obtained the Generalized Taylor coefficients then so, we obtain the approximate solutions for various N . All 

computations are performed on the computer algebraic system Maple 13. 

 

2. Basic Definitions 

In this section, we first give some basic definitions and then present properties of fractional calculus[1-2]. 

Definition 2.1 The Riemann-Liouville fractional derivative of order   with respect to the variable x  and with the 

starting point at ax  is 
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Definition 2.2 The fractional derivative of )(xf  by means of Caputo sense is defined as 
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for n -1< n  , Nn , 0t , f
nC 1 . 

For the Caputo derivative we further have: 
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, as C  is a constant, 
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Theorem 1. (Generalized Taylor Formula)  Suppose that ],()( baCxfDk 
 for 1,,1,0  nk   where 

10  , then we have[17] 
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3. Fundemental relations 

In this section, we consider the multi-term fractional ordinary differential equations (1). We use the Generalized Taylor 

matrix method to find the truncated Generalized Taylor series expansions of each term in expression at cx  and their 

matrix representations for solving nth order multi-term fractional ordinary differential equations with variable 

coefficients. For this propose, we using the definition of Caputo sense. The definition of Caputo is suitable for the 

numerical calculation [2].  The aim is to find the Generalized Taylor coefficients, that is the matrix A . We first consider 

the solution )(xyN  of Eq.(1) defined by a truncated Generalized Taylor series (5). Then, we have the matrix form of the 

solution )(xyN  

  AXM 0)( xyN                                                   (6) 

where 
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where )()(0 xyxyD NN  . 
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Now, we consider the differential part of )(xyD N

i
 in Eq. (1) where 2/1  and 0,,1,  nni . 

For 1i , we obtained the matrix representation of the function )(1 xyD N


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Then, the matrix representation of )(1 xyD N


as 
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Similiarly, for ki  , we obtain 
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Then, so the matrix representation of )(xyD N

i
 become 
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Moreover, let assume that the function )(xf  can be written as a truncated Generalized Taylor series 
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Then, so we obtaine the matrix form of Eq.(10) 

 

   FMX 0)()( xxf                                                (11) 

where 
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Thus, we obtain the matrix-vector form of Eq.(1) as 
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On the other hand, the matrix representation of the conditions Eq.(2) become: 
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Let us define iU  as 
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4. Method of solution 

We can write Eq. (12) in the form 
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Consequently, to find the unknown Generalized Taylor coefficients )(cyD N
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approximate solution of the problem consisting of Eq. (1) and conditions (2), by replacing the m  row matrices (14) by 

the last n  rows of the matrix (15) and we have augmented matrix[28] 
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or the corresponding matrix equation 
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So, we obtained to a system of )1()1(  NN  linear algebraic equations with )1( N  unknown Generalized 

Taylor coefficients. If 1];[ ***  Nrankrank GWW , the we can be write 
*1* )( GWA

 . Thus, the matrix 

A  is uniquely determined. Also the Eq.(1) with conditions (2) has a unique solution. On the other hand, when 0* W

, if 1];[ ***  NrankrankW GW , then we may find a particular solution. Otherwise if 

];[ ***
GWW rankrank  , then it is not a solution. 

 

4.1 Accuracy of the solution and error bound  

To investigate the convergence, we define the error function as: 

)()()( xyxyxe NN                                                     (17) 
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where )(xy  and )(xyN  are the exact and the computed solution of the Eq.(1), respectively. Substituting )(xyN  into 

Eq.(1) leads to  
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where )(xpN  is the perturbation term that can be obtained by substituting the computed solution )(xyN  into Eq.(1) , 
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Now, by subtracting (18) from (1) and using (17), the error function )(xeN  satisfies: 
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for some ),0( x  by generalized Taylor theorem. 
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thus, the prof is complete. 

 

Theorem 4.2 Under the assumptions of Theroem 4.1, we have 0lim 
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5. Examples 

In order to illustrate the effectiveness of the method proposed in this paper, several numerical examples are carried out in 

this section. In the following computations, for convenience, absolute errors between N th-order approximate values 

)(xyN  and the corresponding exact values )(xy  as )()( xyxyN Ne   are determined and all computations 

performe computer algebraic system with mathematical programing in Maple 13. 

 
Example 1: Consider the following boundary Bagley-Torvik equation[26]: 

 

  )()(02/32 xfxyDDD  , ]1,0[x                             (25) 

with initial conditions 

0)0( y , 0)0(' y . 

where 2
4

4)( 2 
x

xxf .  

