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Abstract: In mathematical analysis, Schwarz integral inequality is an important inequality. It is the basis for many 
inequalities. In this paper, six methods are given for proving Schwarz integral inequality. Furthermore, several examples 

are given in practical problems. 
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Preliminary Knowledge 

Schwarz integral inequality  If f(x) and g(x) are continuous on the closed interval [a,b].Then 
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Lemma 1 (cauchy inequality)  Let ai  and bi  (i=1,2,…,n) are real numbers .Then 
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Lemma 2[1]   Let f(x) is continuous on the closed interval [a,b] and suppose that it is nonnegative and isn’t always zero . 

Then 

( ) 0
b

a
f x dx  . 

Several Methods about the Proof of Schwarz Integral Inequality 

Proof 1[2]  In this part, we  give out a method to prove Schwarz integral inequality by using Cauchy inequality. We 

divide the interval ],[ ba  into isometric subinterval by means of points  
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If f (x) and g(x) are continuous on the closed interval [a,b], then they are integrabel. 

We have  
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By lemma 1,we get  

.)()())()((
1

2

1

22

1










 n

i

i

n

i

ii

n

i

i xg
n

ab
xf

n

ab
xgxf

n

ab
 

Therefore, let n ,we obtain 
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Proof 2  In this part, we  give out a method to prove Schwarz integral inequality by using the properties of definite 

integrals. 
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so the formula is true. 

In the same way, if  
b

a
dxxg 0)(2
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Therefore, we obtain 
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That is, 
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Proof 3[3]  In this part, we  give out a method to prove Schwarz integral inequality by using double integrals. 
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Proof 4  In this part, we  give out a method to prove Schwarz integral inequality by using the monotonicity of a function . 
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If f (x) and g(x) are continuous on the closed interval [a,b], then )(xF  is derivable on  

this closed interval. We have  
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Therefore, )(xF  is a monotonic and nondecreasing function on the closed interval [a,b]. 

That is .0)()(  aFbF So we obtain 
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Proof 5  In this part, we  give out a method to prove Schwarz integral inequality by using the mean value theorem of 

differentials. 
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of differentials, then we have  
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That is .0)()(  aFbF So we obtain 
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Proof 6  In this part, we  give out a method to prove Schwarz integral inequality by using the 

discriminant of quadratic equation with one unknown. For any real number t ，we have .0)]()([ 2  xgxtf  

Integrating the above formula with respect to x  once, we yield 
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The discriminant is  
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So we obtain 
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Several Examples about the Application of Schwarz Integral Inequality 

Example 1  Let f(x) is continuous on the closed interval [a,b] and ,0)( af  show that 
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Proof  Because of  ,0)( af then we obtain ( ) ( ) .
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By using Schwarz integral inequality, we have  
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Integrating the above formula with respect to x  once, we yield 
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Example 2  Let f(x) is continuous on the closed interval [a,b] and  
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Proof  By using Schwarz integral inequality, we have  
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In the same way, we get 
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Example 3  If f (x) and g(x) are continuous on the closed interval [a,b] and suppose that f (x) isn’t always zero and 
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Proof  By using Schwarz integral inequality, we have  
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If )(xf  is a continuous function on a closed interval ],[ ba ,then )(xf  has an absolute maximum on this interval. So 
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From the above formula, we know the sequence }{ 1
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T  has an upper bound . Therefore, its limit exists. That is, 
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Next, we shall prove the following  formula 
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On the one hand, the function )(xf  is continuous at 0x .For any given positive number  ,there is an interval 
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Because of the arbitrariness of  ,we get 
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CONCLUSIONS 

Schwarz integral inequality is a kind of important inequality in mathematical analysis, which is broadly used in  

athematical analysis. The study of integral inequality can help us not only solve some integral inequality of equation, but 

also put the primary mathematics knowledge and higher mathematics knowledge together toimprove our ability of 

thinking and innovation. This paper  

gives out a few methods to prove inequation and by which we can simply and quickly solve the problem. Meanwhile it 

introduces the method of applying Schwarz integral inequality to prove some questions by giving several examples. 
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