Now, we can apply our technique described in Section 4 in Eq.(25) for 6N , 0c  

that is; 

 
 


6

0

6 )0()(
)1(

)(
k

k
k

xyD
k

x
xy 




. 

 

Fundamental matrix relation of this equation is 

 

  FMAMMMMM 000304   

where 

 































6/1000000

015/800000

002/10000

0003/4000

0000100

00000/20

0000001

0







M

 































0000000

15/8000000

02/100000

003/40000

0001000

0000/200

0000010

1







M

  

 































0000000

0000000

0000000

3/4000000

0100000

00/20000

0001000

3 



M
 































0000000

0000000

0000000

0000000

1000000

0/200000

0010000

4



M































0

0

1

0

0

/4

2

0



FM
 

 

Also, we have the matrix representation of conditions as, 
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   00000001)0(  Ay  

   00000100)0('  Ay . 

 

then, the augmented matrix becomes 

 

 































0;0000100

0;0000001

1;002/10000

0;3/4003/4000

0;1100100

/4;0/2/200/20

2;0011001

; ** 



FW
 

 

and solving this equation, we obtained the coefficients of the generalized Taylor series 

 

 0020000A . 

 

Hence, for 6N , the approximate solution of example 1 is given 

 
2

6 xy   

which is the exact solution of this problem. Since the exact solution is a polynomial of degree 2, this method gives the 

exact solution for 4N . The condition numbers 

of the matrices 
*

W  for 10,,5 n are given in Fig. 2. 

 

Fig. 2. The condition number of matrices 
*

W  for 10,,5,4 n  in infinity norm. 

 

Example 2: Let us consider the Bagley-Torvik equation[21,25] 

)()()()( 0

2/3

1

2

2 xfxyAxyDAxyDA   

 We consider the case )1()( 0  xAxf , 12 A , 11 A , 10 A  with the initial conditions 

1)0( y , 1)0(' y . 

 

In the following, using the present method, we gain the approximate solution 1)(4  xxy  for 4N  which is the 

exact solution of this equation. Since the exact solution is a polynomial of degree 1, this method gives the exact solution 

for 4N . The condition numbers of the matrices 
*

W  for 10,,5 n are given in Fig. 3. 
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Fig. 3. The condition number of matrices 
*

W  for 10,,5,4 n  in infinity norm. 

 

Example 3: Let us consider the Bagley-Torvik equation [33-34] 

0)()(  xyxyD
,  20                                         (19) 

1)0( y , 0)0(' y  

If  10  , the first initial condition is needed, while all the initial conditions are neccessary when  21  . The 

exact solution of this problem is )()( 
 xExy  . Here )(zE denotes the Mittag-Leffler function 




 


0 )1(
)(

k

k

k

z
zE


  

The numerical results by Taylor matrix method for and the exact solutions )( 
 xE   for 75.0,5.0,25.0  and 1  

are plotted in Fig.4, which shows that the numerical results are consistent with the exact ones and as   approaches to 1  

the corresponding solutions of (19) approach to that of integer-order differential equation. For 21  , Fig. 5 

illustrate the numerical solutions by present method and exact ones )( 
 xE   for 5.1,25.1 and 2. Obviously the 

numerical results agree with the exact ones. For 2 , the Eq.(19) is the oscillation equation and the exact solution is 

)cos()( xxy  .  We obtain the error function estimated for 27N and 5.1,5.0  as: 

2

27

2

23

2

21

10

2

19

2

17

82

15

2

13

2

11

2

7

32

3

2

27

10433044.0221.0212.0201.0

201.0195.0181.0181.0172.0161.0

146.0141.0144.0142.0142.0142.0)(

xExExExE

xExExExExExE

xExExExExEExR







 

 

2

27

12

2

21

92

15

2

3

27

10433044.0221.0

2121.0191.0181.0144.0142.0)(

xExE

xExExExEExR




 

 

We define the maximum errors for )(xyN  as, 

 ]1,0[,)()(max)()( 


xxyxyxyxyE NNN . In Table 1 and Table 2, we give some numerical results 

such as comparison of maximum absolute errors, maximum error estimation values for 5.1,6.0  respectively. 

Moreover, we compare absolute errors with Operational Matrix Method[37] and Present Method ( 27N ) in Table 3. 

 

 
 

 

Table 1: Compare of some numerical values for 2.0 . 
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N  25 27 30 

NE  1210
 

1310
 

1610
 

NR  
1210

 
1310

 
1510

 

 

Table 2: Compare of some numerical values for 5.1 . 

N  25 27 30 

NE  1910
 

2410
 

2910
 

NR  
1910

 
2410

 
2910

 

 

Table 3: Campare of some methods of Example 3 

  x  Oper. matrix method[37] Present method ( 27N ) 

 

 

 

0.2 

0.1 2.910
1

 5.610
7

 

0.3 4.510
1

 2.210
5

 

0.5 7.410
1

 3.710
3

 
0.7 3.710

1
 2.710

2
 

0.9 2.010
1

 9.510
2

 

 

 

0.6 

0.1 6.710
3

 1.010
14

 

0.3 2.010
5

 4.010
14

 
0.5 5.210

3
 3.010

14
 

0.7 4.410
3

 1.010
14

 

0.9 4.610
3

 8.010
14

 

 

 

Fig. 4. Comparison of )(xyN  for 27N  and 1,75.0,50.0,25.0  with exact solution in Example 3. 
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Fig. 5. Comparison of )(xyN  for 27N  and 2,50.1,25.1  with exact solution in Example 3. 

 

Example 4: Consider the following composite fractional relaxation-oscillation equation [15] 

  0)(0

0

2/1

1

1  xyDADAD , 0x , 10   

with the condition 

1)0( y . 

Taking 11 A , 10 A  and 22N , 0c  we approximately solve this equation and  

 

112/21

2/19982/15

2/13652/9

2/7322/32/1

22

7250521.07840376.0

6882395.05275573.04248015.04712534.0

3534400.02138888.02833333.01191048.0

1859717.0166666.05.0752252.0128379.11)(

xExE

xExExExE

xExExExE

xExxxxxy









 

 

We give the numerical results with comparison Fractional Difference Method (FDM), Adomian Decomposition Method 

(ADM), Variational Iteration Method (VIM) and Present Method (PM) in Table 4 and plotted the numerical results in 

Table 4 as Figure 6. It is clear that the approximations obtained using the decomposition method, the variational iteration 

method and fractional different method are in high agreement with those obtained using the present method. Moreover, 

we obtain the error function  estimated for 22N  as: 

112

21

102

19

2

15

2

13

2

11

542

5

22

3

22

7250.0165.0152.0153.0132.0121.0111.0

111.0141.091.091.093.091.091.0)(

xExExExExExExE

xExExExExExEExR




 

and 7251402.0]}1,0[),(max{ 22  ExxE . 

In Fig.7, we check accuracy of the approximate solution by obtained the Generalized Taylor matrix method and 

comparing of )(22 xR  and )(24 xR . 
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Table 4: The numerical results with comporison  FDM, ADM, VIM and PM )22( N  

x  FDM ADM VIM PM 

0.0 1.000000 1.000000 1.000000 1.000000 

0.1 0.668686 0.662104 0.662104 0.662103 
0.2 0.549125 0.543694 0.543694 0.543693 

0.3 0.468508 0.463863 0.463863 0.463862 

0.4 0.408125 0.404072 0.404072 0.404072 

0.5 0.360495 0.356911 0.356911 0.356911 

0.6 0.321710 0.318509 0.318509 0.318509 

0.7 0.289424 0.286543 0.286543 0.286542 

0.8 0.262106 0.259495 0.259495 0.259494 

0.9 0.238694 0.236315 0.236315 0.236314 

1.0 0.218421 0.216243 0.216243 0.216242 

 

         Fig. 6. Comparison of the some appro                        Fig. 7. Comparison of )(22 xR  and )(24 xR  

         ximate methods for Example 4.                                  for Example 4. 

 

6. Conclusion      

A scheme for approximate numerical solution of a class of fractional differential equations as multi-term fractional 

ordinary differential equations was presented. The semidifferential equation was expressed in terms the truncated 

Generalized Taylor series and the properties of this derivative and the truncated Generalized Taylor series were used to 

reduce multi-term fractional differential equation into linear algebraic equation. Mentioned method transforms the multi-

term fractional differential equations into a algebraically system which is independent on collocation points. It is easy to 

write PC codes which are related to obtained system for necessary computation. So, we have some considerable 

advantage of the method is that the Generalized Taylor polynomial coefficients of the solution are found very easily, 

shorter computation times are so low such as 1 sn for Example 1,  1.3 sn for Example 3 (CPU Core2 Duo 2.13 Ghz, 
RAM 2Gb) and lower operation count results in reduction of cumulative truncation errors and improvement of overall 

accuracy.  It shows simplicity and effectiveness of this method. An interesting feature of this method is to find the 

analytical solutions if the system has exact solutions that are polynomial functions. Examples show that the Generalized 

Taylor matrix method has been successfully applied to finding the approximate solutions of the multi-term fractional 

differential equation. The numerical solutions are compared with exact solution and some other methods.   
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